CS 251: Module and ADT examples

adts.sml Page 1 of 2

(* CS 251: M. Mbdul es and Abstract Data Types *)

si gnat ure MATHLIB =

sig

val fact: int ->int

val half_pi: real

(* val doubler : int ->int *) (* can hide bindings fromclients *)
end

struct ure MyMathLib: > MATHLIB =

struct
fun fact 0 =1
| fact x =x * fact (x - 1)
val half_pi = Math.pi / 2.0
fun doublery =y +y
end
val pi = MyMathLib.half_pi + MyMathLib.half_pi

(* val twenty_eight = MyMat hLi b. doubl er 14 *)

(* This signature hides gcd and reduce. dients cannot assune they
exist or call themw th unexpected inputs. But clients can still
build rational values directly with the constructors Wol e and
Frac. This nakes it inpossible to maintain invariants about
rationals, so we mght have negative denom nators, which sone
functions do not handle, and toString may print a non-reduced
fraction. *)

si gnat ur e RATIONAL_CONCRETE=

sig
dat at ype rational =Frac of int * int | Whole of int
except i on BadFrac
val make_frac: int * int ->rational
val add : rational * rational - > rational
val toString : rational -> string
end

(* This signature abstracts the rational type. Cdients can acquire
val ues of type rational using make_frac and mani pul ate them using
add and toString, but they have know way to inspect the
representation of these values or create themon their own. They
are tightly seal ed bl ack boxes. This ensures that any invariants
est abl i shed and assuned inside an inplenentation of this signature
cannot be violated by external code.

This is a true Abstract Data Type. *)
si gnat ur e RATIONAL =
sig
t ype rational (* type now abstract *)
except i on BadFrac
val make_frac: int * int ->rational
val add : rational * rational - > rational
val toString : rational -> string
end

(* As a cute trick, it is actually okay to expose the Wole
function since no value breaks our invariants, and different

i npl enentations can still inplenent Wole differently.
Clients know only that Wole is a function.
Cannot use as pattern. *)

si gnat ur e RATIONAL_WHOLE=

sig
t ype rational (* type still abstract *)
except i on BadFrac
val Whole: int ->rational
val make_frac: int * int ->rational
val add : rational * rational - > rational
val toString : rational -> string

end

(* Can ascribe any of the 3 signatures above. W choose to use the
Abstract Data Type. *)

st ruct ur e Rational : > RATIONAL =

struct

(* Invariant 1: all denom nators > 0
Invariant 2: rationals kept in reduced form*)

dat at ype rational =Whole of int | Frac of int*int
except i on BadFrac

(* gcd and reduce hel p keep fractions reduced,
but clients need not know about them *)
(* they _assune_ their inputs are not negative *)
fun gcd (xy) =
ifx=y
then x
else if x<y
thenged (xy -x)
el se gcd (y,X)

fun reducer =

caser of
Whole _ =>r
| Frac (x,y) =>

ifx=0

t hen Whole 0

el se let val d =gcd (abs x,y) in (* using invariant 1 *)
ifd=y
t hen Whole (x di v d)
el se Frac (x divd,y divd)

end

(* When meking a frac, ban zero denominators and put valid fractions
in reduce form *)
fun make_frac (x,0) = rai se BadFrac
| make_frac (x,y) =
ify<o
t hen reduce (Frac (°x,y))
el se reduce (Frac (x,y))

(* Using math properties, both invariants hold for the result
assumi ng they hold for the argunents. *)
fun add (Whole (i), Whole (j)) =Whole (i +j)
| add (Whole (i), Frac (j,k)) =Frac(j +k*ik)
| add (Frac (j,k), Whole (i) =Frac (j +k*ik)
| add (Frac (a,b), Frac (c,d)) = reduce (Frac (a *d +b*c,b *d))

CS 251: Module and ADT examples

adts.sml Page 2 of 2

(* Assuming r is in reduced form print r in reduced form*)
fun toString (Wholei) = Int.toString i
| toString (Frac (a,b)) = (Int.toString a) A" A (Int.toString b)

end

(* This structure can have all three signatures we gave
Rational, and/but it is *equival ent* under signatures
RATI ONAL and RATI ONAL_WHOLE.

This structure does not reduce fractions until printing.

*
)
st ruct ur e UnreducedRational : > RATIONAL (* or the others *) =
struct
dat at ype rational =Whole of int | Frac of int*int
except i on BadFrac
fun make_frac (x,0) = rai se BadFrac
| make_frac (x,y) =
ify<o
t hen Frac ("x,”y)
el se Frac (x,y)
fun add (Whole (i), Whole (j)) =Whole (i +j)
| add (Whole (i), Frac (j,k)) =Frac(j +k*ik)
| add (Frac (j,k), Whole (i)) =Frac (j +k*ik)
| add (Frac (a,b), Frac (c,d)) =Frac(a *d +b*c,b *d)
fun toStringr =
let fun gcd (xy) =
ifx=y
t hen x
else if x<y
thenged (xy -X)
el se ged (y,x)
fun reducer =
caser of
Whole _ =r
| Frac (x,y) =>
ifx=0
t hen Whole 0
el se
let val d =gcd (abs x,y) in
ifd=y
t hen Whole (x di v d)
el se Frac (x divd,y divd)
end
in
case reduce r of
Whole i => Int.toString i
| Frac (a,b) => (Int.toString a) At A (Int.toString b)
end
end

(* This structure uses a different concrete representation of the
abstract type. W cannot ascribe signature RATI ONAL_CONCRETE to

it. To ascribe RATIONAL_WHOLE, we nust add a Wole function. It
is indistinguishable from Rati onal under these two signatures. *)
st ruct ur e PairRational : > RATIONAL (* or RATIONAL_WHOLE *)= struct
t ype rational =int * int
except i on BadFrac
fun make_frac (x,0) rai se BadFrac
| make_frac (x,y)
ify<o
t hen (°x,”y)
el se (x,y)

fun Wholei =(i,1)
fun add ((a,b),(c,d)) =(a *d +c*b,b *d)
fun toString(0,y) "o"
| toString (x,y)
let fun gcd (xy) =
ifx=y
then x
else if x<y
thenged(xy -Xx)
el se gcd(y,x)
val d =gcd (abs x,y)
val num =x divd
val denom =y divd
val numsString = Int.toString num
in
i f denom =1
t hen numString
el se numString ~ "/" ” (Int.toString denom)
end

end

CS 251: Module and ADT examples

setex.sml

Page 1 of 1

(* ADT exercises.

Conpl ete two inplenmentations of a set ADT with the SET signature:
a |ist-based representation and a function-based representation.

You may ignore "Warning: calling polyEqual" in this exercise. *)

(* Placehol der during devel opnent. *)
except i on Unimplemented

(* SET describes operations over set values of type '"a t, where set
el enents are of type '"a. Recall that the double-quote type
variable ''a neans that values of the type ''a can be conpared
using the = operation.

Nam ng the type of the ADT t is a common idiomfor signatures
defining an ADT. This neans that for particular inplenentations
(e.g., ListSet or FunSet), ADT val ues have type ListSet.t or
FunSet.t, rather than the nore verbose ListSet.set or FunSet.set.
If a signature defines nultiple types (especially if there s not
one nain type and other supporting types), this idiomis |ess
comonly used. *)

signature SET =

sig
(* The type of sets *)
type "at

(* An enpty set *)
val empty: "at

(* Construct a single-elenent set fromthat elenment. *)
val singleton: "a ->"at

(* Construct a set froma list of elenents.
Do not assune the list elenents are unique. *)
val fromList: "a list ->"at

(* Convert a set to a list. *)
val toList:"at ->"a list

(* Construct a set froma predicate function:
the resulting set should contain all elenents for which
this predicate function returns true.

This acts like math notation for sets. For exanple:
{ x| xnod 3 =01}
woul d be witten:
fromPred (fn x => x nmod 3 = 0)
*
)

val fromPred: ("a -> bool) ->"at

(* Convert a set to a predicate function. *)
val toPred:"at ->"a -> bool

(* Convert a set to a string representation, given a function
that converts a set elenment into a string representation. *)
toString : ("a -> string) ->"at -> string

val

(* Check if a set is enpty. *)

val isEmpty : "at -> bool
val member: "a ->"at -> bool
of the given set. *)
val insert:"a ->"at ->"at
(* Construct a set containing all elenent
except for the given elenent. *)
val delete:"a ->"at ->"at
(* Construct the union of two sets. *)
val union:"at ->"at ->"at
val intersection: "at ->"at ->"at
(* Construct the symretric difference of

val difference: "at ->"at ->"at
end

structure ListSet : >SET =

struct
(* Sets are represented by lists. *)
type "at ="a list

(* The enpty set is the empty list. *)
val empty =]

fun fronPred _ = rai se Unimplemented (* i

(* conplete this structure with inplenent
bi ndi ngs given in the SET signature *)
end

structure FunSet: >SET =
struct
(* Sets are represented by functions that
given element is in the set and false
type "at ="a -> bool

al | argunents. *)
fun empty _ =false

fun singletonx = fny =>y=x

(* conplete this structure with inplenment
bi ndi ngs given in the SET signature.
Which are not? *)
end

(* Check if a given elenent is a nenber of the given set. *)

(* Construct a set containing the given elenent and all elenents

s of the given set

(* Construct the intersection of two sets. *)

two sets. *)

(* Inplement a SET ADT using lists to represent sets. *)

npossi bl e *)

ations of all of the

(* Implenent a SET ADT representing sets by predicate functions. *)

return true if the
if it is not. *)

(* The enpty set is a function that returns fal se on

(* The singleton set is a function that checks to see if
its argunent is the one elenent of the set. *)

ations of all of the
Not all are possible.

