CS 251 in-class exercise: Implementing Pattern-Matching'

We will not finish this in a day. It will be tied to a future assignment.

List Helpers

The first two functions you will write will be useful in later problems.

1. Write a function first_answer of type (’a -=> ’b option) -> ’a list -> ’b (notice the 2 argu-
ments are curried). The first argument should be applied to elements of the second argument in order
until the first time it returns SOME v for some v and then v is the result of the call to first_answer.
If the first argument returns NONE for all list elements, then first_answer should raise the exception
NoAnswer. Hints: Sample solution is 5 lines and does nothing fancy.

2. Write a function all_answers of type (’a -> ’b list option) -> ’a list -> ’b list option
(notice the 2 arguments are curried). The first argument should be applied to elements of the second
argument. If it returns NONE for any element, then the result for all_answers is NONE. Else the
calls to the first argument will have produced SOME 1st1, SOME 1st2, ... SOME lstn and the result of
all_answers is SOME 1lst where 1st is 1st1, 1st2, ..., 1stn appended together (order doesn’t matter).
Hints: The sample solution is 8 lines. It uses a helper function with an accumulator and uses @ (the
infix list-append function). Note all_answers f [] should evaluate to SOME [].

Pattern-Matching

The following type definitions are inspired by the type definitions an ML implementation would use to
implement pattern matching:

datatype pattern = Wildcard | Variable of string | UnitP | ConstP of int
| TupleP of pattern list | ConstructorP of string * pattern
datatype valu = Const of int | Unit | Tuple of valu list | Constructor of string * valu

Given valu v and pattern p, either p matches v or not. If it does, the match produces a list of string * valu
pairs; order in the list does not matter. The rules for matching should be unsurprising:

e Wildcard matches everything and produces the empty list of bindings.
e Variable s matches any value v and produces the one-element list holding (s,v).
e UnitP matches only Unit and produces the empty list of bindings.

e ConstP 17 matches only Const 17 and produces the empty list of bindings (and similarly for other
integers).

e TupleP ps matches a value of the form Tuple vs if ps and vs have the same length and for all ¢, the
it" element of ps matches the i* element of vs. The list of bindings produced is all the lists from the
nested pattern matches appended together.

e ConstructorP(sl,p) matches Constructor(s2,v) if s1 and s2 are the same string (you can compare
them with =) and p matches v. The list of bindings produced is the list from the nested pattern match.
We call the strings s1 and s2 the constructor name.

e Nothing else matches.

1Credit to Dan Grossman for this exercise.

3. (This problem uses the pattern datatype but is not really about pattern-matching.) A function g has
been provided to you.

(a) In an ML comment, describe in a few English sentences the arguments that g takes and what g
computes (not how g computes it, though you will have to understand that to determine what g
computes). No code required.

(b) Use g to define a function count_wildcards that takes a pattern and returns how many Wildcard
patterns it contains.

(¢) Use g to define a function count_wild_and_variable_lengths that takes a pattern and returns
the number of Wildcard patterns it contains plus the sum of the string lengths of all the variables
in the variable patterns it contains. (Use String.size. We care only about variable names; the
constructor names are not relevant.)

(d) Use g to define a function count_some_var that takes a string and a pattern (as a pair) and
returns the number of times the string appears as a variable in the pattern. We care only about
variable names; the constructor names are not relevant.

4. Write a function check_pat that takes a pattern and returns true if and only if all the variables
appearing in the pattern are distinct from each other (i.e., use different strings). The constructor
names are not relevant. Hints: The sample solution uses two helper functions. The first takes a
pattern and returns a list of all the strings it uses for variables. Using foldl with a function that
uses append is useful in one case. The second takes a list of strings and decides if it has repeats.
List.exists may be useful. Sample solution is 15 lines. These are hints: We are not requiring foldl
and List.exists here, but they make it easier.

5. Write a function match that takes a valu * pattern and returns a (string * valu) list option,
namely NONE if the pattern does not match and SOME 1lst where 1st is the list of bindings if it does.
Note that if the value matches but the pattern has no patterns of the form Variable s, then the result
is SOME []. Hints: Sample solution has one case expression with 7 branches. The branch for tuples
uses all_answers and ListPair.zip. Sample solution is 13 lines. Remember to look above for the
rules for what patterns match what values, and what bindings they produce. These are hints: We are
not requiring all_answers and ListPair.zip here, but they make it easier.

6. Write a function first_match that takes a value and a list of patterns and returns a
(string * valu) list option, namely NONE if no pattern in the list matches or SOME 1st where
1st is the list of bindings for the first pattern in the list that matches. Use first_answer and a
handle-expression. Hints: Sample solution is 3 lines.

