
Compositional Programming

CS251 Programming
Languages
Fall 2016, Lyn Turbak

Department of Computer Science
Wellesley College

Mo#va#ng	problem:	ssm35	
(sum-of-squares-of-multiples-of-3-or-5 n)

Return	the	sum	of	the	squares	of	the	all	the	mul#ples	of	3	and	5		
between	1	and	n,	inclusive.		

Since	sum-of-squares-of-multiples-of-3-or-5	is	a	
very	long	name,	we’ll	abbreviate	it	to	ssm35.		

For	example,	what	should	(ssm35 10)	return?		

	

	

2 Composition

A	monolithic	recursive	solu#on		

3 Composition

(define (ssm35-monolithic-count-down n)
 (if (= n 0)
 0
 (if (or (divisible-by? n 3)
 (divisible-by? n 5))
 (+ (* n n)
 (ssm35-monolithic-count-down (- n 1)))
 (ssm35-monolithic-count-down (- n 1)))))

> (ssm35-monolithic-count-down 10)
251

This starts at n, counts down to 0, and then
sums up the squares of the multiples of 3 and 5
on the way out of the recursion.

A	monolithic	solu#on	that	counts	up		

4 Composition

(define (ssm35-monolithic-count-up n)
 (define (helper num)
 (if (> num n)
 0
 (if (or (divisible-by? num 3)
 (divisible-by? num 5))
 (+ (* num num)
 (helper (+ num 1)))
 (helper (+ num 1)))))
 (helper 1))

> (ssm35-monolithic-count-up 10)
251

This version uses a helper function to generate the numbers from
1 up to n. But it sums the squares from highest to lowest rather
than lowest to highest.

Signal-processing	style	of	programming	

5 Composition

(define (ssm35-holo n)
 (foldr + 0
 (map (λ (x) (* x x))
 (filter (λ (num) (or (divisible-by? num 3)
 (divisible-by? num 5)))
 (range 1 (+ n 1))))))

> (ssm35-holo 10)
251

This version decomposes the problem into steps that generate,
map, filter, and accumulate intermediate lists. It uses higher-
order list operators to manipulate the lists.

Composi#on	in	Racket	

(define (o f g)
 (λ (x) (f (g x))))

(define (inc x) (+ x 1))
(define (dbl y) (* y 2))

> ((o dbl inc) 5)

> ((o inc dbl) 5)

6 Composition

Composi#on	style	of	programming	

7 Composition

(define ssm35-compose
 (o (λ (squares)
 (foldr + 0 squares))
 (o (λ (filtered-nums)
 (map (λ (x) (* x x)) filtered-nums))
 (o (λ (nums)
 (filter (λ (num) (or (divisible-by? num 3)
 (divisible-by? num 5)))
 nums))
 (o (λ (hi) (range 1 hi))
 inc)))))

> (ssm35-compose 10)
251

The	iden#ty	func#on	id
(define id (λ (x) x)))

> ((o id inc) 5)

> ((o dbl id) 5)

8 Composition

Composing	lists	of	func#ons	

9 Composition

(define (o-list funlist)
 (foldr o id funlist))

(define (dbl x) (* x 2))
(define (inc y) (+ y 1))
(define (sq z) (* z z))

> ((o-list (list dbl inc sq)) 5)

ssm35	with	o-list	

10 Composition

(define ssm35-compose-list
 (o-list (list (λ (squares)
 (foldr + 0 squares))
 (λ (filtered-nums)
 (map (λ (x) (* x x)) filtered-nums))
 (λ (nums)
 (filter (λ (num) (or (divisible-by? num 3)
 (divisible-by? num 5)))
 nums))
 (λ (hi) (range 1 hi))
 inc)))

> (ssm35-compose-list 10)
251

Recall	Currying	
A	curried	binary	func#on	takes	one	argument	at	a	#me.		

(define (curry2 binop)
 (λ (x) (λ (y) (binop x y)))

(define curried-mul (curry2 *))

> ((curried-mul 5) 4)

> (my-map (curried-mul 3) (list 1 2 3))

> (my-map ((curry2 pow) 4) (list 1 2 3))

> (my-map ((curry2 (flip2 pow)) 4) (list 1 2 3))

> (define lol (list (list 2 3) (list 4) (list 5 6 7)))

> (map ((curry2 cons) 8) lol)

> (map (??? 8) lol)
 ‘((2 3 8) (4 8) (5 6 7 8))

Haskell	Curry	

11 Composition

Racket’s	built-in	curry	func#on	
> (((curry *) 2) 5)
10

> ((curry * 2) 5)
10

> (map (curry * 3) '(7 2 5))
'(21 6 15)

> (define (triple a b c) (list a b c))

> (map (curry triple 1 2) '(7 2 5))
'((1 2 7) (1 2 2) (1 2 5))

> (map (curry triple 8 9) '(7 2 5))
'((8 9 7) (8 9 2) (8 9 5))

> (map (curry triple 8) '(7 2 5))
'(#<procedure:curried> #<procedure:curried> #<procedure:curried>)

12 Composition

Uncurrying	(no	built-in	Racket	func#on)	

> (define curried-* (curry2 *))

> (map (curried-* 3) (range 10))
'(0 3 6 9 12 15 18 21 24 27)

> (define mul (uncurry2 curried-*))

> (mul 3 4)
12

13 Composition

(define (uncurry2 curried-binop)
 (λ (x y) ((curried-binop x) y)))

(define (uncurry3 curried-ternop)
 (λ (x y z) (((curried-ternop x) y) z)))

Defining	func#ons	without	any	λs			

14 Composition

(define map-scale
 (uncurry2 (o (curry2 map) (curry2 *))))

(define map-cons
 (uncurry2 (o (curry2 map) (curry2 cons))))

> (map-scale 5 (range 10))
'(0 5 10 15 20 25 30 35 40 45)

> (map-cons 17 '((1 2 3) (4) () (5 6)))
'((17 1 2 3) (17 4) (17) (17 5 6))

Some#mes	argument	flipping	is	helpful	

15 Composition

(define (flip2 binop)
 (λ (x y) (binop y x)))

> (filter ((curry2 divisible-by?) 5)
 (range 1 21))
'(1 5)

> (filter ((curry2 (flip2 divisible-by?)) 5)
 (range 1 21))
'(5 10 15 20)

Handling	func#ons	using	same	arg	>	once	

16 Composition

(define (dup-arg curried-binop)
 (λ (x) ((curried-binop x) x)))

> ((dup-arg (curry2 *)) 5)

and	and	or	need	special	handling	(why?)	

17 Composition

> (((curry2 and) (> 251 100)) (divisible-by? 251 3))
and: bad syntax in: and

> (((curry2 (λ (b1 b2) (and b1 b2))) (> 251 100))
 (divisible-by? 251 3))
#f

> (((curry2 (λ (b1 b2) (and b1 b2))) (< 251 100))
 (divisible-by? 251 0))
remainder: undefined for 0

o-and	and	o-or	

18 Composition

(define (o-and f g)
 (λ (x) (and (f x) (g x))))

(define (o-or f g)
 (λ (x) (or (f x) (g x))))

> ((o-and (λ (n) (> n 100))
 (λ (n) (divisible-by? n 3)))
 251)
#f

> ((o-and (λ (n) (< n 100))
 (λ (n) (divisible-by? n 0)))
 251)
#f

Defining	ssm35	without	any	λs	

19 Composition

(define ssm35-no-lambdas
 (o-list (list (curry foldr + 0)
 ((curry2 map) (dup-arg (curry2 *)))
 ((curry2 filter)
 (o-or ((curry2 (flip2 divisible-by?)) 3)
 ((curry2 (flip2 divisible-by?)) 5)))
 ((curry2 range) 1)
 ((curry2 +) 1))))

> (ssm35-no-lambdas 10)
251

