Compositional Programming

CS251 Programming
Languages
Fall 2016, Lyn Turbak

*
*

Xy a8S A0

S0
(R0 GRAECIP]

AGEs

1,
C(_»‘

Wellesley College

Department of Computer Science

Motivating problem: ssm35
(sum-of-squares-of-multiples-of-3-or-5 n)

Return the sum of the squares of the all the multiples of 3 and 5
between 1 and n, inclusive.

Since sum-of-squares-of-multiples-of-3-or-5isa
very long name, we’ll abbreviate it to ssm35.

For example, what should (ssm35 10) return?

Composition 2

A monolithic recursive solution

This starts at n, counts down to 0, and then
sums up the squares of the multiples of 3 and 5
on the way out of the recursion.

(define (ssm35-monolithic-count-down n)

(if

(=n 0)

0

(if

(or

(+

(divisible-by? n 3)
(divisible-by? n 5))

(* n n)

(ssm35-monolithic-count-down (- n 1)))
(ssm35-monolithic-count-down (- n 1)))))

Composition 3

A monolithic solution that counts up

This version uses a helper function to generate the numbers from
1 up to n. But it sums the squares from highest to lowest rather
than lowest to highest.

(define (ssm35-monolithic-count-up n)

(define

(helper num)

(1f

(> num n)

0

(if (or (divisible-by? num 3)

(divisible-by? num 5))
(+ (* num num)
(helper (+ num 1)))
(helper (+ num 1)))))

(helper 1))

Composition 4




Signal-processing style of programming

This version decomposes the problem into steps that generate,
map, filter, and accumulate intermediate lists. It uses higher-
order list operators to manipulate the lists.

(define (ssm35-holo n)
(foldr + O
(map (A (x) (* x x))
(filter (A (num) (or (divisible-by? num 3)
(divisible-by? num 5)))
(range 1 (+ n 1))))))

Composition 5

Composition in Racket
(define (o £ q)
(A (%) (£ (g x))))

(define (inc x) (+ x 1))
(define (dbl vy) (* v 2))

> ((o dbl inc) 5)

> ((o inc dbl) 5)

Composition 6

Composition style of programming

(define ssm35-compose
(o (A (squares)
(foldr + 0 squares))
(o (A (filtered-nums)
(map (A (x) (* x x)) filtered-nums))
(o (A (nums)
(filter (A (num) (or (divisible-by? num 3)
(divisible-by? num 5)))
nums) )
(o (A (hi) (range 1 hi))
inc)))))

Composition 7

The identity function id

(define id (A (x) x)))
> ((o id inc) 5)

> ((o dbl id) 5)

Composition 8




Composing lists of functions

(define (o-list funlist)
(foldr o id funlist))

(define (dbl x) (* x 2))
(define (inc y) (+ y 1))

(define (sq z) (* z z))

Composition 9

ssm35 with o-list

(define ssm35-compose-list
(o-1list (list (A (squares)
(foldr + 0 squares))
(N (filtered-nums)

(A (nums)

nums) )

(A (hi) (range 1 hi))
inc)))

(map (A (x) (* x x)) filtered-nums))

(filter (A (num) (or (divisible-by? num 3)

(divisible-by? num 5)))

Composition 10

Recall Currying

A curried binary function takes one argument at a time.

(define (curry2 binop)
(A (x) (A (y) (binop x y)))

(define curried-mul (curry2 *)

> ((curried-mul 5) 4)

> (my-map (curried-mul 3) (list 1 2 3)

> (my-map ((curry2 pow) 4) (list 1 2 3))

> (my-map ((curry2 (flip2 pow)) 4) (list 1 2 3))

Haskell Curry

> (define lol (list (list 2 3) (list 4) (list 5 6 7)))

> (map ((curry2 cons) 8) lol)

> (map (2?2 8) lol)
“((2 38) (48) (567 8))

Composition 1]

Racket’s built-in curry function
> (((curry *) 2) 5)
10

> ((curry * 2) 5)
10

> (map (curry * 3) '(7 2 5)
'(21 6 15)

> (define (triple a b c¢) (list a b c))

> (map (curry triple 1 2) '(7 2 5)
"((127) (1L 22) (L 265)

> (map (curry triple 8 9) '(7 2 5)
'((8 9 7) (89 2) (89 5))

> (map (curry triple 8) '(7 2 5)

' (#<procedure:curried> #<procedure:curried> #<procedure:curried>)

Composition 12




Uncurrying (no built-in Racket function)

(define (uncurry2 curried-binop)
(N (x y) ((curried-binop x) vy)))

= e e e = e e e e e e e e e e e e e e =

> (define curried-* (curry2 *))

> (map (curried-* 3) (range 10))
'(0O 3 6 9 12 15 18 21 24 27)

> (define mul (uncurry2 curried-*))

(define (uncurry3 curried-ternop)

(AN (x v z) (((curried-ternop x) y) z)))

Composition 13

Defining functions without any As

(define map-scale

(uncurry?2 (o (curry2 map) (curry2 *))))

1> (map-scale 5 (range 10))

(define map-cons

(uncurry2 (o (curry2 map) (curry2 cons))))

Composition 14

Sometimes argument flipping is helpful

(define (flip2 binop)
(A (x y) (binop y x)))

r
> (filter ((curry2 divisible-by?) 5)
(range 1 21))

> (filter ((curry2 (flip2 divisible-by?)) 5)
(range 1 21))

Composition 15

Handling functions using same arg > once

(define (dup-arg curried-binop)
(A (x) ((curried-binop x) x)))

:> ((dup-arg (curry2 *)) 5)

Composition 16




and and or need special handling (why?)

> (((curry2 and) (> 251 100)) (divisible-by? 251 3))
and: bad syntax in: and

> (((curry2 (A (bl b2) (and bl b2))) (> 251 100))
(divisible-by? 251 3))

#f

> (((curry2 (A (bl b2) (and bl b2))) (< 251 100))

(divisible-by? 251 0))
remainder: undefined for 0

Composition 17

o—and and o-or

(define (o-and f qg)
(A (x) (and (f x) (g x)))

(define (o-or f qg)
(A (x) (or (f x) (g x))))

)

> ((o—and (A (n) (> n 100))

> ((o-and (A (n) (< n 100))

(N (n) (divisible-by? n 3)))

(A (n) (divisible-by? n 0)))

Composition 18

Defining ssm35 without any As

(define ssm35-no-lambdas

(o-1list (list (curry foldr + 0)
((curry2 map) (dup-arg (curry2 *)))
((curry2 filter)

(o-or ((curry2 (flip2 divisible-by?)) 3)
((curry2 (flip2 divisible-by?)) 5)))

((curry2 range) 1)
((curry2 +) 1))))

Composition 19




