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The ML Programming Language

ML (Meta Language) was developed by Robin Milner in 1975 for
specifying theorem provers. It since has evolved into a general
purpose programming language.

Important features of ML:
« static typing: catches type errors at compile-time.

»  type reconstruction: infers types so programmers don’t have to
write them explicitly

e polymorphism: functions and values can be parameterized over
types (think Java generics, but much better).

» function-oriented (functional): encourages a composition-based
style of programming and first-class functions

» sum-of-products dataypes with pattern-matching: simplifies the
manipulation of tree-structured data

These features make ML an excellent language for mathematical
calculation, data structure implementation, and programming
language implementation.
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ML Dialects

There are several different dialects of ML. The two we use at Wellesley are:

o Standard ML (SML): Version developed at AT&T Bell Labs.
We'll use this in CS251. The particular implementation we’ll use is
Standard ML of New Jersey (SMLNJ):

o Objective CAML: Version developed at INRIA (France). We have
sometimes used this in other Wellesley courses.

These dialects differ in minor ways (e.g., syntactic conventions, library
functions). See the following for a comparison:
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For now: run sml on cs.wellesley.edu

« Lynis still working out details with SML on different versions of
Ben’s wx Virtual Machine appliance (which is used in CS240).
I'll email the class when | have this figured out.

+ So for now, we'll be experimenting with SML on the CS server =
cs.wellesley.edu = tempest.

- Begin by connecting to your CS server account via ssh.
« Ona Mac, you can do this in your terminal window.
On a Windows PC, you’ll need to use a terminal emulator like putty

[fturbak@Franklyns-MBP ~]$ ssh gdome@cs.wellesley.edu
gdome@cs.wellesley.edu's password:
Last login: Wed Oct 26 15:28:23 2016 from 149.130.142.18

[gdome@tempest ~] which sml
/usr/local/smlnj/bin/sml

[gdome@tempest ~] sml
Standard ML of New Jersey v110.78 [built: Wed Jan 14 12:52:09 2015]

-1+ 2;

val it = 3 Introduction to Standard ML




Learning SML by Interactive Examples

Try out these examples. (Note: many answers are missing in these
slides so you can predict them. See the solns slides for answers.

[gdome@tempest ~] sml
Standard ML of New Jersey v110.78 [built: Wed Jan 14 12:52:09 2015]

-1+ 2;
val it =

- 3+4;
val it =

- 5+6
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Naming Values

- val a = 2 + 3;

val a = : int

- a * a;

val it = . int
- it + a;

val it = : int
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Negative Quirks

-2 -5;
val it = ~3 : int

- =17;

stdIn:60.1 Error: expression or pattern begins with infix
identifier "-"

stdIn:60.1-60.4 Error: operator and operand don't agree
[literal]

operator domain: 'Z * 'Z
operand: int
in expression:
- 17
- ~17;
val it = ~17 : int
- 3 * ~1;

val it = ~3 : int
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Division Quirks

-7/ 2;
stdIn:1.1-1.6 Error
[literal]
operator domain:
operand:
in expression:
7/ 2

- 7.0 / 2.0;
val it = 3.5 : real

: operator and operand don't agree

real * real
int * int

- 7 div 2; (* integer division ¥*)

val it = 3 : int

(* For a description of all top-level operators, see:

*)
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Simple Functions

- val inc = fn x => x + 1;
val inc = fn : int -> int (* SML figures out type! *)

- inc a;
val it = : int

- fun dbl y =y * 2;
(* Syntactic sugar for val dbl = fn y =>y * 2 *)
val dbl = fn : int -> int

- dbl 5;

val it = : int

- (fn x => x * 3) 10; (* Don’t need to name function to use it *)
val it = : int

When Parentheses Matter

- dbl(5); (* parens are optional here *)
val it = 10 : int

- (dbl 5); (* parens are optional here *)
val it = 10 : int

- inc (dbl 5); (* parens for argument subexpressions are required!
val it = 11 : int

- (inc dbl) 5;

*)

stdIn:1.2-2.2 Error: operator and operand don't agree [tycon mismatch]

operator domain: int
operand: int -> int
in expression:

inc dbl

- inc dbl 5; (* default left associativity for application *)
stdIn:22.1-22.10 Error: operator and operand don't agree [tycon
mismatch]

operator domain: int

operand: int -> int
in expression:
inc dbl
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: " Functions as Arguments
Function Composition 8
- (inc o dbl) 10; (* SML builtin infix function composition *) - fun aFﬁ35 =1 5;
val it = : int val appb5 = fn : (int -> 'a) -> 'a
- (dbl o inc) 10; .
val it = : int - apps inc;
val it = : int
- fun id x = x; (* we can define our own identity fcn *)
val id = fn : 'a -> 'a (* polymorphic type; compare to
Java's public static <T> T id (T x) {return x;} *) - aF4)5 dbl;
val it = : int
- (inc o id) 10;
val it = : int
- app5 (fn z => z - 2);
- (id o dbl) 10; val it = : int
val it = : int
. . ) . We’ |l see later that functions can also be returned as results from other
- (inc o inc o inc o inc) 10; . X . K . i
S Lo functions and stored in data structures, so funtions are first-class in SML just
val it = : int .
as in Racket.
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Scope of Top-Level Names Booleans

- val b =a * 2; (* recall a is 5 from before *) -1 =1;
val b = : int val it = : bool
- fun adda x = x + a; (* a is still 5 from before *) -1>2;
val adda = fn : int -> int val it = : bool
_ N - (1 = 1) andalso (1 > 2);
adqa 7i ) val it = : bool
val it = ¢ int
- (1 =1) orelse (1 = 2);
- adda b; val it = : bool
val it = : int
- (3 = 4) andalso (5 = (6 div 0)); (* short-circuit evaluation *)
- val a = 42; (* this is a different a from the previous one ¥*) val it = : bool
val a = : int
- fun isEven n = (n mod 2) = 0

. . s val isEven = fn : int -> bool (* SML figures out type! *)
- b; (* ML values are immutable; nothing can change b s value *)

val it = : int - isEven 17;
val it = : bool
- adda 7;
val it = : int (* still uses the a where adda was defined *) - isEven 6;
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Conditionals Recursion

- fun £f n = if n > 10 then 2 * n else n * n; —fwgfﬂi n=h
val £ = fn : int -> int if n = 0 then

= 1
= else
- f 20; = n * (fact (n - 1)); (* fun names have recursive scope ¥*)
1 it = . int val fact = fn : int -> int
va 1 - :oin (* simpler than Java definition b/c no explicit types! *)
- £ 5; - fact 5;
. . val it = : int
val it = : 1nt
- fact 12;
val it = : int
- fact 13;

uncaught exception Overflow [overflow]
raised at: <file stdIn>
(* SML ints have limited size ® *)
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Local Naming via let

let is used to define local names. Any such names “shadow”
existing definitions from the surrounding scope.

- let val a = 27 (* 1%t let binding *)
= val b = 3 (* 2" binding *)

= fun fact x = x + 2 (* 3" binding *)
= in fact (a div b) (* let body *)

= end; (* end terminates the let *)

val it = : int

let-bound names are only visible in the body of the 1et.

- fact (a div b); (* these are global names *)
val it = : int
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Make and populate a ~/cs251/sml directory

[gdome@tempest ~] pwd
/students/gdome

[gdome@tempest ~] mkdir cs251
[gdome@tempest ~] cd cs251
[gdome@tempest c¢s251] mkdir sml
[gdome@tempest cs251] cd sml

[gdome@tempest sml] pwd
/students/gdome/cs251/sml

[gdome@tempest sml] cp ~cs251/download/sml/*

[gdome@tempest sml] 1s
listfuns.sml load-fact.sml mydefns.sml
step-more.sml step.sml test-fact.sml
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Easier to Put Your Code in a File

(* This is the contents of the file
~gdome/cs251/sml/mydefns.sml.
(* By the way, comments nest properly in SML! *)
It defines integers a and b and the fact function. *)

val a = 2 + 3

val b = 2 * a

fun fact n = (* a recursive factorial function *)
if n = 0 then
1
else

n * (fact (n - 1))

* Fileis a sequence of value/function definitions.
* Definitions are not followed by semi-colons in files!

* There are no equal signs for multiple-line definitions.
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Using Code From a File

- Posix.FileSys.getcwd(); (* current working directory *)
val it = "/students/gdome" : string

- Posix.FileSys.chdir ("/students/gdome/cs251/sml") ;
(* change working directory *)

val it = () : unit

- Posix.FileSys.getcwd() ;

val it = "/students/gdome/cs251/sml" : string

- use "mydefns.sml"; (* load defns from file as if *)
[opening mydefns.sml] (* they were typed manually *)
val a = 5 : int

val b = 10 : int

val fact = fn : int -> int

val it = () : unit

- fact a

val it = 120 : int

Introduction to Standard ML 20




Another File Example

Nested File Uses

(* This is the contents of the file test-fact.sml *)

val fact 3 = fact 3

val fact a = fact a

(* The contents of the file load-fact.sml *)
use "mydefns.sml”; (* semi-colons are required here *)

use “test-fact.sml”;

- use "test-fact.sml";
[opening test-fact.sml]

- use "load-fact.sml";
[opening load-fact.sml]
[opening mydefns.sml]

val a = 5 : int
val fact 3 = 6 : int val b = 10 : int
val fact a = 120 : int val fact = fn : int -> int
, — , val it = () unit
val it = () tounit [opening test-fact.sml]
val fact 3 = 6 : int
val fact a = 120 : int
val it = () unit
val it = () unit
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Tuples Strings
- val tpl = (1 + 2, 3 <4, 5 * 6, 7=28); - "foobar";
val tpl = ( , - ) : int * bool * int * bool val it = : string
_ #1 tpl; - "foo" ~ "par" ~ "baz";
val it = : int val it = : string
- #2 tpl; - print ("baz" *~ "quux");
val it = : bool bazquuxval it = () : unit
(* In practice, always use pattern matching (below) - print ("baz" ~ "quux\n"); (* parens are essential here! *)
rather than #1, #2, etc. *) bazquux
- ((#1 tpl) + (#3 tpl), (#2 tpl) orelse (#4 tpl)):; val it = () : unit
val it = ( , ) : int * bool
- print "baz" ~ "quux\n";

(* Can “deconstruct” tuples via pattern matching *)

- let val (il, bl, 12, b2) = tpl
in (il + 12, bl orelse b2)

= end;

val it = ( , ) : int * bool
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stdIn:1.1-1.23 Error: operator and operand don't agree
[tycon mismatch]
operator domain: string * string
operand: unit * string
in expression:
print "baz"

~

"quux\n"
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Other String Operations

- String.size ("foo" * "bar");
val it = : int

- String.substring ("abcdefg", 2, 3); (* string, start index, len *)
val it = : string

("bar"™ < "foo", "bar" <= "foo", "bar" = "foo", "bar" > "foo");
val it = ( , , , ) : bool * bool * bool * bool

- (String.compare ("bar", "foo"), String.compare ("foo", "foo"),
= String.compare ("foo", "bar"));
val it = ( ’ ’ ) : order * order * order

- String.size;
val it = fn : string -> int

- String.substring;
val it = fn : string * int * int -> string

- String.compare;
val it = fn : string * string -> order

(* An API for all SMLNJ String operations can be found at:
*)
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Characters

_ #uan;
val it = #"a" : char

- String.sub ("foobar",0);
val it = : char

- String.sub ("foobar",5);
val it = : char

- String.sub ("foobar",6);

uncaught exception Subscript [subscript out of bounds]

raised at: stdIn:17.1-17.11

- String.str #"a"; (* convert a char to a string *)
val it = "a" : string
(String.str (String.sub ("ABCD",2))) ~ "S"
= * (Int.toString (112 + 123));
val it = : string
- (1+2, 3=4, "foo" ” "bar", String.sub("baz",2));

val it = ( , ’ , ) : int * bool * string * char
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Pattern-matching Function Arguments

- fun swap (x,y) = (y, x);
val swap = fn : 'a * 'b -> 'b * 'a (* infers polymorphic type *)

- swap (1+2, 3=4);
val it = : bool * int

- swap (swap (1+2, 3=4));
val it = : int * bool

- swap ((1+2, 3=4), ("foo"™ ~ "bar", String.sub("baz",2)));

val it = (string * char) * (int *
bool)
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How to Pass Multiple Arguments

- fun avgl (x, y) = (x + y) div 2; (* Approach 1l: use pairs *)

val avgl = fn : int * int -> int

- avgl (10,20);

val it = : int

- fun avg2 x = (fn y => (x + y) div 2); (* Approach 2: currying *)

val avg2 = fn : int -> int -> int

- avg2 10 20;

val it = : int
- fun avg3 x y = (x + y) div 2; (* Syntactic sugar for currying *)
val avg3 = fn : int -> int -> int

- avg3 10 20;
val it = : int

- app5 (avg3 15);
val it = : int

- app5 (fn i => avgl(15,i));
val it = : int
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Iterating via Tail Recursion

(* This is the contents of the file step.sml *)

fun step (a,b) = (atb, a*b)
fun stepUntil ((a,b), limit) = (* no looping constructs in ML;
if a >= limit then (* use tail recursion instead!
(a,b)
else

stepUntil (step(a,b), limit)

Adding print statements

- use ("step.sml");
[opening step.sml]

val step = fn : int * int -> int * int
val stepUntil = fn : (int * int) * int -> int * int
val it = () : unit

- step (1,2);
val it = (3,2) : int * int

- step (step (1,2));
val it = (5,6) : int * int

- let val (x,y) = step (step (1,2)) in x*y end;
val it = 30 : int

- stepUntil ((1,2), 100);
val it = (371,13530) : int * int

(* This is the contents of the file step-more.sml *)

fun printPair (a,b) =
print ("(" ~ (Int.toString a) ~ ","
~ (Int.toString b) ~ ")\n")

fun stepUntilPrint ((a,b), limit) =
if a >= limit then
(a,b)
else

(printPair (a,b); (* here, semicolon sequences expressions *)

stepUntilPrint (step(a,b), limit)
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- use ("step-more.sml");
[opening step-more.sml]
val printPair = fn : int * int -> unit

val stepUntilPrint = fn : (int * int) * int -> int * int

val it = () : unit

- stepUntilPrint ((1,2),100);

val it = (371,13530) : int * int

How to exit SML interpreter?

[gdome@tempest ~] sml
Standard ML of New Jersey v110.78
[built: Wed Jan 14 12:52:09 2015]

-1+ 2;
val it = 3 : int

- <—{ Type Control-d at the SML prompt

[gdome@tempest ~]
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