Introduction To Standard ML

€S251 Programming
Languages
Fall 2016, Lyn Turbak

*

*

)
QRAECTP]
Avyg XS A0

¢is.
AGEs

-
<

\
&K

2
¢

Department of Computer Science
Wellesley College

>
CA

The ML Programming Language

ML (Meta Language) was developed by Robin Milner in 1975 for
specifying theorem provers. It since has evolved into a general
purpose programming language.

Important features of ML:
« static typing: catches type errors at compile-time.

» type reconstruction: infers types so programmers don’t have to
write them explicitly

e polymorphism: functions and values can be parameterized over
types (think Java generics, but much better).

» function-oriented (functional): encourages a composition-based
style of programming and first-class functions

» sum-of-products dataypes with pattern-matching: simplifies the
manipulation of tree-structured data

These features make ML an excellent language for mathematical
calculation, data structure implementation, and programming
language implementation.

Introduction to Standard ML

ML Dialects

There are several different dialects of ML. The two we use at Wellesley are:

o Standard ML (SML): Version developed at AT&T Bell Labs.
We'll use this in CS251. The particular implementation we’ll use is
Standard ML of New Jersey (SMLNJ):

o Objective CAML: Version developed at INRIA (France). We have
sometimes used this in other Wellesley courses.

These dialects differ in minor ways (e.g., syntactic conventions, library
functions). See the following for a comparison:

Introduction to Standard ML

3

For now: run sml on cs.wellesley.edu

« Lynis still working out details with SML on different versions of
Ben’s wx Virtual Machine appliance (which is used in CS240).
I'll email the class when | have this figured out.

+ So for now, we'll be experimenting with SML on the CS server =
cs.wellesley.edu = tempest.

- Begin by connecting to your CS server account via ssh.
« Ona Mac, you can do this in your terminal window.
On a Windows PC, you’ll need to use a terminal emulator like putty

[fturbak@Franklyns-MBP ~]$ ssh gdome@cs.wellesley.edu
gdome@cs.wellesley.edu's password:
Last login: Wed Oct 26 15:28:23 2016 from 149.130.142.18

[gdome@tempest ~] which sml
/usr/local/smlnj/bin/sml

[gdome@tempest ~] sml
Standard ML of New Jersey v110.78 [built: Wed Jan 14 12:52:09 2015]

-1+ 2;

val it = 3 Introduction to Standard ML

Learning SML by Interactive Examples

Try out these examples. (Note: many answers are missing in these
slides so you can predict them. See the solns slides for answers.

[gdome@tempest ~] sml
Standard ML of New Jersey v110.78 [built: Wed Jan 14 12:52:09 2015]

-1+ 2;
val it =

- 3+4;
val it =

- 5+6

Introduction to Standard ML, 5

Naming Values

- val a = 2 + 3;

val a = : int

- a * a;

val it = . int
- it + a;

val it = : int

Introduction to Standard ML

6

Negative Quirks

-2 -5;
val it = ~3 : int

- =17;

stdIn:60.1 Error: expression or pattern begins with infix
identifier "-"

stdIn:60.1-60.4 Error: operator and operand don't agree
[literal]

operator domain: 'Z * 'Z
operand: int
in expression:
- 17
- ~17;
val it = ~17 : int
- 3 * ~1;

val it = ~3 : int

Introduction to Standard ML, 7

Division Quirks

-7/ 2;
stdIn:1.1-1.6 Error
[literal]
operator domain:
operand:
in expression:
7/ 2

- 7.0 / 2.0;
val it = 3.5 : real

: operator and operand don't agree

real * real
int * int

- 7 div 2; (* integer division ¥*)

val it = 3 : int

(* For a description of all top-level operators, see:

*)

Introduction to Standard ML

8

Simple Functions

- val inc = fn x => x + 1;
val inc = fn : int -> int (* SML figures out type! *)

- inc a;
val it = : int

- fun dbl y =y * 2;
(* Syntactic sugar for val dbl = fn y =>y * 2 *)
val dbl = fn : int -> int

- dbl 5;

val it = : int

- (fn x => x * 3) 10; (* Don’t need to name function to use it *)
val it = : int

When Parentheses Matter

- dbl(5); (* parens are optional here *)
val it = 10 : int

- (dbl 5); (* parens are optional here *)
val it = 10 : int

- inc (dbl 5); (* parens for argument subexpressions are required!
val it = 11 : int

- (inc dbl) 5;

*)

stdIn:1.2-2.2 Error: operator and operand don't agree [tycon mismatch]

operator domain: int
operand: int -> int
in expression:

inc dbl

- inc dbl 5; (* default left associativity for application *)
stdIn:22.1-22.10 Error: operator and operand don't agree [tycon
mismatch]

operator domain: int

operand: int -> int
in expression:
inc dbl
Introduction to Standard MI. 9 Introduction to Standard MI. 10
: " Functions as Arguments
Function Composition 8
- (inc o dbl) 10; (* SML builtin infix function composition *) - fun aFﬁ35 =1 5;
val it = : int val appb5 = fn : (int -> 'a) -> 'a
- (dbl o inc) 10; .
val it = : int - apps inc;
val it = : int
- fun id x = x; (* we can define our own identity fcn *)
val id = fn : 'a -> 'a (* polymorphic type; compare to
Java's public static <T> T id (T x) {return x;} *) - aF4)5 dbl;
val it = : int
- (inc o id) 10;
val it = : int
- app5 (fn z => z - 2);
- (id o dbl) 10; val it = : int
val it = : int
. .) . We’ |l see later that functions can also be returned as results from other
- (inc o inc o inc o inc) 10; . X . K . i
S Lo functions and stored in data structures, so funtions are first-class in SML just
val it = : int .
as in Racket.
Introduction to Standard ML, 11 Introduction to Standard MI. 12

Scope of Top-Level Names Booleans

- val b =a * 2; (* recall a is 5 from before *) -1 =1;
val b = : int val it = : bool
- fun adda x = x + a; (* a is still 5 from before *) -1>2;
val adda = fn : int -> int val it = : bool
_ N - (1 = 1) andalso (1 > 2);
adqa 7i) val it = : bool
val it = ¢ int
- (1 =1) orelse (1 = 2);
- adda b; val it = : bool
val it = : int
- (3 = 4) andalso (5 = (6 div 0)); (* short-circuit evaluation *)
- val a = 42; (* this is a different a from the previous one ¥*) val it = : bool
val a = : int
- fun isEven n = (n mod 2) = 0

. . s val isEven = fn : int -> bool (* SML figures out type! *)
- b; (* ML values are immutable; nothing can change b s value *)

val it = : int - isEven 17;
val it = : bool
- adda 7;
val it = : int (* still uses the a where adda was defined *) - isEven 6;
Introduction to Standard MLL 13 val it = ¢ bool Introduction to Standard ML, 14

Conditionals Recursion

- fun £f n = if n > 10 then 2 * n else n * n; —fwgfﬂi n=h
val £ = fn : int -> int if n = 0 then

= 1
= else
- f 20; = n * (fact (n - 1)); (* fun names have recursive scope ¥*)
1 it = . int val fact = fn : int -> int
va 1 - :oin (* simpler than Java definition b/c no explicit types! *)
- £ 5; - fact 5;
. . val it = : int
val it = : 1nt
- fact 12;
val it = : int
- fact 13;

uncaught exception Overflow [overflow]
raised at: <file stdIn>
(* SML ints have limited size ® *)

Introduction to Standard ML 15 Introduction to Standard ML 16

Local Naming via let

let is used to define local names. Any such names “shadow”
existing definitions from the surrounding scope.

- let val a = 27 (* 1%t let binding *)
= val b = 3 (* 2" binding *)

= fun fact x = x + 2 (* 3" binding *)
= in fact (a div b) (* let body *)

= end; (* end terminates the let *)

val it = : int

let-bound names are only visible in the body of the 1et.

- fact (a div b); (* these are global names *)
val it = : int

Introduction to Standard ML 17

Make and populate a ~/cs251/sml directory

[gdome@tempest ~] pwd
/students/gdome

[gdome@tempest ~] mkdir cs251
[gdome@tempest ~] cd cs251
[gdome@tempest c¢s251] mkdir sml
[gdome@tempest cs251] cd sml

[gdome@tempest sml] pwd
/students/gdome/cs251/sml

[gdome@tempest sml] cp ~cs251/download/sml/*

[gdome@tempest sml] 1s
listfuns.sml load-fact.sml mydefns.sml
step-more.sml step.sml test-fact.sml

Introduction to Standard ML 18

Easier to Put Your Code in a File

(* This is the contents of the file
~gdome/cs251/sml/mydefns.sml.
(* By the way, comments nest properly in SML! *)
It defines integers a and b and the fact function. *)

val a = 2 + 3

val b = 2 * a

fun fact n = (* a recursive factorial function *)
if n = 0 then
1
else

n * (fact (n - 1))

* Fileis a sequence of value/function definitions.
* Definitions are not followed by semi-colons in files!

* There are no equal signs for multiple-line definitions.

Introduction to Standard ML 19

Using Code From a File

- Posix.FileSys.getcwd(); (* current working directory *)
val it = "/students/gdome" : string

- Posix.FileSys.chdir ("/students/gdome/cs251/sml") ;
(* change working directory *)

val it = () : unit

- Posix.FileSys.getcwd() ;

val it = "/students/gdome/cs251/sml" : string

- use "mydefns.sml"; (* load defns from file as if *)
[opening mydefns.sml] (* they were typed manually *)
val a = 5 : int

val b = 10 : int

val fact = fn : int -> int

val it = () : unit

- fact a

val it = 120 : int

Introduction to Standard ML 20

Another File Example

Nested File Uses

(* This is the contents of the file test-fact.sml *)

val fact 3 = fact 3

val fact a = fact a

(* The contents of the file load-fact.sml *)
use "mydefns.sml”; (* semi-colons are required here *)

use “test-fact.sml”;

- use "test-fact.sml";
[opening test-fact.sml]

- use "load-fact.sml";
[opening load-fact.sml]
[opening mydefns.sml]

val a = 5 : int
val fact 3 = 6 : int val b = 10 : int
val fact a = 120 : int val fact = fn : int -> int
, — , val it = () unit
val it = () tounit [opening test-fact.sml]
val fact 3 = 6 : int
val fact a = 120 : int
val it = () unit
val it = () unit
Introduction to Standard ML 21 Introduction to Standard ML, 22
Tuples Strings
- val tpl = (1 + 2, 3 <4, 5 * 6, 7=28); - "foobar";
val tpl = (, -) : int * bool * int * bool val it = : string
_ #1 tpl; - "foo" ~ "par" ~ "baz";
val it = : int val it = : string
- #2 tpl; - print ("baz" *~ "quux");
val it = : bool bazquuxval it = () : unit
(* In practice, always use pattern matching (below) - print ("baz" ~ "quux\n"); (* parens are essential here! *)
rather than #1, #2, etc. *) bazquux
- ((#1 tpl) + (#3 tpl), (#2 tpl) orelse (#4 tpl)):; val it = () : unit
val it = (,) : int * bool
- print "baz" ~ "quux\n";

(* Can “deconstruct” tuples via pattern matching *)

- let val (il, bl, 12, b2) = tpl
in (il + 12, bl orelse b2)

= end;

val it = (,) : int * bool

Introduction to Standard ML 23

stdIn:1.1-1.23 Error: operator and operand don't agree
[tycon mismatch]
operator domain: string * string
operand: unit * string
in expression:
print "baz"

~

"quux\n"
Introduction to Standard ML 24

Other String Operations

- String.size ("foo" * "bar");
val it = : int

- String.substring ("abcdefg", 2, 3); (* string, start index, len *)
val it = : string

("bar"™ < "foo", "bar" <= "foo", "bar" = "foo", "bar" > "foo");
val it = (, , ,) : bool * bool * bool * bool

- (String.compare ("bar", "foo"), String.compare ("foo", "foo"),
= String.compare ("foo", "bar"));
val it = (’ ’) : order * order * order

- String.size;
val it = fn : string -> int

- String.substring;
val it = fn : string * int * int -> string

- String.compare;
val it = fn : string * string -> order

(* An API for all SMLNJ String operations can be found at:
*)
Introduction to Standard ML 25

Characters

_ #uan;
val it = #"a" : char

- String.sub ("foobar",0);
val it = : char

- String.sub ("foobar",5);
val it = : char

- String.sub ("foobar",6);

uncaught exception Subscript [subscript out of bounds]

raised at: stdIn:17.1-17.11

- String.str #"a"; (* convert a char to a string *)
val it = "a" : string
(String.str (String.sub ("ABCD",2))) ~ "S"
= * (Int.toString (112 + 123));
val it = : string
- (1+2, 3=4, "foo" ” "bar", String.sub("baz",2));

val it = (, ’ ,) : int * bool * string * char

Introduction to Standard ML 26

Pattern-matching Function Arguments

- fun swap (x,y) = (y, x);
val swap = fn : 'a * 'b -> 'b * 'a (* infers polymorphic type *)

- swap (1+2, 3=4);
val it = : bool * int

- swap (swap (1+2, 3=4));
val it = : int * bool

- swap ((1+2, 3=4), ("foo"™ ~ "bar", String.sub("baz",2)));

val it = (string * char) * (int *
bool)

Introduction to Standard ML 27

How to Pass Multiple Arguments

- fun avgl (x, y) = (x + y) div 2; (* Approach 1l: use pairs *)

val avgl = fn : int * int -> int

- avgl (10,20);

val it = : int

- fun avg2 x = (fn y => (x + y) div 2); (* Approach 2: currying *)

val avg2 = fn : int -> int -> int

- avg2 10 20;

val it = : int
- fun avg3 x y = (x + y) div 2; (* Syntactic sugar for currying *)
val avg3 = fn : int -> int -> int

- avg3 10 20;
val it = : int

- app5 (avg3 15);
val it = : int

- app5 (fn i => avgl(15,i));
val it = : int

Introduction to Standard ML 28

Iterating via Tail Recursion

(* This is the contents of the file step.sml *)

fun step (a,b) = (atb, a*b)
fun stepUntil ((a,b), limit) = (* no looping constructs in ML;
if a >= limit then (* use tail recursion instead!
(a,b)
else

stepUntil (step(a,b), limit)

Adding print statements

- use ("step.sml");
[opening step.sml]

val step = fn : int * int -> int * int
val stepUntil = fn : (int * int) * int -> int * int
val it = () : unit

- step (1,2);
val it = (3,2) : int * int

- step (step (1,2));
val it = (5,6) : int * int

- let val (x,y) = step (step (1,2)) in x*y end;
val it = 30 : int

- stepUntil ((1,2), 100);
val it = (371,13530) : int * int

(* This is the contents of the file step-more.sml *)

fun printPair (a,b) =
print ("(" ~ (Int.toString a) ~ ","
~ (Int.toString b) ~ ")\n")

fun stepUntilPrint ((a,b), limit) =
if a >= limit then
(a,b)
else

(printPair (a,b); (* here, semicolon sequences expressions *)

stepUntilPrint (step(a,b), limit)

Introduction to Standard ML

- use ("step-more.sml");
[opening step-more.sml]
val printPair = fn : int * int -> unit

val stepUntilPrint = fn : (int * int) * int -> int * int

val it = () : unit

- stepUntilPrint ((1,2),100);

val it = (371,13530) : int * int

How to exit SML interpreter?

[gdome@tempest ~] sml
Standard ML of New Jersey v110.78
[built: Wed Jan 14 12:52:09 2015]

-1+ 2;
val it = 3 : int

- <—{ Type Control-d at the SML prompt

[gdome@tempest ~]

Introduction to Standard ML

Introduction to Standard ML

