
Introduc)on	to	Racket,	a	dialect	of	LISP:	

Expressions	and	Declara)ons	

CS251	Programming	Languages	

Fall	2017,	Lyn	Turbak	

	

Department	of	Computer	Science	
Wellesley	College	

These	slides	build	on	Ben	Wood’s	Fall	‘15	slides	

LISP:	designed	by	John	McCarthy,	1958	
published	1960	

2	Expr/decl	

LISP:	implemented	by	Steve	Russell,	
early	1960s	

3	Expr/decl	

LISP:	LISt	Processing	

•  McCarthy,	MIT	arNficial	intelligence,	1950s-60s	
– Advice	Taker:	represent	logic	as	data,	not	just	
program	

•  Needed	a	language	for:	
–  Symbolic	computaNon	
–  Programming	with	logic	
– ArNficial	intelligence	
–  Experimental	programming	

•  So	make	one!	

i.e.,	not	just	number	crunching	

Emacs:	M-x	doctor	

4	Expr/decl	

Scheme	
•  Gerald	Jay	Sussman	and		

Guy	Lewis	Steele	(mid	1970s)		
•  Lexically-scoped	dialect	of	LISP		

that	arose	from	trying	to	make		
an	“actor”	language.		

•  Described	in	amazing	“Lambda	the	UlNmate”	
papers	(hap://library.readscheme.org/page1.html)	
–  Lambda	the	UlNmate	PL	blog	inspired	by	these:	

hap://lambda-the-ulNmate.org	

•  Led	to	Structure	and	InterpretaNon		
of	Computer	Programs	(SICP)	and		
MIT	6.001	(haps://mitpress.mit.edu/sicp/)	

	
	

5	Expr/decl	

•  Grandchild	of	LISP	(variant	of	Scheme)	
–  Some	changes/improvements,	quite	similar	

•  Developed	by	the	PLT	group		
(haps://racket-lang.org/people.html),	the	same	folks	who	
created	DrJava.	

•  Why	study	Racket	in	CS251?		
–  Clean	slate,	unfamiliar	
–  Careful	study	of	PL	foundaNons	(“PL	mindset”)	
–  FuncNonal	programming	paradigm	

•  Emphasis	on	funcNons	and	their	composiNon	
•  Immutable	data	(lists)	

–  Beauty	of	minimalism	
–  Observe	design	constraints/historical	context	

6	Expr/decl	

Expressions,	Values,	and	DeclaraNons	

•  EnNre	language:	these	three	things	

•  Expressions	have	evalua6on	rules:	
– How	to	determine	the	value	denoted	by	an	expression.	

•  For	each	structure	we	add	to	the	language:	
– What	is	its	syntax?		How	is	it	wriaen?	
– What	is	its	evalua)on	rule?			How	is	it	evaluated	to	a	
value	(expression	that	cannot	be	evaluated	further)?	

7	Expr/decl	

Values	

•  Values	are	expressions	that	cannot	be	evaluated	
further.	

•  Syntax:	
– Numbers:	251, 240, 301	
–  Booleans:	#t, #f
–  There	are	more	values	we	will	meet	soon		
(strings,	symbols,	lists,	funcNons,	…)

•  EvaluaNon	rule:	
–  Values	evaluate	to	themselves.	

8	Expr/decl	

AddiNon	expression:	syntax	

Adds	two	numbers	together.
	
Syntax:	 (+ E1 E2)

Every	parenthesis	required;	none	may	be	omiaed.	
E1	and	E2 stand	in	for	any	expression.	
Note	prefix	notaNon.	
	

Examples:	
(+ 251 240)
(+ (+ 251 240) 301)
(+ #t 251)

Note	recursive	

structure!	

9	Expr/decl	

AddiNon	expression:	evaluaNon	

Syntax:	 (+ E1 E2)
	
EvaluaNon	rule:	

1.  Evaluate	E1	to	a	value	V1	
2.  Evaluate	E2	to	a	value	V2	
3.  Return	the	arithmeNc	sum	of	V1 + V2.	

Note	recursive	

structure!	

Not	quite!	

10	Expr/decl	

AddiNon:	dynamic	type	checking	
Syntax:	 (+ E1 E2)
	

EvaluaNon	rule:	
1.  evaluate	E1	to	a	value	V1	
2.  Evaluate	E2	to	a	value	V2	
3.  If	V1	and	V2	are	both	numbers	then	

	return	the	arithmeNc	sum	of	V1 + V2.	
4.  Otherwise,	a	type	error	occurs.	

Dynamic	type-checking	

S)ll	not	quite!		

More	later	…	

11	Expr/decl	

EvaluaNon	AsserNons	Formalize	EvaluaNon	

The	evalua)on	asser)on	notaNon	E	↓ V	means	
``E	evaluates	to	V	’’.	

Our	evaluaNon	rules	so	far:		

•  value	rule:	V	↓ V	(where	V	is	a	number	or	boolean)	

•  addi6on	rule:		
if		E1	↓ V1		and		E2	↓ V2		
					and		V1	and		V2			are	both	numbers	
					and	V	is	the	sum	of	V1	and		V2	
	then	(+ E1 E2) ↓ V		
	

12	Expr/decl	

EvaluaNon	DerivaNon	in	English	
An	evalua)on	deriva)on	is	a	``proof	’’	that	an	expression	
evaluates	to	a	value	using	the	evaluaNon	rules.		
(+ 3 (+ 5 4)) ↓ 	12 by	the	addiNon	rule	because:	

•  3 ↓ 	3 by	the	value	rule	

•  (+ 5 4) ↓ 	9 by	the	addiNon	rule	because:	

–  5 ↓ 	5 by	the	value	rule	

–  4 ↓ 	4 by	the	value	rule	

–  5	and	4	are	both	numbers	

–  9	is	the	sum	of	5	and	4		

•  3	and	9	are	both	numbers	

•  12	is	the	sum	of	3	and	9		

	

	

	

	

13	Expr/decl	

More	Compact	DerivaNon	NotaNon	

	V	↓ V		

	

	

	

	

whereVis	a	value	
(number,	boolean,	etc.)		

[value	rule]	 		E1	↓ V1		
		E2	↓ V2	
(+ E1		E2)	↓ V		

	

	

	

	

[addiNon	rule]	

Where	V1	and	V2	are	numbers	and	
	V	is	the	sum	of		V1	and	V2.	

					3 ↓ 	3 [value]	
								5 ↓ 	5 [value]	
 4 ↓ 	4 [value]				
					(+ 5 4)	↓		9
(+ 3 (+ 5 4))	↓		12	
	
	

	

	

	

[addiNon]	

side	condiNons	of	rules	

[addiNon]	

14	Expr/decl	

Errors	Are	Modeled	by	“Stuck”	DerivaNons	

				#t ↓ 	#t [value]	
								5 ↓ 	5 [value]	

 4 ↓ 	4 [value]				

					(+ 5 4)	↓		9

	
	

	

	

	

[addiNon]	

Stuck	here.	Can’t	apply	
(addiNon)	rule	because		
#t	is	not	a	number	in		
(+	#t	9)	

How	to	evaluate		
(+ #t (+ 5 4))?		

How	to	evaluate		
(+ 3 (+ 5 #f))?		

					1 ↓ 	1 [value]	
 2 ↓ 	2 [value]		

 (+ 1 2) ↓ 	3 [addiNon]	

								5 ↓ 	5 [value]	

 #f ↓ 	#f [value]				

						
	

	

	

	

Stuck	here.	Can’t	apply	
(addiNon)	rule	because		
#f	is	not	a	number	in		
(+	5	#f)	

15	Expr/decl	

SyntacNc	Sugar	for	AddiNon	
The	addiNon	operator	+	can	take	any	number	of	operands.			

•  For	now,	treat	(+ E1 E2 … En)as	(+ (+ E1 E2) … En)
E.g.,	treat	(+ 7 2 -5 8)	as	(+ (+ (+ 7 2) -5) 8)		

•  Treat	(+ E)as	E		(or	say	if		E	↓	V		then		(+ E)	↓	V)	

•  Treat	(+)	as	0	(or	say	(+)↓ 0)	

•  This	approach	is	known	as	syntac)c	sugar:	introduce	new	
	syntacNc	forms	that	“desugar”	into	exisNng	ones.		

•  In	this	case,	an	alternaNve	approach	would	be	to	introduce		
more	complex	evaluaNon	rules	when	+	has	a	number	of	
arguments	different	from	2.		

	

	

	

	

	

	

16	Expr/decl	

Other	ArithmeNc	Operators	
Similar	syntax	and	evaluaNon	for	

-  * / quotient remainder min max
except:	
•  Second	argument	of	/,	quotient,	remainder		

must	be	nonzero	
•  Result	of	/	is	a	raNonal	number	(fracNon)	when	both	values	are	

integers.	(It	is	a	floaNng	point	number	if	at	least	one	value		
is	a	float.)	

•  quotient	and	remainder	take	exactly	two	arguments;	
anything	else	is	an	error.	

•  (- E)	is	treated	as	(- 0 E)		
•  (/ E)	is	treated	as	(/ 1 E)		
•  (min E)	and	(max E)		treated	as	E	
•  (*)	evaluates	to	1.		
•  (/),	(-),	(min)	,	(max)		are	errors	(i.e.,	stuck)	

17	Expr/decl	

RelaNon	Operators	
The	following	relaNonal	operators	on	numbers	return	
booleans:		< <= = >= >

For	example:

		E1	↓ V1		
		E2	↓ V2	
(< E1		E2)	↓ V		

	

	

	

	

[less	than]	

Where	V1	and	V2	are	numbers	and	
	V	is	#t	if	V1	is	less	than	V2		
or	#f	if	V1	is	not	less	than	V2		

18	Expr/decl	

CondiNonal	(if)	expressions	

Syntax: (if Etest Ethen Eelse)	
	
EvaluaNon	rule:	

1.  Evaluate	Etest to	a	value	Vtest.	
2.  If	Vtest	is	not	the	value	#f	then	

	return	the	result	of	evaluaNng	Ethen	
	otherwise	

	return	the	result	of	evaluaNng	Eelse

	 19	Expr/decl	

DerivaNon-style	rules	for	CondiNonals	

		Etest	↓ Vtest	
		Ethen	↓ Vthen	
(if Etest		Ethen		Eelse)	↓ Vthen		

	

	

	

	

[if	nonfalse]	

Where	Vtest		is	not	#f	

		Etest	↓ #f
		Eelse	↓ Velse	
(if Etest		Ethen		Eelse)	↓ Velse		

	

	

	

	

[if	false]	

Eelse	is	not	

evaluated!	

Ethen	is	not	

evaluated!	

20	Expr/decl	

Your	turn	
Use	evaluaNon	derivaNons	to	evaluate	the	
following	expressions	

(if (< 8 2) (+ #f 5) (+ 3 4))

(if (+ 1 2) (- 3 7) (/ 9 0))

(+ (if (< 1 2) (* 3 4) (/ 5 6)) 7)

(+ (if 1 2 3) #t)

	

21	Expr/decl	

Expressions	vs.	statements	
CondiNonal	expressions	can	go	anywhere	an	
expression	is	expected:	

(+ 4 (* (if (< 9 (- 251 240)) 2 3) 5))

(if (if (< 1 2) (> 4 3) (> 5 6))

 (+ 7 8)

 (* 9 10)

Note:	if	is	an	expression,	not	a	statement.	Do	
other	languages	you	know	have	condiNonal	
expressions	in	addiNon	to	condiNonal	statements?	
(Many	do!		Java,	JavaScript,	Python,	…)			

	

22	Expr/decl	

CondiNonal	expressions:	careful!	

Unlike	earlier	expressions,	not	all	
subexpressions	of	if	expressions	are	evaluated!	
	
(if (> 251 240) 251 (/ 251 0))

(if #f (+ #t 240) 251)

	

23	Expr/decl	

Design	choice	in	condiNonal	semanNcs	

		Etest	↓ Vtest	
		Ethen	↓ Vthen	

(if Etest		Ethen		Eelse)	↓ Vthen		
	

	

	

	

[if	nonfalse]	

Where	Vtest	is	not	#f	

In	the	[if	nonfalse]	rule,	Vtest	is	not	required	to	be	a	boolean!	
	

		Etest	↓ #t	
		Ethen	↓ Vthen	

(if Etest		Ethen		Eelse)	↓ Vthen		
	

	

	

	

This	is	a	design	choice	for	the	language	designer.		
What	would	happen	if	we	replace	the	above	rule	by	
	

[if	true]	

This	design	choice	is	related	to	noNons	of	“truthiness”	and		
“falsiness”	that	you	will	explore	in	PS2.		
	

24	Expr/decl	

Environments:	MoNvaNon	
Want	to	be	able	to	name	values	so	can	refer	to	
them	later	by	name.		E.g.;	

(define x (+ 1 2))

(define y (* 4 x))

(define diff (- y x))

(define test (< x diff))

(if test (+ (* x y) diff) 17)

	
25	Expr/decl	

Environments:	DefiniNon	
•  An	environment	is	a	sequence	of	bindings	that	
associate	idenNfiers	(variable	names)	with	values.		
–  Concrete	example:	
			num ⟼ 17, absoluteZero ⟼ -273, true ⟼#t

–  Abstract	Example	(use	Id	to	range	over	idenNfiers	=	names):					
 Id1 ⟼ V1, Id2 ⟼ V2, …, Idn ⟼ Vn

–  Empty	environment:		∅	
•  An	environment	serves	as	a	context	for	evaluaNng	
expressions	that	contain	idenNfiers.	

•  Second	argument	to	evaluaNon,	which	takes	both	an	
expression	and	an	environment.		

26	Expr/decl	

AddiNon:	evaluaNon	with	environment	

Syntax:	 (+ E1 E2)
	

EvaluaNon	rule:	
1.  evaluate	E1	in	the	current	environment	to	a	value	V1		
2.  Evaluate	E2	in	the	current	environment	to	a	value	V2		
3.  If	V1	and	V2	are	both	numbers	then	

return	the	arithmeNc	sum	of	V1 + V2.	
4.  Otherwise,	a	type	error	occurs.	

27	Expr/decl	

Variable	references	
Syntax:	Id

Id:	any	iden6fier	

EvaluaNon	rule:	
Look	up	and	return	the	value	to	which	Id	is	bound	in	the	current	
environment.	

•  Look-up	proceeds	by	searching	from	the	most-recently	added	
bindings	to	the	least-recently	added	bindings	(front	to	back	in	our	
representaNon)	

•  If	Id	is	not	bound	in	the	current	environment,	evaluaNng	it	is	“stuck”	
at	an	unbound	variable	error.		

Examples:		
•  Suppose	env	is	num ⟼ 17, absZero ⟼ -273, true ⟼ #t, num ⟼ 5

•  In	env,	num	evaluates	to	17	(more	recent	than	5),	absZero	evaluates	to	
-273, and	true	evaluates	to	#t.	Any	other	name	is	stuck.		

	

28	Expr/decl	

define	DeclaraNons	
Syntax:	(define Id E)

define:	keyword	
Id:	any	iden6fier	
E:	any	expression	
	

This	is	a	declara)on,	not	an	expression!	
We	will	say	a	declara)ons	are	processed,	not	evaluated
	
Processing	rule:	

1.  Evaluate	E to	a	value	V in	the	current	environment	
2.  Produce	a	new	environment	that	is	idenNcal	to	the	

current	environment,	with	the	addiNonal	binding		
Id	→	V	at	the	front.		Use	this	new	environment	as	the	
current	environment	going	forward.		

29	Expr/decl	

Environments:	Example	
env0	=	∅ (can	write	as	.	in	text)

(define x (+ 1 2))

env1	=	x	⟼ 3, ∅ (abbreviated x	⟼ 3;	can	write	as	x -> 3	in	text)		

(define y (* 4 x))

env2	=	y ⟼ 12, x ⟼ 3 (most recent binding 2irst)
(define diff (- y x))

env3	=	diff ⟼ 9, y ⟼ 12, x ⟼ 3

(define test (< x diff))

env4	=	test ⟼ #t, diff ⟼ 9, y ⟼ 12, x ⟼ 3

(if test (+ (* x 5) diff) 17)

environment	here	is	sNll	env4	
(define x (* x y))

env5	=	x ⟼ 36, test ⟼ #t, diff ⟼ 9, y ⟼ 12, x ⟼ 3
Note	that	binding	x ⟼ 36	“shadows”	x ⟼ 3	,	making	it	inaccessible

	
30	Expr/decl	

EvaluaNon	AsserNons	&	Rules	with	Environments	

	V	#	env	↓ V		

	

	

	

	

where	V	is	a	value	
(number,	boolean,	etc.)		

[value]	

		E1	#	env	↓ V1		
		E2	#	env	↓ V2	

(+ E1		E2)	#	env		↓ V		
	

	

	

	

[addiNon]	

Where	V1	and	V2	are	numbers	and	
V	is	the	sum	of		V1	and	V2.		Rules	for	other		
arithmeNc	and	relaNonal	ops	are	similar.	

The	evalua)on	asser)on	notaNon	E	#	env		↓ V	means	
``EvaluaNng	expression	E	in	environment	env	yields	value	V	’’.	

	Id	#	env	↓ V		
	

	

Where	Id	is	an	idenNfier	and	
Id	⟼ V	is	the	first	binding	in		
env	for	Id	
	

[varref]	

		E1	#	env	↓ V1		
		E2	#	env	↓ V2	

(if E1		E2	E3)	#	env		↓ V2		
	

	

	

	

[if	nonfalse]	

Where	V1	is	not	#f

		E1	#	env	↓ #f
		E3	#	env	↓ V3	

(if E1		E2	E3)	#	env	↓ V3		
	

	

	

	

[if	false]	

Only	this	rule	actually		
uses	env;	others	just	
pass	it	along	

31	Expr/decl	

Example	DerivaNon	with	Environments	

 test #	env4	↓	#t		[varref]
 x	#	env4	↓	3		[varref]
 5	#	env4	↓	5		[value]
 (* x 5)	#	env4	↓	15			
 diff	#	env4	↓	9		[varref]			
			(+ (* x 5) diff)#	env4	↓	24			
(if test (+ (* x 5) diff) 17)#	env4	↓	24	

	
	

	

	

	

Suppose	env4	=	test ⟼ #t, diff ⟼ 9, y ⟼ 12, x ⟼ 3

	[mulNplicaNon]	

	[addiNon]	

	[if	nonfalse]	

32	Expr/decl	

Conclusion-below-subderivaNons,	in	text	

| test # env4 ↓ #t [varref]
| | | x # env4 ↓ 3 [varref]
| | | 5 # env4 ↓ 5 [value]
| | -------------------- [multiplication]

| | (* x 5) # env4 ↓ 15
| | diff # env4 ↓ 9 [varref]
| | ------------------------- [addition]

| (+ (* x 5) diff)# env4 ↓ 24
-- [if nonfalse]

(if test (+ (* x 5) diff) 17)# env4 ↓ 24
	
	

	

	

	

Suppose env4 = test -> #t, diff -> 9, y -> 12, x -> 3

33	Expr/decl	

Conclusion-above-subderivaNons,	with	bullets	

(if test (+ (* x 5) diff) 17)# env4 ↓ 24 [if nonfalse]
q  test # env4 ↓ #t [varref]
q  (+ (* x 5) diff)# env4 ↓ 24 [addition]

o  (* x 5) # env4 ↓ 15 [multiplication]
§  x # env4 ↓ 3 [varref]
§  5 # env4 ↓ 5 [value]

o  diff # env4 ↓ 9 [multiplication]

	
	

	

	

	

Suppose env4 = test -> #t, diff -> 9, y -> 12, x -> 3

34	Expr/decl	

Formalizing	definiNons	

 E # env ↓ V
(define Id E)# env ⇓ Id ⟼ V, env

[define]	

The	declara)on	asser)on	notaNon(define Id E)	#	env		⇓ env’		
	means	``Processing	the	definiNon	(define Id E)	in	environment	
env	yields	a	new	environment		env’	’’.	We	use	a	different	arrow,	⇓,
to	emphasize	that	definiNons	are	not	evaluated	to	values,	but	
processed	to	environments.		

35	Expr/decl	

Threading	environments	through	definiNons	
 2 # � ↓ 2 [value]	

 3 # � ↓ 3 [value]	

 (+ 2 3)# � ↓ 5

(define a (+ 2 3))# � ⇓ a ⟼ 5

	

	

	

	

 a # a ⟼ 5 ↓ 5 [varref]	

 a # a ⟼ 5 ↓ 5 [varref]	

 (* a a)# a ⟼ 5 ↓ 25

(define b (* a a))# a ⟼ 5 ⇓ b ⟼ 25, a ⟼ 5

	

	

	

	

[define]	

[define]	

[addiNon]	

[mulNplicaNon]	

 b # b ⟼ 25, a ⟼ 5 ↓ 25 [varref]	

 a # b ⟼ 25, a ⟼ 5 ↓ 5 [varref]	

 (- b a)# b ⟼ 25, a ⟼ 5 ↓ 20

	

	

	

	

	

[subtracNon]	

36	Expr/decl	

Racket	IdenNfiers	
•  Racket	idenNfiers	are	case	sensiNve.	The	following	are	four	different	

idenNfiers:		ABC,	Abc,	aBc,	abc

•  Unlike	most	languages,	Racket	is	very	liberal	with	its	definiNon	of	legal	

idenNfers.		Preay	much	any	character	sequence	is	allowed	as	
idenNfier	with	the	following	excepNons:		
–  Can’t	contain	whitespace	
–  Can’t	contain	special	characters	()[]{}”,’`;#|\
–  Can’t	have	same	syntax	as	a	number	
	

•  This	means	variable	names	can	use	(and	even	begin	with)	digits	and	
characters	like	!@$%^&*.-+_:<=>?/ E.g.:			
–  myLongName, my_long__name, my-long-name		
–  is_a+b<c*d-e?
–  76Trombones

•  Why	are	other	languages	less	liberal	with	legal	idenNfiers?		

37	Expr/decl	

Small-step	vs.	big-step	semanNcs	
The	evaluaNon	derivaNons	we’ve	seen	so	far	are	called	a	big-step	seman)cs	

because	the	derivaNon	e	#	env2	↓	v	explains	the	evaluaNon	of		e	to	v	as	one		
“big	step”	jusNfied	by	the	evaluaNon	of	its	subexpressions.		

An	alternaNve	way	to	express	evaluaNon	is	a	small-step	seman)cs	in	which	an	
expression	is	simplified	to	a	value	in	a	sequence	of	steps	that	simplifies	
subexpressions.	You	do	this	all	the	Nme	when	simplifying	math	expressions,	and	
we	can	do	it	in	Racket,	too.	E.g;	

(- (* (+ 2 3) 9) (/ 18 6))

⇒ (- (* 5 9) (/ 18 6))

⇒ (- 45 (/ 18 6))

⇒ (- 45 3)

⇒ 42	

38	Expr/decl	

Small-step	semanNcs:	intuiNon	

Scan	lew	to	right	to	find	the	first	redex	(nonvalue	subexpression	that	can	be	reduced	to	a	
value)	and	reduce	it:

(- (* (+ 2 3) 9) (/ 18 6))

⇒ (- (* 5 9) (/ 18 6))

⇒ (- 45 (/ 18 6))

⇒ (- 45 3)

⇒ 42

39	Expr/decl	

[addition]

[multiplication]

[division]
[subtraction]

Small-step	semanNcs:	reducNon	rules	
There	are	a	small	number	of	reducNon	rules	for	Racket.		These	specify	the	
redexes	of	the	language	and	how	to	reduce	them.	

The	rules	owen	require	certain	subparts	of	a	redex	to	be	(parNcular	kinds	of)	
values	in	order	to	be	applicable.		

	

Id		⇒	V	,	where	Id	⟼	V		is	the	first	binding	for	Id		
						in	the	current	environment*	[varref]	

(+ V1		V2)⇒	V,	where	V		is	the	sum	of	numbers	V1	and	V2			[addiNon]	

There	are	similar	rules	for	other	arithmeNc/relaNonal	operators	

(if Vtest Ethen		Eelse) ⇒ Ethen,	if	Vtest	is	not	#f		[if	nonfalse]	

(if #f Ethen		Eelse) ⇒ Eelse		[if	false]	

*	In	a	more	formal	approach,	the	notaNon	would	make	the	environment	explicit.	
E.g.,	E	#	env		⇒	V		

40	Expr/decl	

Small-step	semanNcs:	condiNonal	example	
(+ (if {(< 1 2)} (* 3 4) (/ 5 6)) 7)

=> (+ {(if #t (* 3 4) (/ 5 6))} 7) [less than]

⇒ (+ {(* 3 4)} 7) [if nonfalse]

⇒ {(+ 12 7)} [multiplication]

⇒ 19 [addition]

41	Expr/decl	

Notes	for	wriNng	derivaNons	in	text:		

o  You	can	use	=>		for	⇒

o  Use	curly	braces	{…}	to	mark	the	redex	

o  Use	square	brackets	to	name	the	rule	used	to	reduce	the	redex	
	from	the	previous	line	to	the	current	line.	

Small-step	semanNcs:		
errors	as	stuck	expressions	

Similar	to	big-step	semanNcs,	we	model	errors	(dynamic	type	errors,	divide	by	
zero,	etc.)	in	small-step	semanNcs	as	expressions	in	which	the	evaluaNon	process	
is	stuck	because	no	reducNon	rule	is	matched.	For	example:

(- (* (+ 2 3) #t) (/ 18 6))

⇒ (- (* 5 #t) (/ 18 6))

(if (= 2 (/ (+ 3 4) (- 5 5))) 8 9)

⇒ (if (= 2 (/ 7 (- 5 5))) 8 9)

⇒ (if (= 2 (/ 7 0)) 8 9)

42	Expr/decl	

Small-step	semanNcs:	your	turn		
Use	small-step	semanNcs	to	evaluate	the	following	expressions:	
	
	

(if (< 8 2) (+ #f 5) (+ 3 4))

(if (+ 1 2) (- 3 7) (/ 9 0))

(+ (if (< 1 2) (* 3 4) (/ 5 6)) 7)

(+ (if 1 2 3) #t)	

		

43	Expr/decl	

Racket	DocumentaNon	

Racket	Guide:		
haps://docs.racket-lang.org/guide/	
	
Racket	Reference:	
haps://docs.racket-lang.org/reference	
	
	

44	Expr/decl	

