
Symbols and S-Expression Trees

CS251 Programming
Languages
Fall 2018, Lyn Turbak

Department of Computer Science
Wellesley College

Paul	Graham’s	Revenge	of	the	Nerds	
What	made	Lisp	different	

6.	Programs	composed	of	expressions.	Lisp	programs	are	trees	of	expressions,	
each	of	which	returns	a	value.	…	

7.	A	symbol	type.	Symbols	are	effecBvely	pointers	to	strings	stored	in	a	hash	table.	
So	you	can	test	equality	by	comparing	a	pointer,	instead	of	comparing	each	
character.	

8. A notation for code using trees of symbols and constants.
[Lyn adds: these trees are called symbolic expressions = s-expressions]

9. The whole language there all the time. There is no real distinction
between read-time, compile-time, and runtime. … reading at runtime enables
programs to communicate using s-expressions, an idea recently reinvented
as XML. [Lyn adds: and JSON!]

2 Symbols & S-expressions

Symbols	
Lisp	was	invented	to	do	symbolic	processing.	This	was	thought	to	be	the	core	
of	ArBficial	Intelligence,	and	disBnguished	Lisp	from	Fortran	(the	other	main	
language	at	the	Bme),	whose	strength	with	numerical	processing.	

A	key	Racket	value	is	the	symbol.			

The	symbol	cat	is	wriNen	(quote cat) or	'cat.	

Symbols	are	values	and	so	evaluate	to	themselves.	
	
> 'cat
'cat

; 'thing is just an abbreviation for (quote thing)
> (quote cat)
'cat

Symbols	are	similar	to	strings,	except	they’re	atomic;	we	don’t	do	character	
manipulaBons	on	them.			

3 Symbols & S-expressions

TesBng	Symbols	for	Equality:	eq?		

> (eq? 'cat 'cat)
#t
> (map (λ (s) (eq? s 'to))
 (list 'to 'be 'or 'not 'to 'be))
'(#t #f #f #f #t #f)

4 Symbols & S-expressions

The	key	thing	we	do	with	symbols	is	test	them	for	equality	
with	eq?	(pronounced	“eek”).		A	symbol	is	eq?	to	itself	and	
nothing	else.		
	

eq?	on	Symbols	and	Lists	

> (eq? (first L) (second L))
#f
> (eq? (first L) (first (third LOL)))
#t
> (eq? (first LOL) (second LOL))
#t
> (eq? (first LOL) (third LOL))
#f
> (equal? (first LOL) (third LOL))
#t 5 Symbols & S-expressions

eq?	can	be	used	on	any	Racket	values.	It	is	used	to	test	if	two	values	are	
the	same	object	in	memory.		
In	contrast,		equal?	tests	structural	equality	of	two	values.		

	
	

(define L (list 'a 'b))

(define LOL
 (list L L (list 'a 'b)))

LOL

L

'a 'b

More	eq?	examples	
> (eq? "cat" "cat")
#t

> (eq? "cat" (string-append "c" "at"))
#f ; Two strings with the same chars not guaranteed eq?

> (equal? "cat" (string-append "c" "at"))
#t ; Two strings with the same chars guaranteed equal?

> (eq? (fact 5) (fact 5))
#t ; For “small” numbers, eq? is same as =

> (eq? (fact 1000) (fact 1000))
#f ; = bignums are not guaranteed eq?, but are equal?

> (eq? 'cat (string->symbol "cat"))
#t ; string->symbol returns unique symbol for a string

> (eq? (string->symbol "cat")
 (string->symbol (string-append "c" "at")))
#t ; only one symbol in memory with a given name

6 Symbols & S-expressions

QuotaBon	with	Lists	
As	you’ve	seen,	a	single	quote	can	be	used	with	parenthesized	structures	to	
denote	lists.		

You	can	think	of		'(to be or not to be)	as	a	sugared	form	of		
(list 'to 'be 'or 'not 'to 'be).		(Not	quite	true,	but	useful.)

A	quoted	parenthesized	structure	(quote (...))(abbreviated '(...))	
denotes	a	list,	according	to	the	following	desugaring:		

 (quote (thing_1 … thing_n))
 desugars	to		(list (quote thing_1) … (quote thing_n))

	

7 Symbols & S-expressions

Quoted	Atoms	
Atomic	(indivisible)	elements	that	can	appear	in	list	structures	are	
called	atoms.	In	Racket,	atoms	include	numbers,	booleans,	and	
strings	in	addiBon	to	symbols.		

 (define (atom? x)
 (or (number? x) (boolean? x)
 (string? x) (symbol? x))))

A	quoted	atom	(quote atom)	(abbreviated	'atom)	denotes	the	atom.	For	
atoms	that	are	not	symbols,	(quote atom)	desugars	to	atom.	For	example:	

•  (quote 251)	desugars	to	251

•  (quote #t)	desugars	to	#t

•  (quote "Hi there!")	desugars	to		"Hi there!”

Example:		
'(5 #f "cat" dog)	desugars	to	(list 5 #f "cat" 'dog)		

	

8 Symbols & S-expressions

QuotaBon	Exercise	
1.		Give	the	desugaring	of	the	following	quoted	expression

 '((17 foo #f) "bar" (list + (quote quux)))

(list (list 17 'foo #f)
 "bar"
 (list 'list '+ (list 'quote 'quux)))	

2.  Draw	the	box-and-pointer	list	structure	of	the	value	of	this	expression.	

	

9 Symbols & S-expressions

'quote 'quux

'list '+ 'foo

"bar" 17 #f

Lisp	pioneered	symbolic	expressions,	a.k.a.		s-expressions,	a	parenthesized	
notaBon	for	represenBng	trees	as	nested	lists	(compare	to	other	tree	notaBons,	
like	XML	or	JSON).			

In	these	trees,	nodes	can	have	any	number	of	children.	Such	trees	are	called	
rose	trees	(“rhododendron”,	in	Greek).	

An	s-expression	is	just	a	quoted	structure	that	represents	a	tree	of	intermediate	
nodes	(lists)	with	leaves	that	are	atoms.		

Example:		'((this	is	(a	nested))	list	(that	(represents	a)	tree))	

	

S-Expressions	

10 Symbols & S-expressions

this	

list	

is	

a	 nested	

that	 tree	

represents	 a	

A	sample	s-expression	
We	will	do	some	exercises	with	this	sample	s-expression:		

(define tr '((a (b c) d) e (((f) g h) i j k)))

Draw	the	tree	(not	list	structure)	associated	with	this	s-expression.		

	

11 Symbols & S-expressions

FuncBons	on	s-expression	trees	
Define	the	following	funcBons	that	take	an	s-expression	tree	as	their	only	arg:	

1.	(sexp-num-atoms sexp)	returns	the	number	of	atoms	(leaves)	in	the	s-
expression	tree	sexp

> (sexp-num-atoms tr)
11

2.	(sexp-atoms sexp)	returns	a	list	of	the	atoms	(leaves)	encountered	in	a	
leb-to-right	depth	first	search	of	the	s-expression	tree	sexp.	

> (sexp-atoms tr)
'(a b c d e f g h i j k)

3.	(sexp-height sexp) returns	the	height	of	the	s-expression	tree	sexp.	

> (sexp-height tr)
4

	

	

>	(sexp-height	tr)	

4	

	

12 Symbols & S-expressions

An	s-expression	Read-Eval-Print	Loop	(REPL)	
(define (sexp-repl)

 (begin (display "Please enter an s-expression:")

 (let {[(sexp (read)]} ; read prompts user for sexp

 (if (eq? sexp 'quit)

 'done

 (begin (display (list 'sexp-num-atoms:

 (sexp-num-atoms sexp)))

 (newline)

 (display (list 'sexp-atoms:

 (sexp-atoms sexp)))

 (newline)

 (display (list 'sexp-height:

 (sexp-height sexp)))

 (newline)

 (sexp-repl))))))

13 Symbols & S-expressions

On	to	Metaprogramming	

A	metaprogram	is	a	program	that	manipulates	another	program,	such	as	an	
interpreter,	compiler,	type	checker,	assembler,	etc.	

Q:	In	a	metaprogram,	how	could	we	represent	a	Racket	definiBon	like	this?		

(define avg (lambda (a b) (/ (+ a b) 2)))

A:	By	adding	a	single	quote	mark!		

							'(define avg (lambda (a b) (/ (+ a b) 2)))

Does	this	give	you	a	new	appreciaBon	for	Lisp	and	what	Paul	Graham	said	
about	it?		

14 Symbols & S-expressions

Metaprogramming	Example	1	
Define	an	is-valid-lambda	funcBon	that	takes	an	sexp	and	returns	#t	iff	it	is	a		
valid	Racket	lambda	expression.		Assume	parameters	*must*	be	a	list	of	idenBfiers,	and	
that	there	is	a	single	body	expression.	(Racket	is	actually	more	flexible	than	this.)	
> (is-valid-lambda?
 '(lambda (a b)
 (/ (+ a b) 2)))
#t

> (is-valid-lambda?
 '(lamdba (a b)
 (/ (+ a b) 2)))
#f

> (is-valid-lambda?
 '(lambda foo
 (/ (+ a b) 2)))
#f

> (is-valid-lambda?
 '(lambda (a b)
 a b)
#f

15 Symbols & S-expressions

Metaprogramming	Example	2	
Define	a	desugar-let	funcBon	that	takes	an	sexp	that	is	a	valid	Racket	let	
expression	and	transforms	it	to	the	applicaBon	of	a	lambda.		

> (desugar-let '(let ((a (* 2 3))
 (b (+ 4 5)))
 (- (* 10 a) b)))

'((lambda (a b) (- (* 10 a) b)) (* 2 3) (+ 4 5))

16 Symbols & S-expressions

