Introduction to Racket, a dialect of LISP: Expressions and Declarations

CS251 Programming Languages
Fall 2018, Lyn Turbak
Department of Computer Science
Wellesley College

These slides build on Ben Wood’s Fall '15 slides

LISP: designed by John McCarthy, 1958 published 1960

LISP: implemented by Steve Russell, early 1960s

LISP: LiSt Processing

- McCarthy, MIT artificial intelligence, 1950s-60s
 - Advice Taker: represent logic as data, not just program

- Needed a language for:
 - Symbolic computation
 - Programming with logic
 - Artificial intelligence
 - Experimental programming

- So make one!
Scheme
• Gerald Jay Sussman and Guy Lewis Steele (mid 1970s)
• Lexically-scoped dialect of LISP that arose from trying to make an “actor” language.
• Described in amazing “Lambda the Ultimate” papers (http://library.readscheme.org/page1.html)
 – Lambda the Ultimate PL blog inspired by these: http://lambda-the-ultimate.org
• Led to Structure and Interpretation of Computer Programs (SICP) and MIT 6.001 (https://mitpress.mit.edu/sicp/)

• Grandchild of LISP (variant of Scheme)
 – Some changes/improvements, quite similar
• Developed by the PLT group (https://racket-lang.org/people.html), the same folks who created DrJava.
• Why study Racket in CS251?
 – Clean slate, unfamiliar
 – Careful study of PL foundations (“PL mindset”)
 – Functional programming paradigm
 • Emphasis on functions and their composition
 • Immutable data (lists)
 – Beauty of minimalism
 – Observe design constraints/historical context

Expressions, Values, and Declarations
• Entire language: these three things

• Expressions have evaluation rules:
 – How to determine the value denoted by an expression.

• For each structure we add to the language:
 – What is its syntax? How is it written?
 – What is its evaluation rule? How is it evaluated to a value (expression that cannot be evaluated further)?

Values
• Values are expressions that cannot be evaluated further.

• Syntax:
 – Numbers: 251, 240, 301
 – Booleans: #t, #f
 – There are more values we will meet soon (strings, symbols, lists, functions, …)

• Evaluation rule:
 – Values evaluate to themselves.
Addition expression: syntax

Adds two numbers together.

Syntax: \((+ \ E1 \ E2)\)
- Every parenthesis required; none may be omitted.
- \(E1\) and \(E2\) stand in for any expression.
- Note prefix notation.

Examples:
- \((+ \ 251 \ 240)\)
- \((+ \ (+ \ 251 \ 240) \ 301)\)
- \((+ \ #t \ 251)\)

Addition expression: evaluation

Syntax: \((+ \ E1 \ E2)\)

Evaluation rule:
1. Evaluate \(E1\) to a value \(V1\)
2. Evaluate \(E2\) to a value \(V2\)
3. Return the arithmetic sum of \(V1 + V2\).

Addition: dynamic type checking

Syntax: \((+ \ E1 \ E2)\)

Evaluation rule:
1. evaluate \(E1\) to a value \(V1\)
2. Evaluate \(E2\) to a value \(V2\)
3. If \(V1\) and \(V2\) are both numbers then
 return the arithmetic sum of \(V1 + V2\).
4. Otherwise, a type error occurs.

Dynamic type-checking

Evaluation Assertions Formalize Evaluation

The evaluation assertion notation \(E \downarrow V\) means
``E evaluates to V``.

Our evaluation rules so far:
- value rule: \(V \downarrow V\) (where \(V\) is a number or boolean)
- addition rule:

 if \(E1 \downarrow V1\) and \(E2 \downarrow V2\)
 and \(V1\) and \(V2\) are both numbers
 and \(V\) is the sum of \(V1\) and \(V2\)
 then \((+ \ E1 \ E2) \downarrow V\)
Evaluation Derivation in English

An evaluation derivation is a “proof” that an expression evaluates to a value using the evaluation rules.

\[
(+ 3 (+ 5 4)) \rightarrow 12
\]

by the addition rule because:

• \(3 \downarrow 3\) by the value rule
• \((+ 5 4) \downarrow 9\) by the addition rule because:
 - \(5 \downarrow 5\) by the value rule
 - \(4 \downarrow 4\) by the value rule
 - \(5\) and \(4\) are both numbers
 - \(9\) is the sum of \(5\) and \(4\)
• \(3\) and \(9\) are both numbers
• \(12\) is the sum of \(3\) and \(9\)

Errors Are Modeled by “Stuck” Derivations

How to evaluate \((+ \#t (+ 5 4))\)?

\[
\#t \downarrow \#t\ [value]
\]

\[
5 \downarrow 5\ [value]
\]

\[
4 \downarrow 4\ [value]
\]

\[
(+ 5 4) \downarrow 9\ [addition]
\]

Stuck here. Can’t apply (addition) rule because \#t is not a number in \((+ \#t 9)\)

How to evaluate \((+ (+ 1 2) (+ 5 \#f))\)?

\[
1 \downarrow 1\ [value]
\]

\[
2 \downarrow 2\ [value]
\]

\[
(+ 1 2) \downarrow 3\ [addition]
\]

\[
5 \downarrow 5\ [value]
\]

\[
\#f \downarrow \#f\ [value]
\]

Stuck here. Can’t apply (addition) rule because \#f is not a number in \((+ 5 \#f)\)

More Compact Derivation Notation

\[
V \downarrow V\ [value\ rule]
\]

where \(V\) is a value (number, boolean, etc.)

\[
E1 \downarrow V1\ [addition\ rule]
\]

\[
E2 \downarrow V2
gives\ (\ E1 + E2) \downarrow V
\]

side conditions of rules

Where \(V1\) and \(V2\) are numbers and \(V\) is the sum of \(V1\) and \(V2\).

Syntactic Sugar for Addition

The addition operator + can take any number of operands.

• For now, treat \((+ E1 E2 \ldots En)\) as \((+ (+ E1 E2) \ldots En)\)
 E.g., treat \((+ 7 2 -5 8)\) as \((+ (+ (+ 7 2) -5) 8)\)
• Treat \((+ E)\) as \(E\) (or say if \(E \downarrow V\) then \((+ E) \downarrow V\))
• Treat \((+)\) as 0 (or say \((+) \downarrow 0)\)
• This approach is known as syntactic sugar: introduce new syntactic forms that “desugar” into existing ones.
• In this case, an alternative approach would be to introduce more complex evaluation rules when + has a number of arguments different from 2.
Other Arithmetic Operators

Similar syntax and evaluation for
- `*` / quotient remainder min max
except:
- Second argument of `/`, quotient, remainder must be nonzero
- Result of `/` is a rational number (fraction) when both values are integers. (It is a floating point number if at least one value is a float.)
- quotient and remainder take exactly two arguments; anything else is an error.
- `(- E)` is treated as `(0 E)
- `/ E` is treated as `(1 E)
- `(min E)` and `(max E)` treated as `E`
- `(*)` evaluates to 1.
- `(,)`, `(-)`, `(min)`, `(max)` are errors (i.e., stuck)

Relation Operators

The following relational operators on numbers return booleans: `< <= = >= >

For example:

```
E1 V1
E2 V2
(< E1 E2) V
```

Where `V1` and `V2` are numbers and `V` is #t if `V1` is less than `V2` or #f if `V1` is not less than `V2`

Conditional (if) expressions

Syntax: `(if Etest Ethen Eelse)`

Evaluation rule:
1. Evaluate `Etest` to a value `Vtest`.
2. If `Vtest` is not the value `#f` then return the result of evaluating `Ethen` otherwise return the result of evaluating `Eelse`

Derivation-style rules for Conditionals

```
Etest Vtest
Ethen Vthen
(if Etest Ethen Eelse) Vthen
```

Where `Vtest` is not `#f`

```
Etest #f
Eelse Velse
(if Etest Ethen Eelse) Velse
```

Eelse is not evaluated!

Ethen is not evaluated!
Your turn

Use evaluation derivations to evaluate the following expressions

\[(\text{if} \ (< \ 8 \ 2) \ (+ \ #f \ 5) \ (+ \ 3 \ 4))\]

\[(\text{if} \ (+ \ 1 \ 2) \ (- \ 3 \ 7) \ (/ \ 9 \ 0))\]

\[(+ \ (\text{if} \ (< \ 1 \ 2) \ (* \ 3 \ 4) \ (/ \ 5 \ 6)) \ 7)\]

\[(+ \ (\text{if} \ 1 \ 2 \ 3) \ #t)\]

Expressions vs. statements

Conditional expressions can go anywhere an expression is expected:

\[(+ \ 4 \ (* \ (\text{if} \ (< \ 9 \ (- \ 251 \ 240)) \ 2 \ 3) \ 5))\]

\[(\text{if} \ (\text{if} \ (< \ 1 \ 2) \ (> \ 4 \ 3) \ (> \ 5 \ 6))\]

\[(+ \ 7 \ 8)\]

\[(* \ 9 \ 10)\]

Note: if is an expression, not a statement. Do other languages you know have conditional expressions in addition to conditional statements? (Many do! Java, JavaScript, Python, ...)

Conditional expressions: careful!

Unlike earlier expressions, not all subexpressions of if expressions are evaluated!

\[(\text{if} \ (> \ 251 \ 240) \ 251 \ (/ \ 251 \ 0))\]

\[(\text{if} \ #f \ (+ \ #t \ 240) \ 251)\]

Design choice in conditional semantics

In the [if nonfalse] rule, \(V_{\text{test}}\) is not required to be a boolean!

\[
\begin{align*}
\text{Etest} \downarrow V_{\text{test}} \\
\text{Ethen} \downarrow V_{\text{then}} \quad \text{[if nonfalse]} \\
(\text{if} \ \text{Etest Ethen Else}) \downarrow V_{\text{then}}
\end{align*}
\]

Where \(V_{\text{test}}\) is not #f

This is a design choice for the language designer.

What would happen if we replace the above rule by

\[
\begin{align*}
\text{Etest} \downarrow \#t \\
\text{Ethen} \downarrow V_{\text{then}} \quad \text{[if true]} \\
(\text{if} \ \text{Etest Ethen Else}) \downarrow V_{\text{then}}
\end{align*}
\]

This design choice is related to notions of “truthiness” and “falsiness” that you will explore in PS2.
Environments: Motivation

Want to be able to name values so can refer to them later by name. E.g.;

```
(define x (+ 1 2))
(define y (* 4 x))
(define diff (- y x))
(define test (< x diff))
(if test (+ (* x y) diff) 17)
```

Environments: Definition

- An environment is a sequence of bindings that associate identifiers (variable names) with values.
 - Concrete example:
    ```
    num ⟷ 17, absoluteZero ⟷ -273, true ⟷ #t
    ```
 - Abstract Example (use Id to range over identifiers = names):
    ```
    Id1 ⟷ V1, Id2 ⟷ V2, ..., Idn ⟷ Vn
    ```
 - Empty environment: ∅

- An environment serves as a context for evaluating expressions that contain identifiers.
- **Second argument** to evaluation, which takes both an expression and an environment.

Addition: evaluation with environment

Syntax: (+ E1 E2)

Evaluation rule:
1. evaluate E1 in the current environment to a value V1
2. Evaluate E2 in the current environment to a value V2
3. If V1 and V2 are both numbers then return the arithmetic sum of V1 + V2.
4. Otherwise, a **type error** occurs.

Variable references

Syntax: Id

Id: any identifier

Evaluation rule:
- Look up and return the value to which Id is bound in the current environment.
 - Look-up proceeds by searching from the most-recently added bindings to the least-recently added bindings (front to back in our representation)
 - If Id is not bound in the current environment, evaluating it is “stuck” at an **unbound variable error**.

Examples:
- Suppose env is num ⟷ 17, absZero ⟷ -273, true ⟷ #t, num ⟷ 5
- In env, num evaluates to 17 (more recent than 5), absZero evaluates to -273, and true evaluates to #t. Any other name is stuck.
define Declarations

Syntax:
\(\text{(define } \text{Id } E) \)

- **define:** keyword
- **Id:** any identifier
- **E:** any expression

This is a declaration, not an expression! We will say a declarations are processed, not evaluated.

Processing rule:
1. Evaluate \(E \) to a value \(V \) in the current environment
2. Produce a new environment that is identical to the current environment, with the additional binding \(\text{Id} \rightarrow V \) at the front. Use this new environment as the current environment going forward.

Environments: Example

\(\text{env0} = \emptyset \) (can write as . in text)

\(\text{define } x (+ 1 2)) \)

\(\text{env1} = x \mapsto 3, \emptyset \) (abbreviated \(x \rightarrow 3 \) in text)

\(\text{define } y (* 4 x)) \)

\(\text{env2} = y \mapsto 12, x \mapsto 3 \) (most recent binding first)

\(\text{define } \text{diff} (- y x)) \)

\(\text{env3} = \text{diff} \mapsto 9, y \mapsto 12, x \mapsto 3 \)

\(\text{define test} (< x \text{diff})) \)

\(\text{env4} = \text{test} \mapsto \#t, \text{diff} \mapsto 9, y \mapsto 12, x \mapsto 3 \)

Note that binding \(x \mapsto 36 \) "shadows" \(x \mapsto 3 \), making it inaccessible.

Evaluation Assertions & Rules with Environments

The evaluation assertion notation \(E \# env \downarrow V \) means "Evaluating expression \(E \) in environment \(env \) yields value \(V \)."

Id # env \downarrow V [varref]

Where \(\text{Id} \) is an identifier and \(\text{Id} \mapsto V \) is the first binding in \(env \) for \(\text{Id} \). Only this rule actually uses \(env \); others just pass it along.

V # env \downarrow V [value]

where \(V \) is a value (number, boolean, etc.)

- \(E1 \# env \downarrow V1 \)
- \(E2 \# env \downarrow V2 \)
- \((+ E1 E2) \# env \downarrow V \) [addition]

Where \(V1 \) and \(V2 \) are numbers and \(V \) is the sum of \(V1 \) and \(V2 \). Rules for other arithmetic and relational ops are similar.

Example Derivation with Environments

Suppose \(\text{env4} = \text{test} \mapsto \#t, \text{diff} \mapsto 9, y \mapsto 12, x \mapsto 3 \)

\(\text{test} \# \text{env4} \downarrow \#t \) [varref]

\(x \# \text{env4} \downarrow 3 \) [varref]

\(5 \# \text{env4} \downarrow 5 \) [value]

\((+ \times 5) \# \text{env4} \downarrow 15 \) [multiplication]

\(\text{diff} \# \text{env4} \downarrow 9 \) [varref]

\((+ \times 5) \text{diff} \# \text{env4} \downarrow 24 \) [addition]

\(\text{if test} (+ \times 5) \text{diff} 17) \# \text{env4} \downarrow 24 \) [if nonfalse]
Conclusion-below-subderivations, in text

Suppose env4 = test -> #t, diff -> 9, y -> 12, x -> 3

<table>
<thead>
<tr>
<th>test # env4 : #t [varref]</th>
</tr>
</thead>
<tbody>
<tr>
<td>x # env4 : 3 [varref]</td>
</tr>
<tr>
<td>5 # env4 : 5 [value]</td>
</tr>
<tr>
<td>------------------------------- [multiplication]</td>
</tr>
<tr>
<td>(+ (* x 5) diff) # env4 : 24</td>
</tr>
</tbody>
</table>

Suppose env4 = test -> #t, diff -> 9, y -> 12, x -> 3

(if test (+ (* x 5) diff) 17)# env4 ↓ 24 [if nonfalse]

\[\begin{align*}
(\text{if test } (+ (* x 5) \text{ diff}) 17) & \text{ env4 } \downarrow 24 \\
\text{ test } & \downarrow \ #t \ [\text{varref}] \\
(*) & \text{ env4 } : 15 \\
\text{ diff } & \text{ env4 } : 9 \ [\text{varref}] \\
(+ (* x 5) \text{ diff}) & \text{ env4 } : 24
\end{align*} \]

Formalizing definitions

The declaration assertion notation (define \(\textbf{Id} \ E \) # env ↓ env’) means “Processing the definition (define \(\textbf{Id} \ E \)) in environment \(\text{env} \) yields a new environment \(\text{env’} \)”. We use a different arrow, ↓, to emphasize that definitions are not evaluated to values, but processed to environments.

\[
\begin{align*}
\text{E} & \ # \ \text{env} \ \downarrow \ V \\
\text{(define } \textbf{Id} \ E) & \ # \ \text{env} \ \downarrow \ \textbf{Id} \ \mapsto \ V, \ \text{env}
\end{align*}
\]

Conclusion-above-subderivations, with bullets

Suppose env4 = test -> #t, diff -> 9, y -> 12, x -> 3

(if test (+ (* x 5) diff) 17)# env4 ↓ 24 [if nonfalse]

\[\begin{align*}
(\text{if test } (+ (* x 5) \text{ diff}) 17) & \text{ env4 } \downarrow 24 \\
\text{ test } & \downarrow \ #t \ [\text{varref}] \\
(*) & \text{ env4 } : 15 \ [\text{multiplication}] \\
\ & \text{ env4 } : 3 \ [\text{varref}] \\
5 & \text{ env4 } : 5 \ [\text{value}]
\end{align*} \]

Threading environments through definitions

\[
\begin{align*}
2 & \ # \ 1 \ 2 \ [\text{value}] \\
3 & \ # \ 1 \ 3 \ [\text{value}] \\
(+ 2 3) & \ # \ 1 \ 5 \ [\text{addition}] \\
\text{(define a (+ 2 3))} & \ # \ a \mapsto 5 \ [\text{define}]
\end{align*}
\]

\[
\begin{align*}
a & \ # \ a \mapsto 5 \ 5 \ [\text{varref}] \\
(*) & \ a \mapsto 5 \ 25 \ [\text{multiplication}] \\
\text{(define b (* a a))} & \ # \ a \mapsto 5 \ b \mapsto 25, \ a \mapsto 5 \ [\text{define}]
\end{align*}
\]

\[
\begin{align*}
b & \ # \ b \mapsto 25, \ a \mapsto 5 \ 25 \ [\text{varref}] \\
\ & \ a \mapsto 5 \ 5 \ [\varref] \\
\text{(- b a)} & \ # \ b \mapsto 25, \ a \mapsto 5 \ 20 \ [\text{subtraction}]
\end{align*}
\]
Racket Identifiers

- Racket identifiers are case sensitive. The following are four different identifiers: ABC, Abc, aBc, abc
- Unlike most languages, Racket is very liberal with its definition of legal identifiers. Pretty much any character sequence is allowed as identifier with the following exceptions:
 - Can’t contain whitespace
 - Can’t contain special characters ()[]{}’,;#$\n - Can’t have same syntax as a number
- This means variable names can use (and even begin with) digits and characters like !@$%^&*.-+:<>?/
 - myLongName, my_long__name, my-long-name
 - is a+b<c*d-e?
 - 76Trombones
- Why are other languages less liberal with legal identifiers?

Small-step vs. big-step semantics

The evaluation derivations we’ve seen so far are called a big-step semantics because the derivation $e \ # \ env \downarrow v$ explains the evaluation of e to v as one “big step” justified by the evaluation of its subexpressions.

An alternative way to express evaluation is a small-step semantics in which an expression is simplified to a value in a sequence of steps that simplifies subexpressions. You do this all the time when simplifying math expressions, and we can do it in Racket, too. E.g;

$$(- (* (+ 2 3) 9) (/ 18 6))$$

$$\Rightarrow (- (* 5 9) (/ 18 6))$$

$$\Rightarrow (- 45 (/ 18 6))$$

$$\Rightarrow (- 45 3)$$

$$\Rightarrow 42$$

Small-step semantics: intuition

Scan left to right to find the first redex (nonvalue subexpression that can be reduced to a value) and reduce it:

$$(- (* (+ 2 3) 9) (/ 18 6))$$

$$\Rightarrow (- (* 5 9) (/ 18 6))$$ [addition]

$$\Rightarrow (- 45 (/ 18 6))$$ [multiplication]

$$\Rightarrow (- 45 3)$$ [division]

$$\Rightarrow 42$$ [subtraction]

Small-step semantics: reduction rules

There are a small number of reduction rules for Racket. These specify the redexes of the language and how to reduce them.

The rules often require certain subparts of a redex to be (particular kinds of) values in order to be applicable.

$$Id \Rightarrow V$$, where $Id \mapsto V$ is the first binding for Id in the current environment* [varref]

$$(+ V1 V2) \Rightarrow V$$, where V is the sum of numbers $V1$ and $V2$ [addition]

There are similar rules for other arithmetic/relational operators

$$\text{(if Vtest Ethen Eelse)} \Rightarrow Ethen, \text{if Vtest is not #f}$$ [if nonfalse]$$

$$\text{(if #f Ethen Eelse)} \Rightarrow Eelse$$ [if false]

* In a more formal approach, the notation would make the environment explicit.

E.g., $E \ # \ env \Rightarrow V$
Small-step semantics: conditional example

\[(+ \ (\text{if} \ \{(\lt \ 1 \ 2)\} \ (* \ 3 \ 4) \ (/ \ 5 \ 6)) \ 7) \]
\[\Rightarrow (+ \ \{(\text{if} \ \#t \ (* \ 3 \ 4) \ (/ \ 5 \ 6))\} \ 7) \ [\text{less than}] \]
\[\Rightarrow (+ \ \{(\ast \ 3 \ 4)\} \ 7) \ [\text{if nonfalse}] \]
\[\Rightarrow \{(+ \ 12 \ 7)\} \ [\text{multiplication}] \]
\[\Rightarrow 19 \ [\text{addition}] \]

Notes for writing derivations in text:
- You can use => for \(\Rightarrow \)
- Use curly braces {...} to mark the redex
- Use square brackets to name the rule used to reduce the redex from the previous line to the current line.

Small-step semantics: errors as stuck expressions

Similar to big-step semantics, we model errors (dynamic type errors, divide by zero, etc.) in small-step semantics as expressions in which the evaluation process is stuck because no reduction rule is matched. For example:

\[(- \ (* \ \{(+ \ 2 \ 3) \ \#t\} \ (/ \ 18 \ 6)) \]
\[\Rightarrow (- \ (* \ \{(\ast \ 5 \ \#t)\} \ (/ \ 18 \ 6)) \ [\text{Stuck!}] \]

\[(\text{if} \ (= \ 2 \ (/ \ \{(+ \ 3 \ 4) \ (- \ 5 \ 5)\}) \ 8 \ 9) \]
\[\Rightarrow (\text{if} \ (= \ 2 \ (/ \ \{(\ast \ 7 \ (- \ 5 \ 5))\} \ 8 \ 9) \ [\text{Stuck!}] \]

Small-step semantics: your turn

Use small-step semantics to evaluate the following expressions:

\((\text{if} \ (< \ 8 \ 2) \ (+ \ \#f \ 5) \ (+ \ 3 \ 4)) \)
\((\text{if} \ (+ \ 1 \ 2) \ (- \ 3 \ 7) \ (/ \ 9 \ 0)) \)
\((+ \ (\text{if} \ (< \ 1 \ 2) \ (* \ 3 \ 4) \ (/ \ 5 \ 6)) \ 7) \)
\((+ \ (\text{if} \ 1 \ 2 \ 3) \ \#t) \)

Racket Documentation

Racket Guide:
https://docs.racket-lang.org/guide/

Racket Reference:
https://docs.racket-lang.org/reference