Introduction to Racket, a dialect of LISP: Expressions and Declarations

LISP: designed by John McCarthy, 1958 published 1960

LISP: implemented by Steve Russell, early 1960s

LISP: LISt Processing

- McCarthy, MIT artificial intelligence, 1950s-60s
 - Advice Taker: represent logic as data, not just program

- Needed a language for:
 - Symbolic computation
 - Programming with logic
 - Artificial intelligence
 - Experimental programming

- So make one!
Scheme

- Gerald Jay Sussman and Guy Lewis Steele (mid 1970s)
- Lexically-scoped dialect of LISP that arose from trying to make an “actor” language.
- Described in amazing “Lambda the Ultimate” papers (http://library.readscheme.org/page1.html)
 - Lambda the Ultimate PL blog inspired by these: http://lambda-the-ultimate.org
- Led to Structure and Interpretation of Computer Programs (SICP) and MIT 6.001 (https://mitpress.mit.edu/sicp/)

Racket

- Grandchild of LISP (variant of Scheme)
 - Some changes/improvements, quite similar
- Developed by the PLT group (https://racket-lang.org/people.html), the same folks who created DrJava.
- Why study Racket in CS251?
 - Clean slate, unfamiliar
 - Careful study of PL foundations (“PL mindset”)
 - Functional programming paradigm
 - Emphasis on functions and their composition
 - Immutable data (lists)
 - Beauty of minimalism
 - Observe design constraints/historical context

Expressions, Values, and Declarations

- Entire language: these three things

Expressions have evaluation rules:
 - How to determine the value denoted by an expression.

For each structure we add to the language:
 - What is its syntax? How is it written?
 - What is its evaluation rule? How is it evaluated to a value (expression that cannot be evaluated further)?

Values

- Values are expressions that cannot be evaluated further.

Syntax:
 - Numbers: 251, 240, 301
 - Booleans: #t, #f
 - There are more values we will meet soon (strings, symbols, lists, functions, ...)

Evaluation rule:
 - Values evaluate to themselves.
Addition expression: syntax

Adds two numbers together.

Syntax: \((+ \ E_1 \ E_2)\)

Every parenthesis required; none may be omitted.

\(E_1\) and \(E_2\) stand in for any expression.

Note prefix notation.

Examples:

\((+ \ 251 \ 240)\)
\((+ \ (+ \ 251 \ 240) \ 301)\)
\((+ \ #t \ 251)\)

Addition expression: evaluation

Syntax: \((+ \ E_1 \ E_2)\)

Evaluation rule:

1. Evaluate \(E_1\) to a value \(V_1\)
2. Evaluate \(E_2\) to a value \(V_2\)
3. Return the arithmetic sum of \(V_1 + V_2\).
Evaluation Derivation in English

An evaluation derivation is a “proof” that an expression evaluates to a value using the evaluation rules.

\((+ 3 (+ 5 4)) \downarrow 12\) by the addition rule because:

- \(3 \downarrow 3\) by the value rule
- \((+ 5 4) \downarrow 9\) by the addition rule because:
 - \(-5 \downarrow 5\) by the value rule
 - \(-4 \downarrow 4\) by the value rule
 - 5 and 4 are both numbers
 - 9 is the sum of 5 and 4
- \(3\) and 9 are both numbers
- \(12\) is the sum of 3 and 9

Errors Are Modeled by “Stuck” Derivations

How to evaluate

\((+ \#f (+ 5 4))\)?

\[#f \downarrow \#f\] [value]
\(5 \downarrow 5\) [value]
\(4 \downarrow 4\) [value]
\((+ 5 4) \downarrow 9\) [addition]

Stuck here. Can’t apply (addition) rule because \#f is not a number in \((+ 5 49)\)

How to evaluate

\((+ 3 (+ 5 \#f))\)?

\(1 \downarrow 1\) [value]
\(2 \downarrow 2\) [value]
\((+ 1 2) \downarrow 3\) [addition]
\(5 \downarrow 5\) [value]
\(#f \downarrow #f\) [value]

Stuck here. Can’t apply (addition) rule because \#f is not a number in \((+ 5 \#f)\)

Syntactic Sugar for Addition

The addition operator + can take any number of operands.

- For now, treat \((+ E1 E2 \ldots En)\) as \((+(+E1 E2)\ldots En)\)
- E.g., treat \((+7 2 -5 8)\) as \((+(+(+7 2) -5) 8)\)

- Treat \((+ E)\) as \(E\) (or say if \(E \downarrow V\) then \((+ E) \downarrow V)\)
- Treat \((+)\) as 0 (or say \((+ \downarrow 0)\)

- This approach is known as syntactic sugar: introduce new syntactic forms that “desugar” into existing ones.

- In this case, an alternative approach would be to introduce more complex evaluation rules when + has a number of arguments different from 2.
Other Arithmetic Operators

Similar syntax and evaluation for

- \times / quotient remainder min max

except:

- Second argument of $/$, quotient, remainder must be nonzero
- Result of $/$ is a rational number (fraction) when both values are integers. (It is a floating point number if at least one value is a float.)
- quotient and remainder take exactly two arguments; anything else is an error.
- $(- E)$ is treated as $(- 0 E)$
- $(/ E)$ is treated as $(/ 1 E)$
- $(\text{min } E)$ and $(\text{max } E)$ treated as E
- $(*)$ evaluates to 1.
- $(/), (-), (\text{min}), (\text{max})$ are errors (i.e., stuck)

Relation Operators

The following relational operators on numbers return booleans: $< \leq = \geq >$

For example:

$$E1 \downarrow V1$$
$$E2 \downarrow V2$$
$$(< E1 E2) \downarrow V$$

Where $V1$ and $V2$ are numbers and V is #t if $V1$ is less than $V2$
or #f if $V1$ is not less than $V2$

Conditional (if) expressions

Syntax: $(\text{if } E\text{test } E\text{then } E\text{else})$

Evaluation rule:

1. Evaluate $E\text{test}$ to a value $V\text{test}$.
2. If $V\text{test}$ is not the value #f then return the result of evaluating $E\text{then}$ otherwise return the result of evaluating $E\text{else}$

Derivation-style rules for Conditionals

$$E\text{test} \downarrow V\text{test}$$
$$E\text{then} \downarrow V\text{then}$$
$$(\text{if } E\text{test } E\text{then } E\text{else}) \downarrow V\text{then}$$

Where $V\text{test}$ is not #f

$$E\text{test} \downarrow #f$$
$$E\text{else} \downarrow V\text{else}$$
$$(\text{if } E\text{test } E\text{then } E\text{else}) \downarrow V\text{else}$$

Ethen is not evaluated!

Eelse is not evaluated!
Your turn

Use evaluation derivations to evaluate the following expressions

\[
(\text{if } (< 8 2) (+ \texttt{#f} 5) (+ 3 4))
\]

\[
(\text{if } (+ 1 2) (- 3 7) (/ 9 0))
\]

\[
(+ (\text{if } (< 1 2) (* 3 4) (/ 5 6)) 7)
\]

\[
(+ (\text{if } 1 2 3) \texttt{#t})
\]

Expressions vs. statements

Conditional expressions can go anywhere an expression is expected:

\[
(+ 4 (* (\text{if } (< 9 (- 251 240)) 2 3) 5))
\]

\[
(\text{if } (\text{if } (< 1 2) (> 4 3) (> 5 6)) (+ 7 8) (* 9 10))
\]

Note: \texttt{if} is an \textit{expression}, not a \textit{statement}. Do other languages you know have conditional expressions in addition to conditional statements?

(Many do! Java, JavaScript, Python, …)

Conditional expressions: careful!

Unlike earlier expressions, not all subexpressions of if expressions are evaluated!

\[
(\text{if } (> 251 240) 251 (/ 251 0))
\]

\[
(\text{if } \texttt{#f} (+ \texttt{#t} 240) 251)
\]

Design choice in conditional semantics

In the [if nonfalse] rule, \texttt{Vtest} is \textbf{not} required to be a boolean!

\[
\text{[if nonfalse]} \\
(\text{if } \texttt{Etest} \texttt{Ethen} \texttt{Eelse}) \downarrow \texttt{Vthen}
\]

Where \texttt{Vtest} is not \texttt{#f}

This is a design choice for the language designer. What would happen if we replace the above rule by

\[
\text{[if true]} \\
(\text{if } \texttt{Etest} \texttt{Ethen} \texttt{Eelse}) \downarrow \texttt{Vthen}
\]

This design choice is related to notions of “truthiness” and “falsiness” that you will explore in PS2.
Environments: Motivation

Want to be able to name values so can refer to them later by name. E.g.;

```
(define x (+ 1 2))
(define y (* 4 x))
(define diff (- y x))
(define test (< x diff))
(if test (+ (* x y) diff) 17)
```

Environments: Definition

- An **environment** is a sequence of bindings that associate identifiers (variable names) with values.
 - Concrete example:
    ```
    num ⟷ 17, absoluteZero ⟷ -273, true ⟷ #t
    ```
 - Abstract Example (use *Id* to range over identifiers = names):
    ```
    Id_1 ⟷ V_1, Id_2 ⟷ V_2, ..., Id_n ⟷ V_n
    ```
 - Empty environment: ∅
- An environment serves as a context for evaluating expressions that contain identifiers.
- **Second argument** to evaluation, which takes both an expression and an environment.

Addition: evaluation with environment

Syntax:
```
(+  E1  E2)
```

Evaluation rule:
1. evaluate **E1 in the current environment** to a value **V1**
2. Evaluate **E2 in the current environment** to a value **V2**
3. If **V1** and **V2** are both numbers then return the arithmetic sum of **V1 + V2**.
4. Otherwise, a **type error** occurs.

Variable references

Syntax:
```
Id
```

Id: any identifier

Evaluation rule:

Look up and return the value to which *Id* is bound in the current environment.

- Look-up proceeds by searching from the most-recently added bindings to the least-recently added bindings (front to back in our representation)
- If *Id* is not bound in the current environment, evaluating it is “stuck” at an unbound variable error.

Examples:

- Suppose **env** is
  ```
  num ⟷ 17, absZero ⟷ -273, true ⟷ #t, num ⟷ 5
  ```
- In **env**, num evaluates to 17 (more recent than 5), absZero evaluates to -273, and true evaluates to #t. Any other name is stuck.
Define Declarations

Syntax: `(define Id E)`
- `define`: keyword
- `Id`: any identifier
- `E`: any expression

This is a declaration, not an expression!
We will say a declarations are processed, not evaluated

Processing rule:
1. Evaluate `E` to a value `V` in the current environment
2. Produce a new environment that is identical to the current environment, with the additional binding `Id → V` at the front. Use this new environment as the current environment going forward.

Environments: Example

```
env0 = ∅ (can write as . in text)
(define x (+ 1 2))
(env1 = x → 3, ∅ (abbreviated x ↦ 3; can write as x ←→ 3 in text)
(define y (* 4 x))
(env2 = y → 12, x → 3 (most recent binding first)
(define diff (- y x))
(env3 = diff → 9, y → 12, x → 3
(define test (< x diff))
(env4 = test → #t, diff → 9, y → 12, x → 3

Note that binding x → 36 “shadows” x → 3, making it inaccessible
```

Evaluation Assertions & Rules with Environments

The evaluation assertion notation `E # env ↓ V` means “Evaluating expression `E` in environment `env` yields value `V`”.

<table>
<thead>
<tr>
<th><code>Id # env ↓ V</code> [varref]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where <code>Id</code> is an identifier and <code>Id → V</code> is the first binding in <code>env</code> for <code>Id</code>. Only this rule actually uses <code>env</code>; others just pass it along.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><code>V # env ↓ V</code> [value]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where <code>V</code> is a value (number, boolean, etc.).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><code>E1 # env ↓ V1</code> [addition]</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>E2 # env ↓ V2</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><code>E1 # env ↓ V1</code> [if nonfalse]</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>E2 # env ↓ V2</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><code>E1 # env ↓ V1</code> [if nonfalse]</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>E2 # env ↓ V2</code> [addition]</td>
</tr>
</tbody>
</table>

Example Derivation with Environments

Suppose `env4 = test → #t, diff → 9, y → 12, x → 3`

```
test # env4 ↓ #t [varref]  
  x # env4 ↓ 3 [varref]  
  5 # env4 ↓ 5 [value]  
  (* x 5) # env4 ↓ 15 [multiplication]  
  diff # env4 ↓ 9 [varref]  
  (+ (* x 5) diff) # env4 ↓ 24 [addition]  
  (if test (+ (* x 5) diff) 17) # env4 ↓ 24 [if nonfalse]
```

Where `V1` is not #f
Conclusion-below-subderivaNons, in text

Suppose env4 = test -> #t, diff -> 9, y -> 12, x -> 3

| test # env4 ↓ #t [varref] |
| x # env4 ↓ 3 [varref] |
| 5 # env4 ↓ 5 [value] |
| -------------------------- [multiplication] |
| (* x 5) # env4 ↓ 15 |
| diff # env4 ↓ 9 [varref] |
| -------------------------- [addition] |
| (+ (* x 5) diff) # env4 ↓ 24 |

Suppose env4 = test -> #t, diff -> 9, y -> 12, x -> 3

(if test (+ (* x 5) diff) 17) # env4 ↓ 24 [if nonfalse]

- test # env4 ↓ #t [varref]
- (+ (* x 5) diff) # env4 ↓ 24 [addition]
 - (* x 5) # env4 ↓ 15 [multiplication]
 - x # env4 ↓ 3 [varref]
 - 5 # env4 ↓ 5 [value]
 - diff # env4 ↓ 9 [multiplication]

Formalizing definitions

The declaration assertion notation (define Id E) # env ↓ env' means “Processing the definition (define Id E) in environment env yields a new environment env’”. We use a different arrow, ↓, to emphasize that definitions are not evaluated to values, but processed to environments.

\[
\begin{array}{c}
E \# \text{env} \downarrow V \\
(\text{define} \ Id \ E) \# \text{env} \downarrow Id \mapsto V, \text{env}
\end{array}
\]

Threading environments through definitions

2 ↓ # 2 [value]
3 ↓ # 3 [value]
(+ 2 3) ↓ # 5 [addition]
(define a (+ 2 3)) ↓ a ↦ 5

a ↓ # a ↦ 5 [varref]
a ↓ a ↦ 5 [multiplication]
(* a a) ↓ a ↦ 5 [define]
(define b (* a a)) ↓ a ↦ 5 ↓ b ↦ 25, a ↦ 5

b ↓ # b ↦ 25, a ↦ 5 [varref]
a ↓ b ↦ 25, a ↦ 5 [multiplication]
(- b a) ↓ b ↦ 25, a ↦ 5 [subtraction]

env4 ↓ 24
Racket Identifiers

- Racket identifiers are case sensitive. The following are four different identifiers: ABC, Abc, aBc, abc

- Unlike most languages, Racket is very liberal with its definition of legal identifiers. Pretty much any character sequence is allowed as identifier with the following exceptions:
 - Can’t contain whitespace
 - Can’t contain special characters () [] {} "',';\n - Can’t have same syntax as a number

- This means variable names can use (and even begin with) digits and characters like !@$%^&*.-+_:`;#|\n - myLongName, my_long__name, my-long-name
 - is_a+b, c*d-e?
 - 76Trombones

- Why are other languages less liberal with legal identifiers?

Small-step vs. big-step semantics

The evaluation derivations we’ve seen so far are called a big-step semantics because the derivation $e \# env \Downarrow v$ explains the evaluation of e to v as one “big step” justified by the evaluation of its subexpressions.

An alternative way to express evaluation is a small-step semantics in which an expression is simplified to a value in a sequence of steps that simplifies subexpressions. You do this all the time when simplifying math expressions, and we can do it in Racket, too. E.g:

$$(- (* (+ 2 3) 9) (/ 18 6))$$
$$\Rightarrow (- (* 5 9) (/ 18 6))$$
$$\Rightarrow (- 45 (/ 18 6))$$
$$\Rightarrow (- 45 3)$$
$$\Rightarrow 42$$

Small-step semantics: intuition

Scan left to right to find the first redex (nonvalue subexpression that can be reduced to a value) and reduce it:

\[
(- (* (+ 2 3) 9) (/ 18 6))
\Rightarrow (- (* 5 9) (/ 18 6)) \quad \text{[addition]}
\Rightarrow (- 45 (/ 18 6)) \quad \text{[multiplication]}
\Rightarrow (- 45 3) \quad \text{[division]}
\Rightarrow 42 \quad \text{[subtraction]}
\]

Small-step semantics: reduction rules

There are a small number of reduction rules for Racket. These specify the redexes of the language and how to reduce them.

The rules often require certain subparts of a redex to be (particular kinds of) values in order to be applicable.

- $Id \Rightarrow V$, where $Id \rightarrow V$ is the first binding for Id in the current environment* [varref]
- $(+ \ V1 \ V2) \Rightarrow V$, where V is the sum of numbers $V1$ and $V2$ [addition]
 - There are similar rules for other arithmetic/relational operators
 - $(\text{if } V\text{test } E\text{then } E\text{else }) \Rightarrow E\text{then}, \text{if } V\text{test} \text{is not } #f \text{[if nonfalse]}
 - $(\text{if } #f \ E\text{then } E\text{else }) \Rightarrow E\text{else} \text{[if false]}

* In a more formal approach, the notation would make the environment explicit. E.g., $E \# env \Rightarrow V$
Small-step semantics: conditional example

\[(+ \ (if \ {(< \ 1 \ 2)} \ (* \ 3 \ 4) \ (/ \ 5 \ 6)) \ 7) \]
\[\Rightarrow (+ \ \{(if \ #t \ (* \ 3 \ 4) \ (/ \ 5 \ 6))\} \ 7) \ [\text{less than}] \]
\[\Rightarrow (+ \ \{(* \ 3 \ 4)\} \ 7) \ [\text{if nonfalse}] \]
\[\Rightarrow \{(+ \ 12 \ 7)\} \ [\text{multiplication}] \]
\[\Rightarrow 19 \ [\text{addition}] \]

Notes for writing derivations in text:

- You can use => for ⇒
- Use curly braces {...} to mark the redex
- Use square brackets to name the rule used to reduce the redex from the previous line to the current line.

Small-step semantics: errors as stuck expressions

Similar to big-step semantics, we model errors (dynamic type errors, divide by zero, etc.) in small-step semantics as expressions in which the evaluation process is stuck because no reduction rule is matched. For example:

\[(- \ (* \ (+ \ 2 \ 3) \ #t) \ (/ \ 18 \ 6)) \]
\[\Rightarrow (- \ (* \ 5 \ #t) \ (/ \ 18 \ 6)) \]
\[(if \ (= \ 2 \ (/ \ (+ \ 3 \ 4) \ (- \ 5 \ 5))) \ 8 \ 9) \]
\[\Rightarrow (if \ (= \ 2 \ (/ \ 7 \ (- \ 5 \ 5))) \ 8 \ 9) \]
\[\Rightarrow (if \ (= \ 2 \ (/ \ 7 \ 0)) \ 8 \ 9) \]

Small-step semantics: your turn

Use small-step semantics to evaluate the following expressions:

\((if \ (< \ 8 \ 2) \ (+ \ #f \ 5) \ (+ \ 3 \ 4)) \)

\((if \ (+ \ 1 \ 2) \ (- \ 3 \ 7) \ (/ \ 9 \ 0)) \)

\((+ \ (if \ (< \ 1 \ 2) \ (* \ 3 \ 4) \ (/ \ 5 \ 6)) \ 7) \)

\((+ \ (if \ 1 \ 2 \ 3) \ #t) \)

Racket Documentation

Racket Guide:

https://docs.racket-lang.org/guide/

Racket Reference:

https://docs.racket-lang.org/reference