Iteration via Tail Recursion in Racket

SOLUTIONS

CS251 Programming Languages
Spring 2018, Lyn Turbak
Department of Computer Science
Wellesley College

Overview

- What is iteration?
- Racket has no loops, and yet can express iteration. How can that be?
 - Tail recursion!
- Tail recursive list processing via \texttt{foldl}
- Other useful abstractions
 - General iteration via \texttt{iterate} and \texttt{iterate-apply}
 - General iteration via \texttt{genlist} and \texttt{genlist-apply}

Factorial Revisited

\begin{verbatim}
(define (fact-rec n)
 (if (= n 0)
 1
 (* n (fact-rec (- n 1))))
\end{verbatim}

Invocation Tree

Idea: multiply on way down

State Variables:
- \texttt{num} is the current number being processed.
- \texttt{prod} is the product of all numbers already processed.

Iteration Table:

<table>
<thead>
<tr>
<th>step</th>
<th>num</th>
<th>prod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>24</td>
</tr>
</tbody>
</table>

Iteration Rules:
- next \texttt{num} is previous \texttt{num} minus 1.
- Next \texttt{prod} is previous \texttt{num} times previous \texttt{prod}.

An iterative approach to factorial
Iterative factorial: tail recursive version

Iteration Rules:
• next num is previous num minus 1.
• next prod is previous num times previous prod.

(define (fact-tail num prod)
 (if (= num 0)
 prod
 (fact-tail (- num 1) (* num prod))))

; Here, and in many tail recursions, need a wrapper
; function to initialize first row of iteration
; table. E.g., invoke (fact-iter 4) to calculate 4!
(define (fact-iter n)
 (fact-tail n 1))

Tail-recursive factorial: invocation tree

;; Here, and in many tail recursions, need a wrapper
;; function to initialize first row of iteration
;; table. E.g., invoke (fact-iter 4) to calculate 4!
(define (fact-iter n)
 (fact-tail n 1))

The essence of iteration in Racket

• A process is iterative if it can be expressed as a sequence of
 steps that is repeated until some stopping condition is reached.
• In divide/conquer/glue methodology, an iterative process is a
 recursive process with a single subproblem and no glue step.
• Each recursive method call is a tail call -- i.e., a method call
 with no pending operations after the call. When all recursive
 calls of a method are tail calls, it is said to be tail recursive.
 A tail recursive method is one way to specify an iterative
 process.

Iteration is so common that most programming languages provide
special constructs for specifying it, known as loops.

inc-rec in Racket

; Extremely silly and inefficient recursive incrementing
; function for testing Racket stack memory limits
(define (inc-rec n)
 (if (= n 0)
 1
 (+ 1 (inc-rec (- n 1)))))

> (inc-rec 1000000) ; 10^6
1000001

> (inc-rec 10000000) ; 10^7
inc_rec in Python

```python
def inc_rec (n):
    if n == 0:
        return 1
    else:
        return 1 + inc_rec(n - 1)
```

In [16]: inc_rec(100)
Out[16]: 101

In [17]: inc_rec(1000)
```
in inc_rec(n)
  9     return 1
  10     else:
    --> 11     return 1 + inc_rec(n - 1)
  12     # inc_rec(10) ~> 11
  13     # inc_rec(100) ~> 101
```

RuntimeError: maximum recursion depth exceeded

inc_iter/inc_tail in Racket

```racket
(define (inc-iter n)
  (inc-tail n 1))

(define (inc-tail num resultSoFar)
  (if (= num 0)
      resultSoFar
      (inc-tail (- num 1) (+ resultSoFar 1))))
```

> (inc-iter 10000000) ; 10^7
10000001

> (inc-iter 100000000) ; 10^8
100000001

Will inc_iter ever run out of memory?

inc_iter/int_tail in Python

```python
def inc_iter (n): # Not really iterative!
    return inc_tail(n, 1)

def inc_tail(num, resultSoFar):
    if num == 0:
        return resultSoFar
    else:
        return inc_tail(num - 1, resultSoFar + 1)
```

In [19]: inc_iter(100)
Out[19]: 101

In [19]: inc_iter(1000)
```
RuntimeError: maximum recursion depth exceeded
```

Why the Difference?

Python pushes a stack frame for every call to iter_tail. When iter_tail(0,4) returns the answer 4, the stacked frames must be popped even though no other work remains to be done coming out of the recursion.

Racket’s tail-call optimization replaces the current stack frame with a new stack frame when a tail call (function call not in a subexpression position) is made. When iter-tail(0,4) returns 4, no unnecessarily stacked frames need to be popped!
Origins of Tail Recursion

One of the most important but least appreciated CS papers of all time

Treat a function call as a GOTO that passes arguments

Function calls should not push stack; subexpression evaluation should!

Looping constructs are unnecessary; tail recursive calls are a more general and elegant way to express iteration.

What to do in Python (and most other languages)?

In Python, **must** re-express the tail recursion as a loop!

```python
def inc_loop(n):
    resultSoFar = 0
    while n > 0:
        n = n - 1
        resultSoFar = resultSoFar + 1
    return resultSoFar
```

In [23]: inc_loop(1000) # 10^3
Out[23]: 1001

In [24]: inc_loop(10000000) # 10^8
Out[24]: 10000001

But Racket doesn’t need loop constructs because tail recursion suffices for expressing iteration!

Iterative factorial: Python **while** loop version

Iteration Rules:

* next `num` is previous `num` minus 1.
* next `prod` is previous `num` times previous `prod`.

```python
def fact_while(n):
    num = n
    prod = 1
    while (num > 0):
        prod = num * prod
        num = num - 1
    return prod
```

Don’t forget to return answer!

while loop factorial: Execution Land

<table>
<thead>
<tr>
<th>n</th>
<th>num</th>
<th>prod</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>24</td>
</tr>
</tbody>
</table>

Execution frame for fact_while(4)

```
num = n
prod = 1
while (num > 0):
    prod = num * prod
    num = num - 1
return prod
```
Gotcha! Order of assignments in loop body

What’s wrong with the following loop version of factorial?

```python
def fact_while(n):
    num = n
    prod = 1
    while (num > 0):
        num = num - 1
        prod = num * prod
    return prod
```

Moral: must think carefully about order of assignments in loop body!

Note: tail recursion doesn’t have this gotcha!

Relating Tail Recursion and while loops

```
(define (fact-tail num prod)
  (if (= num 0)
      ans
      (fact-tail (- num 1) (* num prod))))
```

```
def fact_while(n):
    num = n
    prod = 1
    while (num > 0):
        num = num - 1
        prod = num * prod
    return prod
```

Iteration/Tail Recursion

Recursive Fibonacci

```
(define (fib-rec n) ; returns rabbit pairs at month n
    (if (< n 2) ; assume n >= 0
        n
        (+ (fib-rec (- n 1)) ; pairs alive last month
            (fib-rec (- n 2)) ; newborn pairs )))
```

```
def fact_iter(n):
    (fact-tail n 1))
```

Iteration leads to a more efficient Fib

The Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, ...

Iteration table for calculating the 8th Fibonacci number:

<table>
<thead>
<tr>
<th>n</th>
<th>i</th>
<th>fibi</th>
<th>fibi+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>13</td>
<td>21</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>21</td>
<td>34</td>
</tr>
</tbody>
</table>
Iterative Fibonacci in Racket

Flesh out the missing parts

```
(define (fib-iter n)
  (fib-tail n 0 0 1))

(define (fib-tail n i fibi fibi+1)
  (if (= i n)
      fibi
      (fib-tail n
        (+ i 1)
        fibi+1
        (+ fibi fibi+1))))
```

Gotcha! Assignment order and temporary variables

What’s wrong with the following looping versions of Fibonacci?

```python
def fib_for1(n):
  fib_i = 0
  fib_i_plus_1 = 1
  for i in range(n):
    fib_i = fib_i_plus_1
    fib_i_plus_1 = fib_i + fib_i_plus_1
  return fib_i
```

```python
def fib_for2(n):
  fib_i = 0
  fib_i_plus_1 = 1
  for i in range(n):
    fib_i_plus_1 = fib_i
    fib_i = fib_i + fib_i_plus_1
  return fib_i
```

Moral: Sometimes no order of assignments to state variables in a loop is correct and it is necessary to introduce one or more temporary variables to save the previous value of a variable for use in the right-hand side of a later assignment. Or can use simultaneous assignment in languages that have it (like Python!)

Fixing Gotcha

1. Use a temporary variable (in general, might need n-1 such vars for n state variables)

```
def fib_for_fixed1(n):
  fib_i = 0
  fib_i_plus_1 = 1
  for i in range(n):
    fib_i_prev = fib_i
    fib_i = fib_i_plus_1
    fib_i_plus_1 = fib_i_prev + fib_i_plus_1
  return fib_i
```

2. Use simultaneous assignment:

```
def fib_for_fixed2(n):
  fib_i = 0
  fib_i_plus_1 = 1
  for i in range(n):
    (fib_i, fib_i_plus_1) =
      (fib_i_plus_1, fib_i + fib_i_plus_1)
  return fib_i
```

Local fib-tail function in fib-iter

Can define fib-tail locally within fib-iter.

Since n remains constant, don’t need it as an argument to local fib-tail.

```
(define (fib-iter n)
  (define (fib-tail i fibi fibi+1)
    (if (= i n)
        fibi
        (fib-tail (+ i 1)
          fibi+1
          (+ fibi fibi+1)))
  (fib-tail 0 0 1))
```
Iterative List Summation

\[
\text{nums} & \quad \text{sumSoFar} \\
0 & \quad 0 \\
(3,-22,5) & \quad 6 \\
(-22,5) & \quad 9 \\
(5) & \quad 13 \\
() & \quad -8
\]

\[
(\text{define} \ (\text{sumList-iter} \ L)) \\
(\text{sumList-tail} \ L \ 0)
\]

\[
(\text{define} \ (\text{sumList-tail} \ \text{nums} \ \text{sumSoFar}) \\
(\text{if} \ (\text{null?} \ \text{nums}) \ \\
\ \text{sumSoFar} \\
(\text{sumList-tail} \ (\text{rest} \ \text{nums}) \\
\ \text{(+} \ (\text{first} \ \text{nums}) \ \text{sumSoFar}))))
\]

Capturing list iteration via my-foldl

\[
(\text{define} \ (\text{my-foldl} \ \text{combine} \ \text{resultSoFar} \ \text{xs}) \\
(\text{if} \ (\text{null?} \ \text{xs}) \ \\
\ \text{resultSoFar} \\
(\text{my-foldl} \ \text{combiner} \\
\ \text{combine} \ (\text{first} \ \text{xs}) \ \text{resultSoFar} \\
\ \text{combine} \ (\text{rest} \ \text{xs}))))
\]

Foldr vs foldl

\[
> (\text{my-foldl} \ + \ 0 \ (\text{list} \ 7 \ 2 \ 4)) \\
13
\]

\[
> (\text{my-foldl} \ * \ 1 \ (\text{list} \ 7 \ 2 \ 4)) \\
56
\]

\[
> (\text{my-foldl} \ \text{cons} \ \text{null} \ (\text{list} \ 7 \ 2 \ 4)) \\
'(4 \ 2 \ 7)
\]

\[
> (\text{my-foldl} \ (\lambda \ (n \ \text{res}) \ (+ \ (* \ 3 \ \text{res}) \ n)) \\
\hspace{1cm} 0 \\
\hspace{2cm} (\text{list} \ 10 \ -4 \ 5 \ 2)) \\
251 \; = \; 10*3^3 \; + \; -4*3^2 \; + \; 5*3^1 \; + \; 2*3^0 \\
\; ; \text{An example of Horner’s method} \\
\; ; \text{for polynomial evaluation}
\]
Built-in Racket `foldl` Function
Folds over Any Number of Lists

```racket
> (foldl cons null (list 7 2 4))
'(4 2 7)
> (foldl (λ (a b res) (+ (* a b) res)) 0
 (list 2 3 4)
 (list 5 6 7))
56
> (foldl (λ (a b res) (+ (* a b) res)) 0
 (list 1 2 3 4)
 (list 5 6 7))
ERROR: foldl: given list does not have the same
size as the first list: '(5 6 7)
```

Same design decision
as in map and foldr

What does this do?

```racket
(define (whatisit f xs)
 (foldl (λ (x listSoFar)
             (cons (f x) listSoFar)) null
        xs)))
```

Ans: It performs the "reverse map" of function f on list xs.

E.g., `(whatisit (λ (n) (* n 3)) '(7 2 4)) => '(12 6 21)

To perform a regular map, change `foldl` to `foldr`!
Tail Recursion Review 2

def toInt(digits):
 i = 0
 for d in digits:
 num = 10*i + d
 return i

1. Create an iteration table for toInt([1,7,2,9])
2. Translate Python toInt into Racket tail recursion.
3. Translate Python toInt into Racket foldl.

<table>
<thead>
<tr>
<th>digits</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,7,2,9]</td>
<td>0</td>
</tr>
<tr>
<td>[7,2,9]</td>
<td>1</td>
</tr>
<tr>
<td>[2,9]</td>
<td>17</td>
</tr>
<tr>
<td>[]</td>
<td>1729</td>
</tr>
</tbody>
</table>

(define (toInt digits)
 (define (toIntTail ds i)
 (if (null? ds)
 i
 (toIntTail (rest ds) (+ (* 10 i) d))))
 (toIntTail digits 0))

(define (iterate next done? finalize state)
 (if (done? state)
 (finalize state)
 (iterate next done? finalize
 (next state))))

iterate

(define (fact-iterate n)
 (iterate
 (λ (num&prod)
 (list (- (first num&prod) 1)
 (* (first num&prod)
 (second num&prod))))
 (λ (num&prod) (<= (first num&prod) 0))
 (λ (num&prod) (second num&prod))
 (list n 1)))

For example:

(define (iterate next done? finalize state)
 (if (done? state)
 (finalize state)
 (iterate next done? finalize
 (next state))))

iterate

(define (least-power-geq base threshold)
 (iterate (λ (pow) (* base pow))
 (λ (pow) (>= pw threshold))
 (λ (pow) pow))
 1)) ; Initial power

; Soln 1
(define (least-power-geq base threshold)
 (iterate (λ (pow) (* base pow))
 (λ (pow) (>= pow threshold))
 (λ (pow) pow))
 1)) ; Initial power

; Soln 2
(define (least-power-geq base threshold)
 (iterate (λ (exp) (+ exp 1))
 (λ (exp) (>= (expt base exp) threshold))
 (λ (exp) (expt base exp))) ; To return just exponent, ; use exp here.
 0)) ; Initial exponent

What do These Do?

(define (mystery1 n) ; Assume n >= 0
 (iterate (λ (ns) (cons (- (first ns) 1) ns))
 (λ (ns) (<= (first ns) 0))
 (λ (ns) ns))
 (list n)))

(define (mystery2 n)
 (iterate (λ (ns) (cons (quotient (first ns) 2) ns))
 (λ (ns) (<= (first ns) 1))
 (λ (ns) (- (length ns) 1))
 (list n)))

mystery1 returns the list of ints from 0 up to and including n.
E.g., (mystery1 5) => '(0 1 2 3 4 5)
mystery2 calculates the log-base-2 of n by determining how many times
n can be divided by 2 before reaching 1. E.g.
(mystery2 32) => 5
Using **let** to introduce local names

```racket
(define (fact-let n)
  (iterate (λ (num&prod)
    (let ([num (first num&prod)]
       [prod (second num&prod)])
      (list (- num 1) (* num prod)))
    (λ (num&prod) (<= (first num&prod) 0))
    (list n 1)))
```

Using **match** to introduce local names

```racket
(define (fact-match n)
  (iterate (λ (num&prod)
    (match num&prod
      [(list num prod) (list (- num 1) (* num prod))]
      (λ (num&prod) prod))
    (λ (num&prod) (<= num 0)))
    (list n 1)))
```

Racket’s apply

```racket
(define (avg a b)
  (/ (+ a b) 2))
```

```racket
> (avg 6 10)
8
> (apply avg '(6 10))
8
> ((λ (a b c) (+ (* a b) c)) 2 3 4)
10
> (apply (λ (a b c) (+ (* a b) c)) (list 2 3 4))
10
```

iterate-apply: a kinder, gentler iterate

```racket
(define (iterate-apply next done? finalize state)
  (if (apply done? state)
      (apply finalize state)
      (iterate-apply next done? finalize (apply next state))))

(define (fact-iterate-apply n)
  (iterate-apply
    (λ (num prod)
      (match num&prod
        [(list num prod) (list (- num 1) (* num prod))]
        (λ (num&prod) prod))
      (λ (num&prod) (<= num 0)))
    (list n 1)))
```

apply takes (1) a function and (2) a single argument that is a **list of values** and returns the result of applying the function to the values.
iterate-apply: fib and gcd

\[
\text{(define (fib-iterate-apply n)}
\begin{align*}
\text{(iterate-apply)} & \\
\text{(\lambda (i fibi fibi+1) ; next)} & \\
\text{(list (+ i 1) fibi fibi+1)) & \\
\text{(\lambda (i fibi fibi+1) (= i n)) ; done?)} & \\
\text{(\lambda (i fibi fibi+1) fib_i) ; finalize)} & \\
\text{(list 0 0 1)) ; init state)} &
\end{align*}
\]

Creating lists with \text{genlist}

\[
\text{(define (gcd-iterate-apply a b)}
\begin{align*}
\text{(iterate-apply)} & \\
\text{(\lambda (a b) ; next)} & \\
\text{(list b (remainder a b))} & \\
\text{(\lambda (a b) (= b 0) ; done?)} & \\
\text{(\lambda (a b) a) ; finalize)} & \\
\text{(list a b))) ; init state)} &
\end{align*}
\]

Simple \text{genlist} examples

\[
\text{(genlist (\lambda (n) (- n 1))}
\begin{align*}
\text{(\lambda (n) (= n 0)) ; next)} & \\
\#t & \\
\text{(5 4 3 2 1 0)} & \\
\end{align*}
\]

\[
\text{(genlist (\lambda (n) (* n 2))}
\begin{align*}
\text{(\lambda (n) (> n 100)) ; next)} & \\
\#t & \\
\text{(1 2 4 8 16 32 64 128)} & \\
\end{align*}
\]

\[
\text{(define (genlist next done? keepDoneValue? seed)}
\begin{align*}
\text{(if (done? seed) & \\
\text{(if keepDoneValue? (list seed) null) & \\
\text{(cons seed (next seed)))}}} & \\
\text{(genlist next done? keepDoneValue? (next seed)))}}} &
\end{align*}
\]

\[
\text{genlist: my-range and halves}
\begin{align*}
\text{(define (my-range-genlist lo hi)}
\begin{align*}
\text{(genlist (\lambda (n) (+ n 1)) ; next)} & \\
\text{(\lambda (n) (> n hi)) ; done?)} & \\
\text{#f ; keepDoneValue?)} & \\
\text{(lo ; seed)} &
\end{align*}
\]

\[
\text{(define (halves num)}
\begin{align*}
\text{(genlist (\lambda (n) (quotient n 2)) ; next)} & \\
\text{(\lambda (n) (= n 0)) ; done?)} & \\
\text{#f ; keepDoneValue?)} & \\
\text{(num ; seed)} &
\end{align*}
\]

\[
\text{(halves 64)}
\begin{align*}
\text{'(64 32 16 8 4 2 1)} & \\
\text{(halves 42)}
\end{align*}
\]

\[
\text{(halves -63)}
\begin{align*}
\text{'(-63 -31 -15 -7 -3 -1)} &
\end{align*}
\]
Using genlist to generate iteration tables

```
(define (fact-table n)
  (genlist (λ (num & prod)
    (let ((num (first num & ans))
          (prod (second num & ans)))
      (list (- num 1) (* num prod))))
    (λ (num & prod) (<= (first num & prod) 0))
    #t
    (list n 1)))
```

<table>
<thead>
<tr>
<th>step</th>
<th>num</th>
<th>prod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>24</td>
</tr>
</tbody>
</table>

> (fact-table 4) `((4 1) (3 4) (2 12) (1 24) (0 24))
> (fact-table 5) `((5 1) (4 5) (3 20) (2 60) (1 120) (0 120))
> (fact-table 10) `((10 1) (9 10) (8 90) (7 720) (6 5040) (5 30240) (4 151200) (3 604800) (2 1814400) (1 3628800) (0 3628800))

Your turn: sum-list iteration table

```
(define (sum-list-table ns)
  (genlist (λ (nums & sum)
    (let ([nums (first nums & ans)]
          [sum (second nums & ans)])
      (list (rest nums) [
        [sum (second nums & ans)]
      ])
    (λ (nums & sum) (+ sum (first nums)))))
  (λ (nums & sum) (null? (first nums & sum)))
  #t
  (list ns 0)))
```

> (sum-list-table '(7 2 5 8 4)) `(((7 2 5 8 4) 0) ((2 5 8 4) 7) ((8 4) 14) ((4) 22) (() 26))

Moral: ask yourself the question
“Can I generate this list as the column of an iteration table?”

genlist can collect iteration table column!

; With table abstraction
(define (partial-sums ns)
 (map second (sum-list-table ns)))

; Without table abstraction
(define (partial-sums ns)
 (map second
 (genlist-apply (λ (nums ans)
 (let ((nums (first nums & ans))
 (sum (second nums & ans)))
 (list (rest nums) (+ (first nums sum))))
 (λ (nums & sum) (null? (first nums & sum)))
 #t
 (list ns 0))))

> (partial-sums '(7 2 5 8 4)) '
(0 7 9 14 22 26)

Moral: ask yourself the question
“Can I generate this list as the column of an iteration table?”

genlist-apply: a kinder, gentler genlist

```
(define (genlist-apply next done? keepDoneValue? seed)
  (if (apply done? seed)
      (if keepDoneValue? (list seed) null)
      (cons seed
        (genlist-apply next done? keepDoneValue? (apply next seed))))
```

Example:

```
(define (partial-sums ns)
  (map second
    (genlist-apply
      (λ (nums ans)
        (list (rest nums) (+ (first nums ans))))
      (λ (nums ans) (null? nums))
      #t
      (list ns 0))))
```
(define (partial-sums-between lo hi)
 (map second
 (genlist-apply
 (λ (num sum) ; next
 (list (+ num 1) (+ num sum)))
 (λ (num sum) ; done?
 (> num hi))
 (list lo 0) ; keepDoneValue?
 seed))))

> (partial-sums-between 3 7)
'(0 3 7 12 18 25)
> (partial-sums-between 1 10)
'(0 1 3 6 10 15 21 28 36 45 55)

(define (genlist-apply-iter next done? keepDoneValue? seed)
 (iterate-apply
 (λ (state reversedStatesSoFar) ; next
 (list (apply next state)
 (cons state reversedStatesSoFar)))
 (λ (state reversedStatesSoFar) (apply done? state))
 (λ (state reversedStatesSoFar)
 (if keepDoneValue?
 (reverse (cons state reversedStatesSoFar))
 (reverse reversedStatesSoFar)))
 (list seed '())))

Example: How does this work?
(genlist-iter (λ (n) (quotient n 2))
 (λ (n) (<= n 0))
 5)