Iteration via Tail Recursion in Racket

Overview

• What is iteration?
• Racket has no loops, and yet can express iteration. How can that be?
 – Tail recursion!
• Other useful abstractions
 – General iteration via iterate and iterate-apply
 – General iteration via genlist and genlist-apply

Factorial Revisited

Invocation Tree

An iterative approach to factorial

Factorial Revisited

(define (fact-rec n)
 (if (= n 0)
 1
 (* n (fact-rec (- n 1)))))

Idea: multiply on way down

State Variables:
• num is the current number being processed.
• prod is the product of all numbers already processed.

Iteration Table:

<table>
<thead>
<tr>
<th>Step</th>
<th>num</th>
<th>prod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>24</td>
</tr>
</tbody>
</table>

Iteration Rules:
• next num is previous num minus 1.
• next prod is previous num times previous prod.
Iterative factorial: tail recursive version

```
(define (fact-tail num prod)
  (if (= num 0)
      prod
      (fact-tail (- num 1) (* num prod))))
```

Iteration Rules:
- next num is previous num minus 1.
- next prod is previous num times previous prod.

```
; Here, and in many tail recursions, need a wrapper
; function to initialize first row of iteration
; table. E.g., invoke (fact-iter 4) to calculate 4!
(define (fact-iter n)
  (fact-tail n 1))
```

The essence of iteration in Racket

- A process is iterative if it can be expressed as a sequence of steps that is repeated until some stopping condition is reached.
- In divide/conquer/glue methodology, an iterative process is a recursive process with a single subproblem and no glue step.
- Each recursive method call is a tail call -- i.e., a method call with no pending operations after the call. When all recursive calls of a method are tail calls, it is said to be tail recursive. A tail recursive method is one way to specify an iterative process.

Iteration is so common that most programming languages provide special constructs for specifying it, known as loops.

Tail-recursive factorial: invocation tree

```
(define (fact-tail num prod)
  (if (= num 0)
      prod
      (fact-tail (- num 1) (* num prod)))))
```

Invocation Tree:
- (fact-tail 4 1)
- (fact-tail 3 4)
- (fact-tail 2 12)
- (fact-tail 1 24)
- (fact-tail 0 24)

Iteration Table:

<table>
<thead>
<tr>
<th>step</th>
<th>num</th>
<th>prod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>24</td>
</tr>
</tbody>
</table>

inc-rec in Racket

```
define (inc-rec n)
  (if (= n 0)
      1
      (+ 1 (inc-rec (- n 1)))))
```

> (inc-rec 1000000) ; 10^6
1000001

> (inc-rec 10000000) ; 10^7

inc_rec in Python

```python
def inc_rec (n):
    if n == 0:
        return 1
    else:
        return 1 + inc_rec(n - 1)
```

In [16]: inc_rec(100)
Out[16]: 101

In [17]: inc_rec(1000)

```
RuntimeError: maximum recursion depth exceeded
```

inc_iter/inc_tail in Racket

```scheme
(define (inc-iter n)
  (inc-tail n 1))

(define (inc-tail num resultSoFar)
  (if (= num 0)
      resultSoFar
      (inc-tail (- num 1) (+ resultSoFar 1)))))
```

> (inc-iter 10000000) ; 10^7
10000001

> (inc-iter 100000000) ; 10^8
100000001

Why the Difference?

Python pushes a stack frame for every call to `inc_tail`. When `inc_tail(0,4)` returns the answer 4, the stacked frames must be popped even though no other work remains to be done coming out of the recursion.

Racket’s *tail-call optimization* replaces the current stack frame with a new stack frame when a *tail call* (function call not in a subexpression position) is made. When `inc_tail(0,4)` returns 4, no unnecessarily stacked frames need to be popped.

In [19]: inc_iter(100)
Out[19]: 101

In [19]: inc_iter(1000)

```
RuntimeError: maximum recursion depth exceeded
```
Origins of Tail Recursion

One of the most important but least appreciated CS papers of all time

• Treat a function call as a GOTO that passes arguments
• Function calls should not push stack; subexpression evaluation should!
• Looping constructs are unnecessary; tail recursive calls are a more general and elegant way to express iteration.

What to do in Python (and most other languages)?

In Python, **must** re-express the tail recursion as a loop!

```python
def inc_loop(n):
    resultSoFar = 0
    while n > 0:
        n = n - 1
        resultSoFar = resultSoFar + 1
    return resultSoFar
```

```python
In [23]: inc_loop(1000) # 10^3
Out[23]: 1001
In [24]: inc_loop(10000000) # 10^8
Out[24]: 10000001
```

But Racket doesn’t need loop constructs because tail recursion suffices for expressing iteration!

Iterative factorial: Python **while** loop version

Iteration Rules:
- next num is previous num minus 1.
- next prod is previous num times previous prod.

```python
def fact_while(n):
    num = n
    prod = 1
    while (num > 0):
        prod = num * prod
        num = num - 1
    return prod
```

while loop factorial: Execution Land

```
<table>
<thead>
<tr>
<th>n</th>
<th>num</th>
<th>prod</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>num = n</td>
<td></td>
</tr>
<tr>
<td></td>
<td>prod = 1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>12</td>
</tr>
</tbody>
</table>
|    | while (num > 0):
|    | prod = num * prod
|    | num = num - 1
| 0  | 0   | 24   |
|    | return prod
```

Execution frame for fact_while(4)

- Declare/initiate local state variables
- Calculate product and decrement num
- Don’t forget to return answer!
Gotcha! Order of assignments in loop body

What’s wrong with the following loop version of factorial?

```python
def fact_while(n):
    num = n
    prod = 1
    while (num > 0):
        num = num - 1
        prod = num * prod
    return prod
```

Moral: must think carefully about order of assignments in loop body!

Note: tail recursion doesn’t have this gotcha!

Relating Tail Recursion and while loops

```python
(define (fact-tail num prod)
  (if (= num 0)
      ans
      (fact-tail (- num 1) (* num prod))))
```

```python
(define (fact-iter n)
  (fact-tail n 1))
```

```python
(define (fact-tail num prod)
  (if (= num 0)
      prod
      (fact-tail (- num 1) (* num prod))))
```

```python
def fact_while(n):
    num = n
    prod = 1
    while (num > 0):
        num = num - 1
        prod = num * prod
    return prod
```

Iteration leads to a more efficient Fib

The Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, ...

Iteration table for calculating the 8th Fibonacci number:

<table>
<thead>
<tr>
<th>n</th>
<th>i</th>
<th>fibi</th>
<th>fibi+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>13</td>
<td>21</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>21</td>
<td>34</td>
</tr>
</tbody>
</table>

Recursive Fibonacci

```scheme
(define (fib-rec n) ; returns rabbit pairs at month n
  (if (< n 2) ; assume n > 0
      n
      (+ (fib-rec (- n 1)) ; pairs alive last month
         (fib-rec (- n 2)) ; newborn pairs )))
```

Iterative Fibonacci in Racket

Flesh out the missing parts

```scheme
(define (fib-iter n) )

(define (fib-tail n i fibi fibi+1) )
```

Gotcha! Assignment order and temporary variables

What’s wrong with the following looping versions of Fibonacci?

```python
def fib_for1(n):
fib_i = 0
fib_i_plus_1 = 1
for i in range(n):
fib_i = fib_i_plus_1
fib_i_plus_1 = fib_i + fib_i_plus_1
return fib_i
```

```python
def fib_for2(n):
fib_i = 0
fib_i_plus_1 = 1
for i in range(n):
fib_i_plus_1 = fib_i
fib_i = fib_i_plus_1 + fib_i_plus_1
return fib_i
```

Moral: sometimes no order of assignments to state variables in a loop is correct and it is necessary to introduce one or more temporary variables to save the previous value of a variable for use in the right-hand side of a later assignment.

Or can use simultaneous assignment in languages that have it (like Python!)

Fixing Gotcha

1. Use a temporary variable (in general, might need n-1 such vars for n state variables)

```python
def fib_for_fixed1(n):
fib_i = 0
fib_i_plus_1 = 1
for i in range(n):
fib_i_prev = fib_i
fib_i = fib_i_plus_1
fib_i_plus = fib_i_prev + fib_i_plus_1
return fib_i
```

2. Use simultaneous assignment:

```python
def fib_for_fixed2(n):
fib_i = 0
fib_i_plus_1 = 1
for i in range(n):
(fib_i, fib_i_plus_1) = (fib_i_plus_1, fib_i + fib_i_plus_1)
return fib_i
```

Local fib-tail function in fib-iter

Can define fib-tail locally within fib-iter.

Since n remains constant, don’t need it as an argument to local fib-tail.

```scheme
(define (fib-iter n)
  (define (fib-tail i fibi fibi+1)
    (if (= i n)
      fibi
      (fib-tail (+ i 1) fibi
               (fib-i_plus_1) (+ fibi fibi+1)))))
(fib-tail 0 0 1)
```

Iteration/Tail Recursion 21

Iteration/Tail Recursion 22

Iteration/Tail Recursion 23

Iteration/Tail Recursion 24
Iterative List Summation

\[
\begin{array}{c|c}
\text{nums} & \text{result} \\
\hline
6 & 0 \\
3 & 6 \\
-22 & 9 \\
5 & -13 \\
\hline
\end{array}
\]

\[
\text{(define (sumList-iter L)} \\
\quad \text{(sumList-tail L 0)} \\
\text{)}
\]

\[
\text{(define (sumList-tail nums sumSoFar)} \\
\quad \text{(if (null? nums) sumSoFar)} \\
\quad \text{(sumList-tail (rest nums) (+ (first nums) sumSoFar))})
\]

Capturing list iteration via \textit{my-foldl}

\[
\begin{array}{c}
\text{initval} \to \text{combine} \to \cdots \to \text{combine} \to \text{nullval} \\
\text{v}_1 \to v_2 \to \cdots \to v_{n-1} \to v_n \to \bullet
\end{array}
\]

\[
\text{(define (my-foldl combine resultSoFar xs)} \\
\quad \text{(if (null? xs) resultSoFar)} \\
\quad \text{(my-foldl combiner (combine (first xs) resultSoFar)} \\
\quad \text{(rest xs)))})
\]

\[
\text{foldr vs foldl}
\]

\[
\begin{array}{c}
\text{initval} \to \text{combine} \to \cdots \to \text{combine} \to \text{nullval} \\
\text{v}_1 \to v_2 \to \cdots \to v_{n-1} \to v_n \to \bullet
\end{array}
\]

\[
\text{(define (my-foldl1 combine resultSoFar xs)} \\
\quad \text{(if (null? xs) resultSoFar)} \\
\quad \text{(my-foldl combiner (combine (first xs) resultSoFar)} \\
\quad \text{(rest xs)))})
\]

\[
\text{my-foldl1 Examples}
\]

\[
> \text{(my-foldl 0 (list 7 2 4))}
\]

\[
> \text{(my-foldl 1 (list 7 2 4))}
\]

\[
> \text{(my-foldl cons null (list 7 2 4))}
\]

\[
> \text{(my-foldl (λ (n res) (+ (* 3 res) n)) 0)} \\
\quad \text{(list 10 -4 5 2))}
\]

Iteration/Tail Recursion 25

Iteration/Tail Recursion 26

Iteration/Tail Recursion 27

Iteration/Tail Recursion 28
Built-in Racket `foldl` Function
Folds over Any Number of Lists

> `(foldl cons null (list 7 2 4))
 '(4 2 7)
> `(foldl (λ (a b res) (+ (* a b) res))
 0
 (list 2 3 4)
 (list 5 6 7))
 56
> `(foldl (λ (a b res) (+ (* a b) res))
 0
 (list 1 2 3 4)
 (list 5 6 7))
 ERROR: foldl: given list does not have the same size as the first list: '(5 6 7)

Iterative vs Recursive List Reversal

```
(define (reverse-iter xs)
  (foldl cons null xs))
```

```
(define (snoc x ys)
  (foldr cons (list x) ys))
```

```
(define (reverse-rec xs)
  (foldr snoc null xs))
```

How do these compare in terms of the number of conses performed for a list of length 100? 1000? n?

What does this do?

```
(define (whatisit f xs)
  (foldl (λ (x listSoFar)
    (cons (f x) listSoFar))
  null
  xs)))
```

Tail Recursion Review 1

Euclid’s algorithm
def gcd(a, b):
 while b != 0:
 temp = b
 b = a % b
 a = temp
 return a

1. Create an iteration table for `gcd(42, 72)`
2. Translate Python `gcd` into Racket tail recursion.
def toInt(digits):
 i = 0
 for d in digits:
 num = 10*i + d
 return i

1. Create an iteration table for
toInt([1,7,2,9])
2. Translate Python toInt into
Racket tail recursion.
3. Translate Python toInt into
Racket foldl.

For example:

 (define (iterate next done? finalize state)
 (if (done? state)
 (finalize state)
 (iterate next done? finalize
 (next state))))

 (define (fact-iterate n)
 (iterate
 (λ (num&prod)
 (list (- (first num&prod) 1)
 (* (first num&prod)
 (second num&prod)))
 (λ (ns) (<= (first ns) 0))
 (λ (ns) (second ns))
 (list n)))

 For example:

 (define (fact-iterate n)
 (iterate
 (λ (ns) (cons (- (first ns) 1) ns))
 (λ (ns) (<= (first ns) 0))
 (λ (ns) ns)
 (list n)))

 (define (least-power-geq base threshold)
 (iterate ; next
 ; done?
 ; finalize
 ; initial state
)

 > (least-power-geq 2 10)
 16
 > (least-power-geq 5 100)
 125
 > (least-power-geq 3 100)
 243

 How could we return just the exponent rather than the base raised to the
 exponent?

 (define (mystery1 n) ; Assume n >= 0
 (iterate
 (λ (ns) (cons (- (first ns) 1) ns))
 (λ (ns) (<= (first ns) 0))
 (λ (ns) ns)
 (list n)))

 (define (mystery2 n)
 (iterate
 (λ (ns) (cons (quotient (first ns) 2) ns))
 (λ (ns) (<= (first ns) 1))
 (λ (ns) (- (length ns) 1))
 (list n)))

 (define (least-power-geq base threshold)
 (iterate ; next
 ; done?
 ; finalize
 ; initial state
)

 > (least-power-geq 2 10)
 16
 > (least-power-geq 5 100)
 125
 > (least-power-geq 3 100)
 243

 How could we return just the exponent rather than the base raised to the
 exponent?
Using \textit{let} to introduce local names

\begin{verbatim}
(define (fact-let n)
 (iterate (λ (num&prod)
 (let ([num (first num&prod)]
 [prod (second num&prod)])
 (list (- num 1) (* num prod)))
 (λ (num&prod) (<= (first num&prod) 0))
 (λ (num&prod) (second num&prod))
 (list n 1))))
\end{verbatim}

Using \textit{match} to introduce local names

\begin{verbatim}
(define (fact-match n)
 (iterate (λ (num&prod)
 (match num&prod
 [(list num prod) (list (- num 1) (* num prod))])
 (λ (num&prod) (<= num 0))
 (λ (num&prod) prod)
 (list n 1))))
\end{verbatim}

Racket’s \textit{apply}

\begin{verbatim}
(define (avg a b) (/ (+ a b) 2))
\end{verbatim}

\begin{verbatim}
> (avg 6 10)
8
> (apply avg '(6 10))
8
> ((λ (a b c) (+ (* a b) c)) 2 3 4)
10
> (apply (λ (a b c) (+ (* a b) c)) (list 2 3 4))
10
\end{verbatim}

\textit{iterate-apply}: a kinder, gentler \textit{iterate}

\begin{verbatim}
(define (iterate-apply next done? finalize state)
 (if (apply done? state)
 (apply finalize state)
 (iterate-apply next done? finalize (apply next state))))

(define (fact-iterate-apply n)
 (iterate-apply
 (λ (num prod)
 (match num&prod
 [(list num prod) (list (- num 1) (* num prod))])
 (λ (num&prod) (<= num 0))
 (λ (num&prod) prod)
 (list n 1))))
\end{verbatim}

\begin{tabular}{|c|c|}
\hline
\textbf{step} & \textbf{num} & \textbf{prod} \\
\hline
1 & 4 & 1 \\
2 & 3 & 4 \\
3 & 2 & 12 \\
4 & 1 & 24 \\
5 & 0 & 24 \\
\hline
\end{tabular}
iterate-apply: fib and gcd

```
(define (fib-iterate-apply n)
  (iterate-apply
   (lambda (i fibi fibi+1)
     ; next
     (list (+ i 1) fibi+1 (+ fibi fibi+1))
   (lambda (i fibi fibi+1) (= i n))
   ; done?
   (lambda (i fibi fibi+1) fibi)
   ; finalize
   (list 0 0 1))
   ; init state
))
```

```
(define (gcd-iterate-apply a b)
  (iterate-apply
   (lambda (a b)
     ; next
     (list b (remainder a b))
   (lambda (a b) (= b 0))
   ; done?
   (lambda (a b) a)
   ; finalize
   (list a b)))
   ; init state
))
```

Simple genlist examples

What are the values of the following calls to genlist?

```
(genlist (λ (n) (- n 1)) ; t 5)
(genlist (λ (n) (= n 0)) ; #f)
(genlist (λ (n) (* n 2)) ; t 1)
```

Creating lists with genlist

```
V1 next V2 next ... Vpenult next Vdone?
```

```
(seed a b ...)
```

```
V1 next V2 next ... Vpenult next Vdone?
```

```
(seed a b ...)
```

```
(a b)
```

```
#f
```

```
Keep Vdone only if keepDoneValue? is true
```

```
not iterative as written, but next function gives iterative 'flavor'
```

```
(define (genlist next done? keepDoneValue? seed)
  (if (done? seed)
      (if keepDoneValue? (list seed) null)
      (cons seed (genlist next done? keepDoneValue? (next seed)))))
```

```
(define (my-range-genlist lo hi)
  (genlist
   (λ (n) (+ n 1)) ; next
   (λ (n) (> n hi)) ; done?
   #f ; keepDoneValue?
   lo ; seed
))
```

```
(define (halves num)
  (genlist
   (λ (n) (quotient n 2)) ; next
   (λ (n) (= n 0)) ; done?
   #f ; keepDoneValue?
   num ; seed
))
```

```
> (halves 64)
'(64 32 16 8 4 2 1)
```

```
> (halves -63)
'(-63 -31 -15 -7 -3 -1)
```

```
> (my-range 10 15)
'(10 11 12 13 14)
```

```
> (my-range 20 10)
'()
```

```
> (halves 42)
'(42 21 10 5 2 1)
```

```
> (halves -63)
'(-63 -31 -15 -7 -3 -1)
```

```
> (halves -63)
'(-63 -31 -15 -7 -3 -1)
```
Using genlist to generate iteration tables

(define (fact-table n)
 (genlist (λ (num prod)
 (let ((num (first num & ans))
 (prod (second num & ans)))
 (list (- num 1) (* num prod))))
 (λ (num prod) (<= (first num & prod) 0))
 #(list n 1)))

> (fact-table 4)
'((4 1) (3 4) (2 12) (1 24) (0 24))
> (fact-table 5)
'((5 1) (4 5) (3 20) (2 60) (1 120) (0 120))
> (fact-table 10)
'((10 1) (9 10) (8 90) (7 720) (6 5040) (5 30240) (4 151200) (3 604800) (2 1814400) (1 3628800) (0 3628800))

Your turn: sum-list iteration table

(define (sum-list-table ns)
 (genlist (λ (nums & sum)
 (let ((nums (first nums & ans))
 (sum (second nums & ans))
 (list (rest nums) (+ (first nums) sum)))
 (λ (nums & sum) (null? (first nums & sum)))
 #t
 (list ns 0)))))

> (sum-list-table '(7 2 5 8 4))
'(((7 2 5 8 4) 0) ((2 5 8 4) 7) ((5 8 4) 9) ((8 4) 14) ((4) 22) ((() 26)))

genlist can collect iteration table column!

; With table abstraction
(define (partial-sums ns)
 (map second (sum-list-table ns)))

; Without table abstraction
(define (partial-sums ns)
 (map second
 (genlist (λ (nums & sum)
 (let ((nums (first nums & ans))
 (sum (second nums & ans))
 (list (rest nums) (+ (first nums) sum)))
 (λ (nums & sum) (null? (first nums & sum)))
 #t
 (list ns 0))))))

> (partial-sums '(7 2 5 8 4))
'((0 7 9 14 22 26))

Moral: ask yourself the question
“Can I generate this list as the column of an iteration table? “

genlist-apply: a kinder, gentler genlist

(define (genlist-apply next done? keepDoneValue? seed)
 (if (apply done? seed)
 (if keepDoneValue?
 (list seed) null)
 (cons seed
 (genlist-apply next done? keepDoneValue? seed))))

Example:

(define (partial-sums ns)
 (map second
 (genlist-apply
 (λ (nums ans)
 (list (rest nums) (+ (first nums) ans)))
 (λ (nums ans) (null? nums))
 #t
 (list ns 0))))
\[\text{partial-sums-between} \]

\[
\begin{align*}
\text{(define (partial-sums-between lo hi)} \\
&\text{ (map second)} \\
&\text{ (genlist-apply)} \\
&\text{ ; next} \\
&\text{ ; done?} \\
&\text{ ; keepDoneValue?} \\
&\text{ ; seed} \\
&\text{))}
\end{align*}
\]

> (partial-sums-between 3 7)
'(0 3 7 12 18 25)

> (partial-sums-between 1 10)
'(0 1 3 6 10 15 21 28 36 45 55)

\[\text{Iterative Version of genlist} \]

\[
\begin{align*}
\text{;; Returns the same list as genlist, but requires only} \\
\text{;; constant stack depth (*not* proportional to list length)} \\
\text{(define (genlist-iter next done? keepDoneValue? seed)} \\
\text{ (iterate-apply)} \\
&\text{ (λ (state reversedStatesSoFar)} \\
&\text{ (list (next state)} \\
&\text{ (cons state reversedStatesSoFar))))} \\
&\text{(λ (state reversedStatesSoFar) (done? state))} \\
&\text{(λ (state reversedStatesSoFar)} \\
&\text{ (if keepDoneValue?} \\
&\text{ (reverse (cons state reversedStatesSoFar))} \\
&\text{ (reverse reversedStatesSoFar)))} \\
&\text{ (list seed '()))}
\end{align*}
\]

Example: How does this work?

\[
\begin{align*}
\text{(genlist-iter (λ (n) (quotient n 2))} \\
&\text{ (λ (n) (<= n 0))} \\
&\text{ 5)}
\end{align*}
\]

\[\text{Iterative Version of genlist-apply} \]

\[
\begin{align*}
\text{(define (genlist-apply-iter next done? keepDoneValue? seed)} \\
\text{ (iterate-apply)} \\
&\text{ (λ (state reversedStatesSoFar)} \\
&\text{ (list (apply next state)} \\
&\text{ (cons state reversedStatesSoFar))))} \\
&\text{(λ (state reversedStatesSoFar) (apply done? state))} \\
&\text{(λ (state reversedStatesSoFar)} \\
&\text{ (if keepDoneValue?} \\
&\text{ (reverse (cons state reversedStatesSoFar))} \\
&\text{ (reverse reversedStatesSoFar)))} \\
&\text{ (list seed '())))}
\end{align*}
\]

Iteration/Tail Recursion 49

Iteration/Tail Recursion 50

Iteration/Tail Recursion 51