Wellesley College a CS251 Programming Languages a Spring, 2000
FINAL EXAM REVIEW PROBLEM SOLUTIONS

This document contains solutions to the problems on the final exam review problems posted earlier
except for Problem 1, Problem 3, and Problem 15b.

Problem 2: Explicit Typing

The explicitly typed versions of the given programs are shown below. The type annotations are
highlighted in bol dface.

(program (n)
(bindrec ((even? (-> (int) bool)
(abs ((n int))
(if (=n0)
#t

(odd? (- n 1)))))
(odd? (-> (int) bool)
(abs ((nint))
(if (=n0)
#f
(even? (- n 1))))))
(prepend (even? 5)
(prepend (odd? 5)
(enpty bool)))))

(program (hi)
(bi ndrec
((map (forall (a b)
(-> ((-> (a) b) (listof a))
(listof b)))
(pabs (a b)
(abs ((f (-> (a) b)) (Ist (listof a)))
(if (enmpty? Ist)
(enmpty b)
(prepend (f (head Ist))
~ ((papp map a b) f (tail Ist)))))))
(fromto (-> (int) (listof int))
(abs ((lo int))
(if (> 10 hi)
(enpty int)
(prepend lo (fromto (+ 10 1))))))

(bind test-list (fromto 1)
(prepend ((papp map int (listof int))
(abs ((nint)) (prepend n (enpty int)))
((papp map i nt int)
(abs ((x int)) (* x X))
test-list))
(prepend ((papp map bool (listof int))
(abs ((b bool))
(if b
(prepend 1 (enpty int))
(prepend 0 (enpty int))))
((papp map i nt bool)
(abs ((y int)) (= (mody 2) 0))
test-list))
(prepend ((papp map int (listof int))
(abs ((z int))
(prepend z
(prepend (* 2 z)
(empty int))))
test-1list)
(empty (listof (listof int)))))))))

Problem 4: Non-local Exits

(define (fringe tree)
(1 abel return
(letrec ((hel per (lanbda (tr address)
(if (leaf? tr)
(if (nunber? tr)
(junmp return (cons tr address))
(list tr))
(append (hel per (left tr)
(postpend address ‘left))
(hel per (right tr)
(postpend address ‘right)))))))
(hel per tree ‘())))

Part a.

Expression Vaue
(fringe (node (node “a ‘b) (node ‘c ‘d))) (a b c d)
(fringe (node (node “a 2) (node ‘c ‘d))) (2 left right)
)))
))

a
(fringe (node (node ‘a ‘b) (node 3 ‘d (3 right left)
(fringe (node (node ‘a 2) (node 3 ‘d) (2 left right)

Part b. When given atree whose leaves are non-numbers, f ri nge returns alist of the leaves of
the tree in left-to-right order. When given atree containing one or more numbers, f ri nge returns
an answer of theform (n . address) , where nisthe leftmost number in the tree, and address
isthe address of that number. Here, an address is expressed as a sequence of the symbols| ef t
andri ght specifying the “directions’ to the number from the root of the tree.

Part c. Itispossibletoimplementfri nge without | abel andj unp, but not as elegantly aswith
them. Without non-local exits, it would be necessary to treat differently the two different kinds of
return values: thelist of leaves returned in the regular case and the list of elements returned in the
exceptional case. The code to handle these cases differently would make the definition of fringe
harder to read and modify.

Problem 5: Parameter Passing

Consider the following expression:

(let ((n 0))
(let ((add-twice (lanbda (x)
(begin (set! x (* 2 X))
(set! n (+ n x))

n)))
(let ((test (lanbda (2z)
(+ (* 100 (add-tw ce n))
(+ (¥ 10 z) 2)))))
(test (add-twice 1)))))

For each of the following parameter-pasing mechanisms, indicate the value of the above expression
inaversion of lexically-scoped Scheme using that parameter-passing mechanism:

Parameter-Passing Mechanism| Value of sample expression
Call-by-value 622
Call-by-reference 822
Cdl-by-name 24
Cdl-by-need 22

Problem 6: Parameter Passing

Consider the following expression:

(et ((a 1))
(let ((inc (lanmbda (x)
(begin (set! a (+ a x))
a)))
(f (lambda (y 2z)
(begin
(set!' y (+y 3))
, (+a(*z2z))))))
(f a (inc 1))))

For each of the following parameter-pasing mechanisms, indicate the value of the above expression
in aversion of Scheme using that parameter-passing mechanism:

Parameter-Passing Mechanism| Value of sample expression
Cdl-by-value 6
Call-by-reference 9
Call-by-name 7
Call-by-need 5

Problem 7: Desugaring

Part a. For each of the following parameter passing mechanismsin an imperative version of
statically-scoped Scheme, explain your answer to the following question:

Are(orl E; Ep) and(or2 E; Ep) interchangeablefor al expressionsEq and Ex?

« call-by-value: No. Supppose E; evaluatestotrueand E, has aside effect (e.g.,
increments aglobal variable). Then (or1 E; Ep) will perform E2'sside ef f ect
but (or2 E1 Ep) will not.

o call-by-name: Yes. E; andE, perform any side effects the same number of times and
inthe sameorder inboth (or1 E; Ep) and(or2 Ep Ep).

o call-by-need: Yes.E; andE, perform any side effects the same number of timesand in
the same order inboth (or1 E; E») and(or2 E; Ep).

Part b. Without the assumption that | is fresh, name capture could occur. As aconcrete example,
consider the following expression:

(let ((x true)) (or2 false x))

If I isfresh (say x1), then thisis equivalent to:

(let ((x true))
(let ((x1 false))
(if x1 x1 x))

But if | isnot fresh (say x), then the above would evaluate to fal se rather than true, because the
reference to the outer x would be captured by the declaration of the inner x.

Part c. When a construct is defined in terms of desugaring, it is not necessary to extend the
definitions of any functions that manipulate the abstract syntax trees of the language: e.g., free-
variables, evaluation, substitution, type-checking, etc. In contrast, when a new construct is added
asanew kind of AST node, any function manipulating the ASTs of the language must be
modified.

Problem 8: Block Structure

The FOBS function declaration i ndex- of - bs can be trandated into the following two FOFL
declarations:

(fun index-of-no-bs (elt Ist)
(index-loop 1 Ist elt))

(fun index-loop (i L elt)
(if (null? L)
-1

(if (eqv? elt (car L))
i
(index-loop (+ i 1) (cdr L) elt))))

The FOBS function declaration car t esi an- pr oduct - bs can be trandated into the following three
FOFL declarations:

(fun cartesian-product-no-bs (lstl Ist2)
(prod Istl Ist2))

(fun prod (Istl Ist2)
(if (null? Istl)

()
(let ((elt (car Istl)))
(append (rmap-duple Ist2 elt)
(prod (cdr Istl) Ist2)))))

(fun map-duple (L elt)
(if (null? L)
()
(cons (list elt (car L))
(map-duple (cdr L) elt))))

Problem 9: Static vs. Dynamic Scope

Part a.

Scoping Mechanism | Valueof (sum (raise 2) 1 3)

Lexicad 12+22+3%=14

Dynamic 1'+22+3%=32

Part b. Yes, alanguage can be lexically scoped without being block-structured. Block structure
says that function declarations can be nested. Lexical scoping says that the meaning of free
variables within functionsis determined by lexical contours. Lexical scoping still has meaning even
when function declarations areflat (i..e, only at top-level). In this case, the body of afunction can
still have free variables that reference global variables. For such functions, lexical and dynamic
scoping could give different answers. Examples of lexically-scoped languages without block
structure include C, Java, and the toy language FOFL.

Problem 10: Scoping

Part a. Determine the values of the following two expressions that usef | ui d- bi nd:

Expression Vdue
(et ((a 1))
(let ((f (lanbda (x) (+ x a))))
(+ (fluid-bind a 20 4321
(f 300))

(f 4000))))
(et ((a 1))
(+ (fluid-bind a 20
(begin 321
(set! a (+ a 300))
a))
a))

Part b
(fluid-bind | Edef Epody)

= (let ((old I)
(body-thunk (lanmbda () Ebody)))
(begin
(set! | Edef)
(let ((result (body-thunk)))
(set! | old)
result)))

The purpose of body- t hunk isto capture Ebody at apoint where no names have been introduced
yet. In particular, if (body- t hunk) were replaced by Epody, then Epody could accidentally
capture the nameool d.

Part c Unlikealexical | et , f | ui d- bi nd requires some cleanup operations (restoring the old
value of the variable) before it can return the value of the body expression. So the call to (pri nt -
nuns n) inthebody of pri nt - nums is not tail-recursive because thereis still work remaining to be
done. The amount of pending work increases with n until memory is exhausted.

Part d A non-local jump out of adynamic let will automatically restore the dynamic environment
in effect at the target of the jJump. However, anon-loca jump out of f | ui d- bi nd will have the
effect of not restoring the fluid-bound variable. As a concrete example, suppose that pen- col or
isavariable containing the default pen color (say it'syellow) and we execute:

(fluid-bind pen-color red (abort *‘done))

Thenpen- col or will beleft in the red state because the code to restore it to yellow was bypassed
by theabort. Withadynamicl et , however, the abort would force the system back to the default
dynamic environment, in which pen- col or would be yellow

PROBLEM 11: Scoping

H&R Block Structure, atax software vendor, has developed a program for computing the cost of
taxable itemsin adynamically scoped imperative call-by-value version of Scheme. Their program
includes the following top-level definitions:

(define *rate* 0.05)

(define taxed
(1 arbda (anount)
(* amount (+ 1 *rate*))))

(define with-rate
(lambda (rate thunk)
(let ((*rate* rate))
(thunk))))

The global variable*r at e* represents the default salestax rate (5%). The proceduret axed Uses
the global value of *r at e* unlessit has been shadowed by alocal binding of *r at e*, such as that
made by wi t h-r at e. This approach is more convenient than having to pass tax rates as explicit
parameters throughout alarge program. For example, consider the expression E¢ax:

(+ (taxed 200)
(+ (wvith-rate 0.075 (lanbda () (taxed 1000)))
(taxed 400)))

This expression evaluates to 210 + 1075 + 420 = 1705.
a. What isthe value of E¢ax in astatically-scoped version of Scheme? Explain.

b.. H&R Block Structure asks you to port their code to alexically-scoped imperative call-by-value
Scheme. Show how to definewi t h-r at e in lexically-scoped Scheme so that it has the same
behavior asthe abovewi t h-r at e in adynamically scoped mini-Scheme. Hint: use side effects.
Also, compare with Problem 10.

Problem 12: Variables and Scoping
Consider the following expression in statically-scoped HOIL (the Higher-Order Imperative Language):

(bi ndpar ((a 20)

(z (cell a)))
(bind ((inc! (abs (x)

(seq (:=

(bindrec ((s (prepend
(t (map inc! s

(+ (head t) (head (tail t))))))

Part a. Thefreevariablesin the above expression are:
= Theoccurrenceof a in(cell a)
= Theoccurrenceof b in(prepend b t)

Part b.
= All occurrences of z within(abs (x) .. should point to the z declared in the bi ndpar .
= Thex in(+ (» z) x) should pointtothex declaredin (abs (x) ..
= Thetsin(prepend b t), (head t),and (tail t) shouldpointtothet declaredinthebi ndrec.
= Thes in(map inc! s) should point tothes declared inthebi ndr ec.
= Theinc! in(map inc! s) should point tothei nc! declared in thebi nd.

Part c. Suppose that the above expression is evaluated in an environment in which
1. map isthe usual higher-order mapping function.
2. dl other free variables areinitially bound to the number 1.

Give the value of the above expression under each of the following parameter passing
mechanisms. If the expression loops, raises an error, or is otherwise undefined, say so.

call-by-value: The expression givesan error because (prepend b t) requiresthe value
of t before it has been defined.

call-by-name: With this strategy, (head t) is(head (map inc! s),whichis
(head (map inc! (prepend 1 t)).Evauatingthisincrementsthecell z from 1to 2 and
returns 2. Next,

(head (tail t))

Isequivalentto (head (tail (map inc! s)))

isequivalent to (head (tail (map inc! (prepend 1 t))

isequivalentto (head (tail (map inc! (prepend 1 (map inc! s)))
isequivalentto (head (tail (map inc! (prepend 1 (map inc! (prepend 1 t))))
isequivalent to (head (map inc! (map inc! (prepend 1 t))))

isequivalentto (i nc! (inc! 1))

which evaluatesto 4, since the cell z aready contains 2.

So(+ (head t) (head (tail t))) evauatesto2+4=6.

call-by-need: With this strategy, s denotesthelazy list (1 2 3 .) andt denotesthelazy
list(2 3 4 .), so(+ (head t) (head (tail t))) evaluatestob.

Problem 13: The Aggregate Data Style of Programming

(define even-pct
(lanmbda ()
(letrec ((loop (lanbda (n evens total)
(if (<no0
(/ evens total)
(l oop (read-int)
(if (even? n) (+ evens 1) evens)

(+ total 1))))))
(loop (read-int) 0 0))))

Part a. Hereisaversion of even- pct written in the signal processing style (also known asthe
aggregate data paradigm, also known as recursionless programming).

(define (even-pct)
(let ((ints (generate (read-int)

(lambda (ignore) (read-int))
(lanmbda (int) (<int 0)))))

(/ (foldr + O (map (lanmbda (x) 1)
(filter even? ints)))

(foldr + 0 (map (lanbda (x) 1)

ints)))))

Notethat (fol dr + 0 (map (lambda (x) 1) Ist) computesthelengthof I st.

Part b. Briefly describe two advantages of writing even- pct inthe signal processing style vs.
the origina style.

1. We can build the program out of mix-and-match parts that are useful for many other
programs.

2. Theresulting program is easier to reason about because it doesn’t contain any loops.

Part c. Briefly describe two disadvantages of writing even- pct inthe signal processing style vs.
the original style.

1. The signal processing style version of even- pct takes more time than the monolithic loop
to unwind all the abstractions involved. (However, there exist some compilation techniques for
reducing this overhead.)

2. At least in a call-by-value language, the signal processing style program takes more space
than the monolithic loop because it builds up intermediate lists that hold al the numbers typed
in by the user. The monolithic loop is an iteration that requires only constant space.

3. When the definitions of gener at e, map, filter, and f ol dr areincluded, the modular definition

of even- pct ismuch longer than the monoalithic version. However, this doesn’t take into account
that the size definitions of the higher-order list operations can be amortized over all their uses.

Part d. Proponents of lazy functional programming languages claim that lazy evaluationis
essential for programming in the signal processing style. Briefly explain their claim.

Lazy evaluation addresses the space drawback sketched in Part c. Lazy evaluation makesit
possible to compute and communicate aggregate structures one element at atime on an as-
needed basis. This makes it possible to glue together programs requiring aggregate structures
that cannot fit in memory (including infinite ones!). Lazy evaluation also makes it possible to
decompose loops into separate processes that perform the loop body and test for the

termination condition.
9

PROBLEM 14 : Lazy Data

Part a. There are many ways to define the stream of al orduples. Here we describe three ways.
All three use the following auxiliary function for making duples:

(define duple (lambda (fst snd) (list fst snd)))

There are many ways to define the stream of all orduples. Here we describe three ways. All three
use the following auxiliary function for making duples:

(define next-orduple
(1 ambda (dup)
(let ((newfst (+ (first dup) 1))
(newsnd (- (second dup) 1)))
(if (> newfst newsnd)
(duple O (+ newfst newsnd 1))
(dupl e newfst newsnd)))))

Using next - or dupl e,al | - or dupl es can be created by using gener at e- st r eamor map- st r eamn

7, Version 1
(define all-orduples
(generat e-stream
(duple 0 0)
next - or dupl e
(lambda (dup) #f) ; this streamis infinite!

))

; Version 2
(define all-orduples
(cons-stream (duple 0 0)
(map-stream next-orduple all-orduples)))

An alternative strategy is to have an auxiliary function orduples-summing-to that returns a stream
of al orduples summing to a particular integer:

(define ordupl es-summi ng-to
(lanmbda (n)
(letrec ((local (lanmbda (i)
(if (i (- ni))
t he- enpt y- st ream
(cons-stream (duple i (- ni))
(local (+1i 1)))))))
(local 0))))

Thenal | - or dupl es can be defined by mapping or dupl es- sunmi ng-t o over thenat s, and
appending the resulting streams:

(define nats
(cons-stream O (map-stream (lanmbda (x) (+ x 1)) nats)))

Version 3
(define all-orduples
(append- map- st r eam or dupl es- sumi ng-to nats))

Theappend- map- st r eamfunction isimplemented using the following three auxiliary functions.
The stream-appending function append- st r eans- del ayed assumes that its second argument isa
promise, so any caller must ensure that thisis the case (usualy viaan explicit del ay). For

10

example, append- st r eam of - st r eans calls append-streams-delayed with an explicitly delayed
second argument to avoid an infinite regress.

(defi ne append- nap-stream

(lambda (f str)
(append- stream of - streans
(map-streamf str))))

(defi ne append-stream of -streans
(lanmbda (str)
(if (streamnull? str)
t he- enpt y- st ream
(append- streans- del ayed
(head str)
(del ay (append-streamof-streans (tail str)))))))

(define append-streans-del ayed
(lambda (strl del ayed-str?2)
(if (streamnull? strl)
(force del ayed-str2)
(cons-stream (head strl)
(append- streans-del ayed (tail strl)
del ayed-str2)))))

Part b. Below isadéefinition of pyt hagor eans that works as follows: first, it removes all
orduples whose first component is 0, since amust be > 0 in the Pythagorean triple (a b c) ; next
it maps over all remaining duples (a b) afunction that createsthetriple (a b (sqrt (+
(square a) (square b))));findly, it keepsall such triples whose third component is an
integer.

(define triple (lanbda (fst snd thd) (list fst snd thd)))
(define square (lanbda (x) (* x x)))

(define pythagoreans
(filter-stream (I anbda (dup)

(integer? (third dup)))
(map-stream (| anbda (dup)

(triple (first dup)

(second dup)

(sqrt (+ (square (first dup))
(square (second dup))))))
(filter-stream (I anbda (dup)
(> (first dup) 0))
all-orduples))))

For example, hereisalist of thefirst 10 Pythagorean triples:

(prefix 10 pythagoreans)
;Value: ((3 45) (6 8 10) (5 12 13) (9 12 15) (8 15 17) (12 16 20)
; (7 24 25) (10 24 26) (15 20 25) (20 21 29))

Part c. Thedefinition of al | - or dupl es from Part awill not work if lists are used in place of
streams because al-orduplesis an infinite sequence and it isimpossible to create alist with an
infinite number of elements. However, it is possible to create a stream with a (conceptually) infinite
number of elements, because the elements are calculated on an as-needed basis.

11

Problem 15: Church Pairs

(program (n)
(bindpar ((cons (abs (a b) (abs (f) (f a b)))
(car (abs (p) (p (abs (xy) x))))
_ (cdr (abs (p) (p (abs (xy) y)))))
(bindpar ((p (cons (> n 0) n))
. (g (cons (* n 2) (* nn))))
(if (car p)
(car q)
(+ (cdr p) (cdr @))))))

Part a. Use the substitution model to provethat (car (cons 3 4)) yields 3 for the above
definitions of cons and car .

(car (cons 3 4))

= ((abs (p) (p (abs (x y) x))) ((abs (a b) (abs (f) (f a b)) 3 4))
= ((abs (p) (p (abs (x y) x))) (abs (f) (f 3 4)))

= ((abs (f) (f 3 4)) (abs (x y) x))

= ((abs (x y) x) 3 4))

= 3

Part b. Use the environment model to provethat (car (cons 3 4)) yields 3 for the above
definitions of cons and car .

Part c. Would the above definitions work in adynamically scoped version of HOFL? Explain.

No, they would not. They require that the abstraction (abs (f) (f a b) somehow
“remember” the values of thefree variablesa and b -- that is, the values with which (abs (a
b) (abs (f) (f a b)) wascaled. Two forms of such memory for static scoping are
illustrated in Part aand Part b above. But in dynamic scoping, the abstraction (abs (f) (f a
b) has no memory and will find the values of a and b whereever itiscalled.

12

Part d. Trandate the above HOFL program into the explicitly-typed HOFLEPT language. Y ou
will need to make each of cons, car, and cdr polymorphic. The type of cons should be:

(forall (c d)
(-> (c d)
(forall (e)
(-> ((->(c d) e)) e))))

A HOFLEPT version of the program appears below. Type annotations have been highlighted in
boldface. Although bi ndpar does not allow types for the definitions, we have included such types
as comments. To distinguish type variables from expression variables, we use capital |etters for
type variables and lowercase |etters for expression variables.

(program (n)
(bindpar ((cons ; (forall (C D)
;. (-> (C D)
(forall (E)
; (-> ((->(C D E)) E))))
(pabs (C D)

(abs ((a C) (b D))
(pabs (E)
(abs ((f (-> (C D) E)))
(f ab))))))
(car ; (forall (C D)
; (-> ((forall (E)
(-> ((-> (C D E)) B)))
; Q)
(pabs (C D)
(abs ((p (forall (E) (-> ((-> (C D) E)) E))))
((papp p C) (abs ((x C) (y D)) x)))))
(cdr ; (forall (C D)
: (-> ((forall (E)
(-> ((->(
; D))
(pabs (C D)
(abs ((p (forall (E) (-> ((-> (C D) E)) E))))
((papp p D) (abs ((x C) (y D)) ¥)))))

(bindpar ((p ((papp cons bool int) (> n 0) n))
(q ((papp cons int int) (* n2) (* nn)))
(if ((papp car bool int) p)
((papp car int int) q)
(+ ((papp cdr bool int) p)

((papp cdr int int) q))))))

CD) E)) B)))

13

Part e. In Scheme, cons, car, and cdr are not only used to define general pairs, but can also be
used to define lists. Isthe same true in (untyped) HOFL? How about in explicitly typed
HOFLEPT?

In untyped HOFL, cons/car/cdr can aso be used to define lists. The unit value #u (or some
other arbitrary value) can be used to represent the empty list, and alist node can be represented
asapair resulting from calling cons.

The sameisnot truein HOFLEPT. In HOFLEPT it necessary to encodethetype(Iistof T)
for any element type T. If we had apai r of typeand anei t her of type, we could define
(listof T) as:

(listof T) = (eitherof unit (pairof T (listof T)))

The type of consisthe pairof type. But we don’'t have an eitherof type. More importantly,
listof is defined recursively, and we don’t have away in HOFLEPT of defining arecursive

type.

Part f. In HOIL, the imperative version of HOFL, the above definitions can be extended to
support Scheme's pair mutation operatorsset - car! and set - cdr ! . Show how this can be done
by filling out the the expressions <fi 11_i> below.

(bi ndpar
((cons (abs (a b)
(bindpar ((a-cell (cell a))
(b-cell (cell b)))
(abs (f) (f (~ a-cell)
(™ b-cell)
(abs (v) (:
(abs (v) (:
))))))

(car (abs (p) (p (abs (x y sx sy) x))))

(cdr (abs (p) (p (abs (x y sx sy) y))))

(set-car! (abs (p v) (p (abs (x y sx sy) (sx Vv)))))

(set-cdr! (abs (p v) (p (abs (x y sx sy) (sy v)))))

)

expression using the above definitions)

14

