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Wellesley College   ◊   CS251 Programming Languages    ◊   Spring, 2000

FINAL EXAM REVIEW PROBLEM SOLUTIONS

This document contains solutions to the problems on the final exam review problems posted earlier
except for Problem 1, Problem 3, and Problem 15b.
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Problem 2: Explicit Typing

The explicitly typed versions of the given programs are shown below. The type annotations are
highlighted in boldface.

 (program (n)
  (bindrec ((even? (-> (int) bool)

           (abs ((n int))
             (if (= n 0)
                 #t
                 (odd? (- n 1)))))
         (odd? (-> (int) bool)
           (abs ((n int))
             (if (= n 0)
                 #f
                 (even? (- n 1))))))

    (prepend (even? 5)
      (prepend (odd? 5)
        (empty bool)))))

(program (hi)
  (bindrec
    ((map (forall (a b)
            (-> ((-> (a) b) (listof a))
                (listof b)))
      (pabs (a b)
        (abs ((f (-> (a) b)) (lst (listof a)))
          (if (empty? lst)
              (empty b)
              (prepend (f (head lst))
                       ((papp map a b) f (tail lst)))))))
     (from-to (-> (int) (listof int))
      (abs ((lo int))
        (if (> lo hi)
            (empty int)
            (prepend lo (from-to (+ lo 1))))))
     )
    (bind test-list (from-to 1)
      (prepend ((papp map int (listof int))
                (abs ((n int)) (prepend n (empty int)))
                ((papp map int int)
                 (abs ((x int)) (* x x))
                 test-list))
        (prepend ((papp map bool (listof int))
                  (abs ((b bool))
                    (if b
                        (prepend 1 (empty int))
                        (prepend 0 (empty int))))
                  ((papp map int bool)
                   (abs ((y int)) (= (mod y 2) 0))
                   test-list))
          (prepend ((papp map int (listof int))
                    (abs ((z int))
                      (prepend z
                        (prepend (* 2 z)
                          (empty int))))
                    test-list)
                   (empty (listof (listof int)))))))))
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Problem 4: Non-local Exits

(define (fringe tree)
  (label return
    (letrec ((helper (lambda (tr address)
                       (if (leaf? tr)
                           (if (number? tr)

                                  (jump return (cons tr address))
                               (list tr))
                           (append (helper (left tr)
                                           (postpend address ‘left))
                                   (helper (right tr)
                                           (postpend address ‘right)))))))

      (helper tree ‘())))

Part  a.

Expression Value
(fringe (node (node ‘a ‘b) (node ‘c ‘d))) (a b c d)
(fringe (node (node ‘a 2) (node ‘c ‘d))) (2 left right)
(fringe (node (node ‘a ‘b) (node 3 ‘d))) (3 right left)
(fringe (node (node ‘a 2) (node 3 ‘d))) (2 left right)

Part  b.  When given a tree whose leaves are non-numbers, fringe returns a list of the leaves of
the tree in left-to-right order.  When given a tree containing one or more numbers, fringe returns
an answer of the form (n . address) , where n is the leftmost number in the tree, and address
is the address of that number. Here, an address is expressed as a sequence of the symbols left
and right specifying the “directions” to the number from the root of the tree.

Part  c.  It is possible to implement fringe without  label and jump, but not as elegantly as with
them. Without non-local exits, it would be necessary to treat differently the two different kinds of
return values: the list of leaves returned in the regular case and the list of elements returned in the
exceptional case. The code to handle these cases differently would make the definition of fringe
harder to read and modify.

Problem 5: Parameter  Passing

Consider the following expression:

(let ((n 0))
    (let ((add-twice (lambda (x)
                       (begin (set! x (* 2 x))
                              (set! n (+ n x))
                              n))))
      (let ((test (lambda (z)
                    (+ (* 100 (add-twice n))
                       (+ (* 10 z) z)))))
        (test (add-twice 1)))))

For each of the following parameter-pasing mechanisms, indicate the value of the above expression
in a version of lexically-scoped Scheme using that parameter-passing mechanism:

Parameter-Passing Mechanism Value of sample expression
Call-by-value 622

Call-by-reference 822
Call-by-name 24
Call-by-need 22
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Problem 6: Parameter Passing

Consider the following expression:

(let ((a 1))
  (let ((inc (lambda (x)
               (begin (set! a (+ a x))
                      a)))
        (f (lambda (y z)
             (begin
               (set! y (+ y 3))
               (+ a (* z z))))))
    (f a (inc 1))))

For each of the following parameter-pasing mechanisms, indicate the value of the above expression
in a version of Scheme using that parameter-passing mechanism:

Parameter-Passing Mechanism Value of sample expression
Call-by-value 6

Call-by-reference 9
Call-by-name 7
Call-by-need 5

Problem 7: Desugaring

Part a. For each of the following parameter passing mechanisms in an imperative version of
statically-scoped Scheme, explain your answer to the following question:

Are (or1 E1 E2) and (or2 E1 E2) interchangeable for all expressions E1 and E2?

• call-by-value: No. Supppose E1  evaluates to true and E2  has a side effect (e.g.,
increments a global variable). Then (or1 E1 E2) will perform E2’s side effect,
but (or2 E1 E2) will not.

• call-by-name:  Yes. E1  and E2  perform any side effects the same number of times and
in the same order in both  (or1 E1 E2) and (or2 E1 E2).

• call-by-need: Yes. E1  and E2  perform any side effects the same number of times and in
the same order in both  (or1 E1 E2) and (or2 E1 E2).

Part b. Without the assumption that I is fresh, name capture could occur.  As a concrete example,
consider the following expression:

 (let ((x true)) (or2 false x))

If I is fresh (say x1), then this is equivalent to:

(let ((x true))
  (let ((x1 false))
    (if x1 x1 x))

But if I is not fresh (say x), then the above would evaluate to false rather than true, because the
reference to the outer x would be captured by the declaration of the inner x.

Part c. When a construct is defined in terms of desugaring, it is not necessary to extend the
definitions of any functions that manipulate the abstract syntax trees of the language: e.g., free-
variables, evaluation, substitution, type-checking, etc. In contrast, when a new construct is added
as a new kind of AST node, any function manipulating the ASTs of the language must be
modified.
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Problem 8: Block Structure

The FOBS function declaration index-of-bs can be translated into the following two FOFL
declarations:

(fun index-of-no-bs (elt lst)
  (index-loop 1 lst elt))

(fun index-loop (i L elt)
  (if (null? L)
   -1
   (if (eqv? elt (car L))
       i
       (index-loop (+ i 1) (cdr L) elt))))

The FOBS function declaration cartesian-product-bs can be translated into the following three
FOFL declarations:

(fun cartesian-product-no-bs (lst1 lst2)
  (prod lst1 lst2))

(fun prod (lst1 lst2)
  (if (null? lst1)
   '()
    (let ((elt (car lst1)))
      (append (map-duple lst2 elt)
              (prod (cdr lst1) lst2)))))

(fun map-duple (L elt)
  (if (null? L)
   '()
    (cons (list elt (car L))
          (map-duple (cdr L) elt))))

Problem 9: Static vs. Dynamic Scope

Part a.  

Scoping Mechanism Value of (sum (raise 2) 1 3)

Lexical 12 + 22 + 32 = 14

Dynamic 11 + 22 + 33 = 32

Part b. Yes, a language can be lexically scoped without being block-structured. Block structure
says that function declarations can be nested.  Lexical scoping says that the meaning of free
variables within functions is determined by lexical contours. Lexical scoping still has meaning even
when function declarations are flat (i..e, only at top-level). In this case, the body of a function can
still have free variables that reference global variables.  For such functions, lexical and dynamic
scoping could give different answers.  Examples of lexically-scoped languages without block
structure include C, Java, and the toy language FOFL.
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Problem 10: Scoping

Part a. Determine the values of the following two expressions that use fluid-bind:

Expression Value
(let ((a 1))
  (let ((f (lambda (x) (+ x a))))
    (+ (fluid-bind a 20
         (f 300))

    (f 4000))))

4321

(let ((a 1))
  (+ (fluid-bind a 20
       (begin
         (set! a (+ a 300))
         a))
     a))

321

Part b

(fluid-bind I Edef Ebody)

  => (let ((old I)
           (body-thunk (lambda () Ebody)))
       (begin
         (set! I Edef)
         (let ((result (body-thunk)))
           (set! I old)
           result)))

The purpose of body-thunk is to capture Ebody at a point where no names have been introduced
yet. In particular, if (body-thunk) were replaced by Ebody, then Ebody could accidentally
capture the name old.

Part c Unlike a lexical let, fluid-bind requires some cleanup operations (restoring the old
value of the variable) before it can return the value of the body expression. So the call to (print-
nums n) in the body of print-nums is not tail-recursive because there is still work remaining to be
done.  The amount of pending work increases with n until memory is exhausted.

Part d  A non-local jump out of a dynamic let will automatically restore the dynamic environment
in effect at the target of the jump. However,  a non-local jump out of fluid-bind will have the
effect of not restoring the fluid-bound variable. As a concrete example, suppose that pen-color
is a variable containing the default pen color (say it’s yellow)  and we execute:

(fluid-bind pen-color red (abort ‘done))

Then pen-color will be left in the red state because the code to restore it to yellow was bypassed
by the abort. With a dynamic let, however, the abort would force the system back to the default
dynamic environment, in which pen-color would be yellow
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PROBLEM 11: Scoping

H&R Block Structure, a tax software vendor, has developed a program for computing the cost of
taxable items in a dynamically scoped imperative call-by-value version of Scheme. Their program
includes the following top-level definitions:

(define *rate* 0.05)

(define taxed
  (lambda (amount)
    (* amount (+ 1 *rate*))))

(define with-rate
  (lambda (rate thunk)
    (let ((*rate* rate))
      (thunk))))

The global variable *rate* represents the default sales tax rate (5%). The procedure taxed uses
the global value of *rate* unless it has been shadowed by a local binding of *rate*, such as that
made by with-rate. This approach is more convenient than having to pass tax rates as explicit
parameters throughout a large program. For example, consider the expression Etax:

(+ (taxed 200)
   (+ (with-rate 0.075 (lambda () (taxed 1000)))
      (taxed 400)))

This expression evaluates to 210 + 1075 + 420 = 1705.

a.  What is the value of Etax in a statically-scoped version of Scheme? Explain.

b. .  H&R Block Structure asks you to port their code to a lexically-scoped imperative call-by-value
Scheme. Show how to define with-rate in lexically-scoped Scheme so that it has the same
behavior as the above with-rate in a dynamically scoped mini-Scheme. Hint: use side effects.
Also, compare with Problem 10.
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Problem 12: Variables and Scoping

Consider the following expression in statically-scoped HOIL (the Higher-Order Imperative Language):

(bindpar ((a 20)
          (z (cell a)))
  (bind ((inc! (abs (x)
                 (seq (:= z (+ (^ z) x))
                      (^ z)))))
    (bindrec ((s (prepend b t))
              (t (map inc! s)))
      (+ (head t) (head (tail t))))))

Part a. The free variables in the above expression are:
ð The occurrence of a in (cell a)
ð The occurrence of b in (prepend b t)

Part b.
ð All occurrences of z within (abs (x) …) should point to the z declared in the bindpar.
ð The x in (+ (^ z) x) should point to the x declared in (abs (x) …)
ð The ts in (prepend b t), (head t), and (tail t) should point to the t declared in the bindrec.
ð The s in (map inc! s) should point to the s declared in the bindrec.
ð The inc! in (map inc! s) should point to the inc! declared in the bind.

Part c. Suppose that the above expression is evaluated in an environment in which
1. map is the usual higher-order mapping function.
2. all other free variables are initially bound to the number 1.

Give the value of the above expression under each of the following parameter passing
mechanisms. If the expression loops, raises an error, or is otherwise undefined, say so.

• call-by-value:  The expression gives an error because (prepend b t) requires the value
of t before it has been defined.

• call-by-name: With this strategy, (head t) is (head (map inc! s), which is
(head (map inc! (prepend 1 t)). Evaluating this increments the cell z from 1 to 2 and
returns 2.  Next,

(head (tail t))
is equivalent to (head (tail (map inc! s)))
is equivalent to (head (tail (map inc! (prepend 1 t))
is equivalent to (head (tail (map inc! (prepend 1 (map inc! s)))
is equivalent to (head (tail (map inc! (prepend 1 (map inc! (prepend 1 t))))
is equivalent to (head (map inc! (map inc! (prepend 1 t))))
is equivalent to (inc! (inc! 1))
which evaluates to 4, since the cell z already contains 2.

So (+ (head t) (head (tail t))) evaluates to 2 + 4 = 6.
• call-by-need: With this strategy, s denotes the lazy list (1 2 3 …) and t denotes the lazy

list (2 3 4 …),  so (+ (head t) (head (tail t))) evaluates to 5.
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Problem 13: The Aggregate Data Style of Programming

(define even-pct
  (lambda ()
   (letrec ((loop (lambda (n evens total)
                    (if (< n 0)
                        (/ evens total)
                        (loop (read-int)
                              (if (even? n) (+ evens 1) evens)
                              (+ total 1))))))
     (loop (read-int) 0 0))))

Part a. Here is a version of even-pct written in the signal processing style (also known as the
aggregate data paradigm, also known as recursionless programming).

(define (even-pct)
  (let ((ints (generate (read-int)
                        (lambda (ignore) (read-int))
                        (lambda (int) (< int 0)))))
    (/ (foldr + 0 (map (lambda (x) 1)
                       (filter even? ints)))
       (foldr + 0 (map (lambda (x) 1)

                    ints)))))

Note that (foldr + 0 (map (lambda (x) 1) lst) computes the length of lst.

Part b.  Briefly describe two advantages of writing even-pct in the signal processing style vs.
the  original style.

1. We can build the program out of mix-and-match parts that are useful for many other
programs.

2. The resulting program is easier to reason about because it doesn’t contain any loops.

Part c. Briefly describe two disadvantages of writing even-pct in the signal processing style vs.
the original style.

1. The signal processing style version of even-pct takes more time than the monolithic loop
to unwind all the abstractions involved. (However, there exist some compilation techniques for
reducing this overhead.)

2. At least in a call-by-value language, the signal processing style program takes more space
than the monolithic loop because it builds up intermediate lists that hold all the numbers typed
in by the user. The monolithic loop is an iteration that requires only constant space.

3. When the definitions of generate, map, filter, and foldr are included, the modular definition
of even-pct is much longer than the monolithic version. However, this doesn’t take into account
that the size definitions of the higher-order list operations can be amortized over all their uses.

Part d. Proponents of lazy functional programming languages claim that lazy evaluation is
essential for programming in the signal processing style.  Briefly explain their claim.

Lazy evaluation addresses the space drawback sketched in Part c. Lazy evaluation makes it
possible to compute and communicate aggregate structures one element at a time on an as-
needed basis.  This makes it possible to glue together programs requiring aggregate structures
that cannot fit in memory (including infinite ones!). Lazy evaluation also makes it possible to
decompose loops into separate processes that perform the loop body and test for the
termination condition.
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PROBLEM 14 : Lazy Data

Part a. There are many ways to define the stream of all orduples. Here we describe three ways.
All three use the following auxiliary function for making duples:

(define duple (lambda (fst snd) (list fst snd)))

There are many ways to define the stream of all orduples. Here we describe three ways. All three
use the following auxiliary function for making duples:

   (define next-orduple
  (lambda (dup)
    (let ((newfst (+ (first dup) 1))
          (newsnd (- (second dup) 1)))
      (if (> newfst newsnd)
          (duple 0 (+ newfst newsnd 1))
          (duple newfst newsnd)))))

Using next-orduple,all-orduples can be created by using generate-stream or map-stream:

;; Version 1
(define all-orduples
  (generate-stream
    (duple 0 0)
    next-orduple
    (lambda (dup) #f) ; this stream is infinite!
    ))

;; Version 2
(define all-orduples
  (cons-stream (duple 0 0)
    (map-stream next-orduple all-orduples)))

An alternative strategy is to have an auxiliary function orduples-summing-to that returns a stream
of all orduples summing to a particular integer:

 (define orduples-summing-to
  (lambda (n)
    (letrec ((local (lambda (i)
                      (if (> i (- n i))
                          the-empty-stream
                          (cons-stream (duple i (- n i))
                                       (local (+ i 1)))))))
      (local 0))))

Then all-orduples can be defined by mapping orduples-summing-to over the nats, and
appending the resulting streams:

(define nats
  (cons-stream 0 (map-stream (lambda (x) (+ x 1)) nats)))

   ;; Version 3
   (define all-orduples

  (append-map-stream orduples-summing-to nats))

The append-map-stream function is implemented using the following three auxiliary functions.
The  stream-appending function append-streams-delayed assumes that its second argument is a
promise, so any caller must ensure that this is the case (usually via an explicit delay). For
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example, append-stream-of-streams calls append-streams-delayed with an explicitly delayed
second argument to avoid an infinite regress.

 (define append-map-stream
  (lambda (f str)
    (append-stream-of-streams
     (map-stream f str))))

(define append-stream-of-streams
  (lambda (str)
    (if (stream-null? str)
        the-empty-stream
        (append-streams-delayed
          (head str)
          (delay (append-stream-of-streams (tail str)))))))

(define append-streams-delayed
  (lambda (str1 delayed-str2)
    (if (stream-null? str1)
        (force delayed-str2)
        (cons-stream (head str1)
                     (append-streams-delayed (tail str1)
                                             delayed-str2)))))

Part b. Below is a definition of pythagoreans that works as follows: first, it removes all
orduples whose first component is 0, since a must be > 0 in the Pythagorean triple (a b c) ; next
it maps over all remaining duples (a b) a function that creates the triple (a b (sqrt (+
(square a) (square b)))); finally, it keeps all such triples whose third component is an
integer.

(define triple (lambda (fst snd thd) (list fst snd thd)))

(define square (lambda (x) (* x x)))

(define pythagoreans
  (filter-stream (lambda (dup)
                   (integer? (third dup)))
                 (map-stream (lambda (dup)
                               (triple (first dup)
                                       (second dup)
                                       (sqrt (+ (square (first dup))
                                                (square (second dup))))))
                             (filter-stream (lambda (dup)
                                              (> (first dup) 0))
                                            all-orduples))))

For example, here is a list of the first 10 Pythagorean triples:

(prefix 10 pythagoreans)
;Value: ((3 4 5) (6 8 10) (5 12 13) (9 12 15) (8 15 17) (12 16 20)
;        (7 24 25) (10 24 26) (15 20 25) (20 21 29))

Part c. The definition of all-orduples from Part a will not work if lists are used in place of
streams because all-orduples is an infinite sequence and it is impossible to create a list with an
infinite number of elements. However, it is possible to create a stream with a (conceptually) infinite
number of elements, because the elements are calculated on an as-needed basis.
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Problem 15: Church Pairs

(program (n)
  (bindpar ((cons (abs (a b) (abs (f) (f a b)))
            (car (abs (p) (p (abs (x y) x))))
            (cdr (abs (p) (p (abs (x y) y)))))
    (bindpar ((p (cons (> n 0) n))
              (q (cons (* n 2) (* n n))))
      (if (car p)
          (car q)
          (+ (cdr p) (cdr q))))))

Part a. Use the substitution model to prove that (car (cons 3 4)) yields 3 for the above
definitions of cons and car.

(car (cons 3 4))
ð ((abs (p) (p (abs (x y) x))) ((abs (a b) (abs (f) (f a b)) 3 4))
ð ((abs (p) (p (abs (x y) x))) (abs (f) (f 3 4)))
ð ((abs (f) (f 3 4)) (abs (x y) x))
ð ((abs (x y) x) 3 4))
ð 3

Part b. Use the environment model to prove that (car (cons 3 4)) yields 3 for the above
definitions of cons and car.

Part c. Would the above definitions work in a dynamically scoped version of HOFL? Explain.

No, they would not. They require that the abstraction (abs (f) (f a b) somehow
“remember” the values of the free variables a and b -- that is, the values with which (abs (a
b) (abs (f) (f a b)) was called. Two forms of such memory for static scoping are
illustrated in Part a and Part b above. But in dynamic scoping, the abstraction (abs (f) (f a
b) has no memory and will find the values of a and b whereever it is called.
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Part d. Translate the above HOFL program into the explicitly-typed HOFLEPT language. You
will need to make each of cons, car, and cdr polymorphic. The type of cons should be:

(forall (c d)
  (-> (c d)
      (forall (e)
        (-> ((-> (c d) e)) e))))

A HOFLEPT version of the program appears below. Type annotations have been highlighted in
boldface. Although bindpar does not allow types for the definitions, we have included such types
as comments. To distinguish type variables from expression variables, we use capital letters for
type variables and lowercase letters for expression variables.

 (program (n)
  (bindpar ((cons ; (forall (C D)
                  ;   (-> (C D)
                  ;       (forall (E)
                  ;         (-> ((-> (C D) E)) E))))
              (pabs (C D)
                (abs ((a C) (b D))
                  (pabs (E)
                    (abs ((f (-> (C D) E)))
                      (f a b))))))
            (car ; (forall (C D)
                 ;   (-> ((forall (E)
                 ;          (-> ((-> (C D) E)) E)))
                 ;       C))
              (pabs (C D)
                (abs ((p (forall (E) (-> ((-> (C D) E)) E))))
                  ((papp p C) (abs ((x C) (y D)) x)))))
            (cdr ; (forall (C D)
                 ;   (-> ((forall (E)
                 ;          (-> ((-> (C D) E)) E)))
                 ;       D))
              (pabs (C D)
                (abs ((p (forall (E) (-> ((-> (C D) E)) E))) )
                  ((papp p D) (abs ((x C) (y D)) y)))))
            )
      (bindpar ((p ((papp cons bool int) (> n 0) n))
              (q ((papp cons int int) (* n 2) (* n n))))
      (if ((papp car bool int) p)
          ((papp car int int) q)
          (+ ((papp cdr bool int) p)
             ((papp cdr int int) q))))))
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Part e. In Scheme, cons, car, and cdr are not only used to define general pairs, but can also be
used to define lists. Is the same true in (untyped) HOFL?  How about in explicitly typed
HOFLEPT?

In untyped HOFL, cons/car/cdr can also be used to define lists. The unit value #u (or some
other arbitrary value) can be used to represent the empty list, and a list node can be represented
as a pair resulting from calling cons.

The same is not true in HOFLEPT. In HOFLEPT it necessary to encode the type (listof T)
for any element type T.  If we had a pairof type and an eitherof type, we could define
(listof T) as:

(listof T) = (eitherof unit (pairof T (listof T)))

The type of cons is the pairof type. But we don’t have an eitherof type. More importantly,
listof is defined recursively, and we don’t have a way in HOFLEPT of defining a recursive
type.

Part f. In HOIL, the imperative version of HOFL, the above definitions can be extended to
support Scheme’s pair mutation operators set-car! and set-cdr!. Show how this can be done
by filling out the the expressions <fill_i> below.

(bindpar
  ((cons (abs (a b)
           (bindpar ((a-cell (cell a))
                     (b-cell (cell b)))
            (abs (f) (f (^ a-cell)
                        (^ b-cell)
                        (abs (v) (:= a-cell v))
                        (abs (v) (:= b-cell v))
                        ))))))
   (car (abs (p) (p (abs (x y sx sy) x))))
   (cdr (abs (p) (p (abs (x y sx sy) y))))
   (set-car! (abs (p v) (p (abs (x y sx sy) (sx v)))))

      (set-cdr! (abs (p v) (p (abs (x y sx sy) (sy v)))))
      )
    expression using the above definitions)


