Wellesley College a CS251 Programming Languages a April 4, 2000
NAMING ISSUES

Thisis a second draft of this document. Although not complete, only some minor sections are
missing.

This handout summarizing naming issues (e.g., namespaces, scoping, block structure,
environments, and closures) for the real and toy languages that we have studied so far in the
course. It isrequired reading for completing Problem Set 4.

1. Declarations

Every programming language provides constructs that that introduce names for the kinds of
entities that are manipulated by the language. Such constructs are known as declarations or
binding constructs. Below are some of the languages we have studied, along with alist of
(some of) their declaration constructs:

Toy Languages

1. INTEX:
pr ogr ant introduces parameters naming program inputs;

2. BINDEX/IBEX
pr ogr ant introduces parameters naming program inputs;
bi nd: introduces a name for a calculated value;
bi ndpar , bi ndseq: introduce names for calculated values (desugar into bi nd).

3. FOFL
f un: introduces function names and function parameters;
program bind, bindpar, bindseq: asin BINDEX/IBEX

4. FOBS
f unr ec: introduces function names and function parameters,
program bind, bindpar, bindseq, fun: asinFOFL (collections of f un desugar
to funrec).

5. HOFL
abs: introduces function parameters;
bi ndr ec: introduces recursively bound values;
program bind, bindpar, bindseq, fun, funrec: asin FOBS (f unrec
desugars into bi ndr ec and abs).

Real Languages

6. Sch

8. Java

2. Scope

eme:

| anbda: introduces function parameters;

I et : introduces names for calculated values (desugarsinto | anbda);

| et rec: introduces names for recursively defined values;

def i ne: adds a name/value binding to the current environment (sequences of def i nes
desugar into | et r ec).

f n: introduces patterns for function parameters,

val : introduces patterns for calculated values ;

f un: introduces names and function parameter patterns for recursively defined
functions (similar to a combination of val and f n except for recursive scope);
case: introduces patterns for summands of a discriminant;

dat at ype: introduces names of data type constructors,

t ype: introduces names that abbreviate types;

except i on: introduces names for exception constructors,

handl e: introduces patterns for the handled exception.

st ruct ur e: introduces names for structures.

si gnat ur e: instroduces names for signatures.

met hod: introduces names for instance and class methods and their parameters (class
methods are distinguished by the st at i ¢ keyword);

cl ass: introduces names for classes,

instance variable declaration syntax (<type> <name> = <exp>, within aclass
declaration): introduces names for instance variables;

class variable declaration syntax (st ati ¢ <type> <name> = <exp>, within aclass
declaration): introduces names for class variables;

local variable declaration syntax (<type> <name> = <exp>, within amethod body):
introduces names for local variabled

cat ch: introduces a named for the caught exception.

Every declaration construct has a binding occurrence that introduces the declared name, and
reference occurences that refer to declared name. For example, in the Scheme abstraction

(lanmbda (

x) (* x x)),thefirst x isthe binding occurrence, and the second and third xs are

reference occurrences. Typically, the binding occurrence and reference occurrences have the
same syntax; they are distinguished by their positions within the declaration construct. So in
| anbda, for instance, the parenthesized list of names following the | anbda keyword are the
binding occurrences, and the uses of these names in the body are reference occurrences.

Once declared, a name can usually only be used within arestricted part of the program. The

region of a

program in which it is possible to reference a declared name is called the scope of the

declared name. |n statically scoped languages (see Section 6) the scope of declared names can
be shown via nested boxes called lexical contours. For example, the following diagram shows

thelexical contoursfor a sample HOFL program:

iprogram (]
tbindrec {{make-op [{bind n| (- nn 1]
{abs {op)
fabs (x] {ep x n))| 1|)
4
S o
itest [{abs {op n)] {op (mul n) {(add n)]]
5
tadd (make-op fabs (n x] {(+ o x]]1| 1]
LY
imul (make-op [labe (n =] (* n =] 1]
7
)
itest [{abe (n x] (- nn x]]| =]
L
. - Cl
) i

Each contour shows the region of the program in which the names declared by the declaration in
the contour can be used. For instance, the contour labeled C3 shows the region of the program in
which the variable op introduced by (abs (op) ...) canbe used. Thefact that the contour C2
forthe(bind n (- n 1) ...) expressionincludesthe binding occurrence n and the body
expression but not the definition expression (- n 1) indicates that the definition expression of a
bi nd construct is not within the scope of the declared name. In contrast, the diagram indicates
that the body and all definition expressions of abi ndr ec construct are within the scope of the
declared names. This means that any definition expression of abi ndr ec can refer to the names
declared for any of the definition expressions, including itself or later definitions. This makesit
possible for thet est definition to have a so-called forward reference to add and nul .

A name declared in an outer contour may be used within an inner contour unless the inner
contour declares the same name as the outer contour. For example, the name op declared in C3
may be used within C4. However, the program parameter n declared in CO may not be used

within contours C2, C5, C6, C7, or C8, since all of these contours also declare a variable named
n. Theinner declarations of n are said to shadow the outer one, and the contours of the inner
declarations are said to be holes in the scope of the outer declarations.

Lexical contours are especially helpful for reasoning about programs in which the same nameis
introduced by multiple declarations. In the above example, there are 2 logically distinct
variables named op, 4 logically distinct variables named x, and 6 logically distinct variables
named n.

In astatically scoped language, it is always possible to consistently rename binding occurrences
and their corresponding reference occurrences in such away that each binding occurrence has a
unique name. For instance, performing consistent renaming on the sample program above can
yield the following program, in which each potentially ambiguous variable name has been
renamed using the index of its contour in the above diagram:

(program (n0)
(bi ndrec ((make-op (bind n2 (- n0 1)
(abs (op3)
(abs (x4) (op3 x4 n2)))))
(test (abs (op5 n5) (op5 (mul n5) (add n5))))
(add (rmake-op (abs (n6 x6) (+ n6 x6))))
(mul (make-op (abs (n7 x7) (* n7 x7))))

)
(test (abs (n8 x8) (- n8 x8)) nO)

)

Consistent renaming that maintains program meaning is known as a-renaming. Alpha-renaming
refers to any process of consistent renaming, not just renamings that make all binding
occurrences unique. In the programming language literature, it is common to refer to a-
equivalence classes, which are equivalence classes of expressions modulo a-renaming. This
means that expressions that differ only in the naming of their variables are considered equivalent.
For instance, the HOFL abstractions (abs (a) (abs (b) (+ a b))) and(abs (x) (abs (y)
(+ x y))) area-equivalent. Alpha-equivalence capturesthe notion that it is not the choice of
names that matters, but rather the connectivity of reference occurrences and binding occurrences.

Even though names in some sense “do not matter”, one must still pay close attention to particular
name choices when a-renaming a program. For instance, suppose we want to renamethe b in
(abs (a) (abs (b) (+ a b))). We can choose any hame we want as the new name for b
except a. The problem with renaming b to a isthat in the resulting expression, (abs (a) (abs
(a) (+ a a))),thefirstawithin(+ a a) nolonger references the outer declaration of a but
the inner one. We say that this reference occurrence of a has been accidentally captured by the
inner declaration of a. In the presence of such variable capture, the resulting expression is not a-
equivalent totheoriginal.

3. Namespaces

A programming language may have several different categories of names. Each such category is
called anamespace. For example, Java has distinct namespaces for packages, classes, methods,
instance variables, class variables, and method parameters/local variables.

In alanguage with multiple namespaces, the same name can simultaneously be used in different
namespaces without any kind of naming conflict. For example, consider the following Java class
declaration:

public class Circle {

/'l Instance variable of a Crcle object.
public doubl e radius;

/'l Constructor nethod for creating G rcle objects.
public Circle (double r) {
this.radius = r;

}

/'l Instance nethod for scaling Gircles.
public Circle scale (double factor) {
return new Circle(factor * this.radius);

}
}

It turns out that we can rename every one of the names appearing in the above program to
radi us (as shown below) and the class will have the same meaning!

public class radius {

/'l Instance variable of a circle object.
public doubl e radius;

/'l Constructor nethod for creating G rcle objects.
public radius (double radius) {
this.radiu = radius;

}

/'l Instance nethod for scaling Gircles.
public radius radius (double radius) {
return new radius(radius * this.radius);

}
}

Of course, in order to use the renamed class, we would need to change uses of the original class
consistently. For instance, the expression (new Gircl e(10)). scal e(2) . radi us would haveto
be renamed to (new radi us(10)). radi us(2).radi us.

Although using the namer adi us to stand for entitiesin four different namespaces (class,
instance variable, instance variable name, parameter name) would make the program very
difficult for a human program to read, the Java compiler and Java bytecode interpreter treat the
renamed program identically to the original.

Java has an unusually high number of namespaces. But many languages have at least two
namespaces. one for functions, and one for variables. For instance, in this category are C, Pascal,
and Common Lisp, aswell as the toy languages FOFL and FOBS that we have studied. In
contrast, many functional languages, such as Scheme, ML, and Haskell (as well as the toy HOFL
language) have a single namespace for functions and variables. Thisis parsimonious with the
first-classness of functions, which allows functions to be named like any other values.

4. FreeVariables

This section still needs to be written.

5. Block Structure

This section is still under construction. It will involve the following examples:

(define index-of -bs
(lanmbda (elt Ist)
(define index-1oop
(lambda (i L)
(if (null? L)
-1

(if (eqv? elt (car L))
i
(index-loop (+ i 1) (cdr L))))))
(index-loop 1 Ist)))

(define index- of -no-bs
(lambda (elt Ist)
(index-loop 1 Ist elt)))

(define index-1oop
(lambda (i L elt)
(if (null? L)
-1

(if (eqv? elt (car L))
i
(index-loop (+ i 1) (cdr L) elt)))))

(define cartesian-product-bs
(lambda (Istl |st2)
(define prod
(lambda (I st)
(if (null? Ist)
()
(let ((elt (car Ist)))
(define map-dupl e
(lanbda (L)
(if (null? L)
()
(cons (list elt (car L))
(map-duple (cdr L))))))
(append (map-duple |st2)
(prod (cdr Ist)))))))

(prod Istl)))

(define cartesian-product-no-bs
(lambda (Istl |st2)
(prod Istl Ist2)))

(define prod
(lambda (Istl |st2)
(if (null? 1Istl)

()
(let ((elt (car Istl)))
(append (map-duple Ist2 elt)
(prod (cdr Istl) Ist2))))))

(define map-dupl e
(lambda (L elt)
(if (null? L)
()
(cons (list elt (car L))
(map-duple (cdr L) elt)))))

(lambda (L elt)
(if (null? L)

(cons (list elt (car L))
(map-duple (cdr L) elt)))))

6. Scoping M echanisms

In order to understand a program, it is essential to understand the meaning of every name. This
requires being able to reliably answer the following question: given areference occurrence of a

name, which binding occurrence does it refer to?

In many cases, the connection between reference occurrences and binding occurrencesis clear
from the meaning of the binding constructs. For instance, in the HOFL abstraction

(abs (a b) (bind c (+ ab) (divc 2)))

itisclear that thea and b within (+ a b) refer to the parameters of the abstraction and that the ¢
in (div c 2) referstothe variable introduce by the bi nd expression.

However, the situation becomes murkier in the presence of functions whose bodies have free

variables. Consider the following HOFL program:

(program (a)
(bind add-a (abs (x) (+ x a))
(bind a (+ a 10)
(add-a (* 2 a)))))

The add- a function is defined by the abstraction (abs (x) (+ x a)) , which hasafreevariable
a. The question is: which binding occurrence of a in the program does this free variable refer to?
Doesit refer to the program parameter a or the a introduced by the bi nd expression?

A scoping mechanism determines the binding occurrence in a program associated with afree
variable reference within afunction body. In languages with block structure and/or higher-order
functions, it is common to encounter functions with free variables. Understanding the scoping
mechanisms of such languages is a prerequisite to understand the meanings of programs written
in these languages.

We will study two scoping mechanisms in the context of the HOFL language: static scoping and
dynamic scoping. First we introduce some conventions that are used to explain both scoping
mechanisms. Then we explain static and dynamic scoping. We conclude with a discussion of
some other issuesinvolved in scoping.

6.1 Environment Diagrams

Scoping mechanisms can be explained in the context of environment diagrams, which are a
visual notation for the environment model of execution. We will use the following conventions
in drawing environment diagrams.

An environment frame represents an environment extension with bindings between names and
values. Environment frames are depicted as boxes with bindings. For example, hereis aframe
with three bindings:

a » 17
» 4t
> n Hi ! n

An environment is represented as alinked chain of environment frames. For example, the
following diagram shows three environments:

a » 17
ENV1 | b it
cC—+®"H!"

ENV2—p| a TP 5

b +—& 23

ENVS— T o

In achain of frames, each environment frame except the last one pointsto its parent
environment. The bindings in a frame shadow any bindings with the same names in its parent
environment. Here are the results of looking up various names in the above environments:

env- | ookup('a, ENV1) = 17
env- | ookup('b, ENV1) = #t

env-l ookup('c, ENV1) = "H!"
env- | ookup('d, ENV1) = unbound
env-l ookup('a, ENV2) =5
env- | ookup(' b, ENV2) = #t
env-|l ookup('c, ENV2) = "H!"
env- | ookup('d, ENV2) = unbound
env-| ookup('a, ENV3) =5
env- | ookup(' b, ENV3) = 23
env-|l ookup('c, ENV3) = "H "
env- | ookup('d, ENV3) = "Ho!"

In the environment model, every expression is evaluated with respect to an environment. The
environment determines the meaning of the free variables that appear within the expression. In
many cases, the environment used for evaluating an expression is also used to evaluate its
subexpresssions. For instance:

To evaluate the conditional expression (i f E1 E2 E3) inenvironment ENV, we first
evaluated E1 in ENV. If theresult istrue, we return the result of evaluating E2 in ENV; else
we return the result of evaluating E3 in ENV.

To evaluate the primitive application (primop E1 ... En) inenvironment ENV, we must
first evaluate the operan expressions E1 through En in ENV. We then return the result of
applying the primitive operator primop to the resulting operand values.

To evaluate the function application (E0 E1 ... En) inenvironment ENV, we must first
evaluate the expressions E0 through En in ENV. We then return the result of applying the
function value to the operand values. (The details of what it meansto apply afunction is at
the heart of scoping and, as we shall see, differs from mechanism to mechanism.)

The evaluation of some bindings constructs involves eval uating some subexpressionsin an
extension of the given environment. For instance, consider the evaluation of the expression
(bind ¢ (+ a b) (div ¢ 2)) inthefollowing environment ENVO:

a——p 3

ENW
b—— =

The result of this expression is the result of evaluating the body (di v ¢ 2) in an environment
ENV1 that is the result of extending ENV 0 with a binding between ¢ and the result of
eval uating (+ a b) inEO. Hereisthe environment ENV 1 resulting from the extension:

——> 3
ENW
b—— =
ENVI o —— 11

Evaluating (div ¢ 2) inENV1yieldsb.

In general, evaluating (bi nd name defn body) inenvironment ENV is the result of evaluating
body in the environment that results from extending ENV with a frame containing asingle
binding between name and the result of evaluating defn in ENV.

A bi ndpar isevaluated similarly to bi nd, except that the new frame contains one binding for
each of the name/defn pairsin the bi ndpar . Asin bind, al def ns of bi ndpar are evaluated in
the original frame, not the extension.

A bi ndseq expression should be desugared into a sequence of nested binds before being
evaluated.

The evaluation of abi ndr ec expression isalittle bit tricky and will be explained later.

Finally, it is necessary to explain what it meansto run aHOFL program. According to the
environment model, the result of running a program on a given set of integer argumentsisthe
result of evaluating the body of the program in an environment that binds the program
parameters to the arguments. For example, running consider the following program:

(program (a b) (bind ¢c (+ a b) (div c 2)))

Running this program on the inputs 3 and 8 would give rise to the evaluation of the bi nd
expression in the environment ENV 0 considered above. Note that the environment frame created
to evaluate the body of a program has no parent environment. It effectively serves as the “global
environment” mentioned in SICP 3.2.

6.2 Static Scoping: Contour Model

In static scoping, the meaning of every variable reference is determined by the contour boxes
introduced in Section 2. To determine the binding occurrence of any reference occurrence of a
name, find the innermost contour enclosing the reference occurrence that binds the name. Thisis

the desired binding occurrence.

For example, below is the contour diagram associated with the add- a example. The referenceto
aintheexpression (+ x a) lieswithin contour boxes C1 and CO. C1 does not bind a, but CO

10

does, sotheain(+ x a) referstotheabound by (program (a) ...). Similarly, it can be
determined that:

theain(+ a 10) referstothea bound by (program (a) ...);

theain (* 2 a) refersthea bound by (bind a ...);

thex in (+ x a) referstothex boundby (abs (x) ...).

theadd-ain(add-a (* 2 a)) referstotheadd-a bound by (bind add-a ...) .

iprogram i(a)
ibind add-al|{abs (x] {(+ x a]]
)
ibind a|{+ a 10]
fadd-a (* 2 a)))] |1 |
3
€2 o

Because the meaning of any reference occurrence is apparent from the lexical structure of the
program, static scoping is also known as lexical scoping.

As another example of a contour diagram, consider the contours associated with the following
program containing acr eat e- sub function:

iprogram (m]

ibind create-sub|{{abs (n] [{abs (x] (- =)] _[]

C2|

ibindpar {{subZ|{create-sub 2]]
isub3 | {create-sub 3]

ibind test||{{abs (n] {(subZ {(sub3 (- nn 1]]1]]
(i)
itest (sub3 {(+ 1 1]]]
i
)
] 4
) 3
) [

By the rules of static scope:
thenin(- x n) referstothen bound by the (abs (n) ...) of create-sub;
thenin(- n 1) referstothen bound by the(abs (n) ...) of test;

11

thenin(+ n 1) referstothen bound by (program (n) ...).
6.3 Static Scoping: Environment Model

We would like to be able to explain static scoping within the environment model of evaluation. It
turns out that any scoping mechanism is determined by how the following two questions are
answered within the environment model:

1. What isthe result of evaluating an abstraction in an environment?
2. When creating aframe to model the application of a function to arguments, what should
the parent frame of the new frame be?

In the case of static scoping, answering these questions yields the following rules:

1. Evaluating an abstraction ABST in an environment ENV returns a closure that pairs
together ABST and ENV. The closure “remembers’ that ENV is the environment in which
the free variables of ABST should be looked up; it islike an “umbilical cord” that
connects the abstraction to its place of birth. We shall draw closures as a pair of circles,
where the l€eft circle points to the abstraction and the right circle points to the
environment:

ARST ENY

2. To apply aclosure to arguments, create a new frame that contains the formal parameters
of the abstraction of the closure bound to the argument values. The parent of this new
frame should be the environment remembered by the closure. That is, the new frame
should extend the environment where the closure was born, not (necessarily) the
environment in which the closure was called. This creates the right environment for
evaluating the body of the abstraction as implied by static scoping: the first frame in the
environment contains the bindings for the formal parameters, and the rest of the frames
contain the bindings for the free variables.

We will show these rules in the context of using the environment model to explain executions of
the two programs from above. First, consider running the add-a program on the input 3. This
evaluates the body of the add-a program in an environment ENVO binding ato 3:

ENW | a — 3

To evaluate the (bi nd add-a ..) expression, we must first evaluation the definition (abs (x)
(+ x a)) In ENVO. According to rule 1 from above, this should yield a closure pairing the
abstraction with ENVO. A new frame ENV 2 should then be created binding add- a to the closure:

12

ENWVD | & 4—3= 3

ENVZ | add-a 4

{abs (x] (+ x a])

Next the expression (bi nd a .. isevaluated in ENV2. First the definition (+ a 10) is
evaluated in ENV 1, yielding 13. Then anew frame ENV 3 is created that binds a to 13:

ENWVD | & 4—3= 3

ENVZ | add-a 4

{abs (x] (+ x a])

ENVI | a — 13

Finally the function application (add-a (* 2 a)) isevauatedin ENV3. First, the
subexpressionsadd-a and (* 2 a) must be evaluated in ENV 3; these evaluations yield the add-
aclosure and 26, respectively. Next, the closure is applied to 26. This creates a new frame ENV 1
binding x to 26; by rule 2 from above, the parent of this frame is ENVO0, the environment of
closure; the environment ENV 3 of the function application is simply not involved in this
decision.

v | 2R

ENVZ | add-a4 ENVI | x+— 258

fabs (x] (+ x a))

ENVI | a — 13

13

Asthefina step, the abstraction body (+ x a) isevaluated in ENV1. Since x evaluatesto 26 in
ENV3 and aevaluates to 3, the final answer is 29.

As a second example of static scoping in the environment model, consider running the create-sub
program from Section 6.2 on the input 12. Below is an environment diagram showing all
environments created during the evaluation of this program. Y ou should study this diagram
carefully and understand why the parent pointer of each environment frame istheway itis. The
final answer of the program (which is not shown in the environment model itself) is4.

ENVID
ENVID
ENVY |create—sub4
ENV2H
b4
ENVY - 1=]-T
fF 3

ENVa

In both of the above environment diagrams, the environment names have been chosen to
underscore a critical fact that relates the environment diagrams to the contour diagrams.
Whenever environment frame ENVi has a parent pointer to environment frame ENVj in the
environment model, the corresponding contour Ci is nested directly inside of Cj within the
contour model. For example, the environment chain ENV6 ® ENV4® ENV3® ENVO
models the contour nesting C6 ® C4® C3® CO0, and the environment chains ENV 2c®

14

ENV1a® ENVO, ENV2a® ENV1b® ENVO, and ENV2b® ENV1b® modelsthe contour
nestingC2® C1® CO.

These correspondences are not coincidental, but by design. Since static scoping is defined by the
contour diagrams, the environment model must somehow encode the nesting of contours. The
environment component of closures is the mechanism by which this correspondence is achieved.
The environment of a closure is guaranteed to point to a frame F that model s the contour
enclosing the abstraction of the closure. When the closure is applied, the newly constructed
frame extends F with a new frame that introduces bindings for the parameters of the abstraction.
These are exactly the bindings implied by the contour of the abstraction. Any expression in the
body of the abstraction is then evaluated relative to the extended environment.

6.3 Static Scoping: Implementation

Rules 1 and 2 of the previous section are easy to implement in an environment model interpreter.
The implementation is shown below. Note that it isnot necessary to pass env as an argument to
funapply-static, because static scoping dictates that the call-time environment playsno role in
applying the function.

(define env-eval -static
(lambda (exp env)

;; Clause corresponding to rule 1
((abs? exp)
(meke-cl osure exp env)) ;; Remenber environment of creation

;; Clause corresponding to rule 2
((funapp? exp)
(let ((closure (env-eval-static (funapp-rator exp) env))
(actuals (env-eval -list-static (funapp-rands exp) env)))
(if (not (closure? closure))
(throw 'application-of-non-closure closure)
(funapply-static closure actuals)))) ;; lgnore call-tine env

; Auxiliary function used by clause for rule 2
(define funapply-static
(lambda (cl osure actual s)
(env-eval -static (closure-body cl osure)
(env-extend (cl osure-parans closure)
actual s
Use environnent of creation

(closure-env closure)))))

6.4 Dynamic Scoping: Environment M odel

15

In dynamic scoping, environments follow the shape of the invocation tree for executing the
program. Recall that an invocation tree has one node for every function invocation in the
program, and that each node has as its children the nodes for function invocations made directly
within in its body, ordered from left to right by the time of invocation (earlier invocations to the
left). Since bi nd desugars into a function application, we will assume that the invocation tree
contains nodes for bi nd expressions aswell. We will also consider the execution of the top-level
program to be a kind of function application, and its corresponding node will be the root of the
invocation tree. For example, hereis the invocation tree for the add- a program:

| LTIV ON e add—a |

As a second example, here is the invocation tree for the cr eat e- sub program:

| run (program (1] ... |

| bind create—subl

imroke create-sub 2| |i.:rwn:-]~:e craate-sub 3| | bindpar subZz, 5u]:.3|

bind test

|invcuke 5ul:|3| |:i_rwn:u]~:e test|

| invoke 5ub3| | imroke subZ |

Note: in some cases (but not the above two), the shape of the invocation tree depends on the
values of the arguments at certain nodes, which in turn depends on the scoping mechanism. So
the invocation tree cannot in general be drawn without fleshing out the details of the scoping
mechanism.

The key rules for dynamic scoping are as follows:

1. Evaluating an abstraction ABST in an environment ENV just returns ABST. In dynamic
scoping, there there is no need to pair the abstraction with its environment of creation.

2. Toapply aclosure to arguments, create a new frame that contains the formal parameters
of the abstraction of the closure bound to the argument values. The parent of this new
frame should be the environment in which the function application is being evaluated —
that is, the environment of the invocation (call), not the environment of creation. This

16

means that the free variables in the abstraction body will be looked up in the environment
where the function is called.

Consider the environment model showing the execution of the add-a program on the argument 3
in adynamically scoped version of HOFL. According to the above rules, the following
environments are created:

ENWD

ENV

ENVZ | 84— 13

ENVI | = —4——W 25

The key differences from the statically scoped evaluation are (1) the name add- a is bound to an
abstraction, not a closure and (2) the parent frame of ENV3 is ENV2, not ENVO. This means that
the evaluation of (+ x a) in ENV3will yield 39 under dynamic scoping, as compared to 29
under static scoping.

Below is an environment diagram showing the environments created when the cr eat e- sub
program is run on the input 12. Again, you should study the diagram and justify the target of
each parent pointer. Under dynamic scoping, the first invocation of sub3 (on 13) yields 1
because the n used in the subtraction is the program parameter n (which is 12) rather than the 3
used as an argument to cr eat e- sub when creating sub3. The second invocation of sub3 (on 0)
yields -1 because the n found thistimeisthe argument 1 to t est . The invocation of sub2 (on —1)
findsthat n isthis same 1, and returns —2 as the final result of the program.

17

ENVD | n—— 12

ENVF |create-sub4+— e labs (n) jabs (x) (- = n)))

//’;' N

2 ENVIE| o2 b7

EnNVia

ENWY

ENVG | teet — (abe (n) (eub2 (subd (- nn 1)1]1)

ENVI@| x4+ 13 ENVE| n+——W1

ENV2B| = 40 ENVIZe| x4

6.5 Dynamic Scoping: Implementation

The two rules of the dynamic scoping mechanism are easy to encode in the environment model.
For thefirst rules, the evaluation of an abstraction just returns the abstraction. For the second
rules, the application of afunction passes the call-time environment to funapply-dynamic, where
it is used as the parent of the environment frame created for the application.

(define env-eval -dynam ¢
(lambda (exp env)

((abs? expj exp) ; No need to create a closure in dynam c scope

((funapp? exp)
(let ((abstraction (env-eval -dynam c (funapp-rator exp) env))
(actual s (env-eval -list-dynam c (funapp-rands exp) env)))
(if (not (abs? abstraction))
(throw 'application-of-non-function abstraction)
(funappl y-dynam ¢ abstraction actuals env)))) ; Pass env of cal

18

(define funappl y-dynam c
(lanmbda (abstraction actual s env)
(env-eval -dynam ¢ (cl osure-body cl osure)
(env-extend (abs-paranms cl osure)
actual s
env ; Extend the env of cal

))))

6.6 Other Scoping I ssues

This section still needs to be written.

7. Recursive Bindings

HOFL’ sbi ndr ec construct allows creating mutually recursive structures. For example, hereis
the classic even?/ odd? mutual recursion example expressed in HOFL :

(program (n)
(bi ndrec ((even? (abs (n)
(if (=n0
#t
(odd? (- n 1)))))
(odd? (abs (n)
(if (=n0
#f
(even? (- n 1)))))

(prepend (even? 5)
(prepend (odd? 5)
(empty)))))

The scope of the names bound by bi ndr ec (even? and odd? in this case) includes not only the
body of the bi ndr ec expression, but also the definition expressions bound to the names. This
distinguishes bi ndr ec from bi ndpar , where the scope of the names would include the body, but
not the definitions. The difference between the scoping of bi ndr ec and bi ndpar can be seenin
the two contour diagrams on the next page. In the bi ndr ec expresion, the reference occurrence
of odd? within the even? abstraction has the binding name odd? as its binding occurrence; the
caseissimilar for even?. However, when bi ndr ec is changed to bi ndpar in this program, the
names odd? and even? within the definitions become unbound variables.

How isbi ndr ec handled in the environment model? We do it in three strages. First, we create
an empty environment frame that will contain the recursive bindings, and set its parent pointer to
be the environment in which the bindrec expression is evaluated. Second, we evaluate each of
the definition expressions with respect to the empty environment. If any of the definition
expressions attempts to evaluate one of the recursively bound variables, we throw up our hands
and say that the bindrec isill-defined. In the third and final stage, we populate the new frame
with bindings between the binding names and the values computed in step 2. Adding the
bindings effectively “ties the knot” of recursion by making cyclesin the graph structure of the
environment diagram.

19

iprogram (]

tabs

(if

itbindrec [{even?

()

(= x 0]
#t

(odd? |-

x 11111

{odd? tabs

(if

1y]

#E

lerpan

¥ 0]

3

)
iprepend {(ewven? nj

iprepend {(odd? n)
(empty))]) Cl
1
' i
iprogram (]
ibindpar { {even?| [labs (x]
(if (= = 0]
#t
fedd? (- x 1)])))
(odd? | [labe {v]
(if (= ¥ 0]
#E
{ewen? (- ¥ 1)11))
3
)
iprepend {(ewven? nj
iprepend {(odd? n)
(empty))]) Cl
1
' i

20

The result of this process for the even?/odd? exampleis shown below, where it is assumed that
the program was called on the input 5. The body of the program would be evaluated in
environment ENV 1 constructed by the bi ndr ec expression. Since the environment frames for
containing x and y would all have ENV 1 as their parent pointer, the references to odd? and
even? in these environments would be well-defined.

ENVD

ENV

[w]
[w

R T .
Lane Yl .. BEVEILrs

In order for abi ndr ec to be meaningful, the definition expressions cannot require immediate
evaluation of the bi ndr ec -bound variables. For example, the following bi ndr ec example
clearly doesn’t work because we' re asking to use the value x before we' ve defined it in the
process of defining it.

(bindrec ((x (+ x 1)))
(* x 2))

In contrast, in the even?/odd? example we are not asking for the values of even? and odd? in
the process of evaluating the definitions. Rather the definitions are abstractions that will refer to
even? and odd? at alater time, when they are invoked. Abstractions serve as a sort of delaying
mechanism that make the recursive bindings sensible.

As amore subtle example of ameaningless bi ndr ec, consider the following

(bindrec ((a (prepend 1 b))
(b (prepend 2 a)))
b)

Unlike the above case, here we can imagine that the definition might mean something sensible.
Indeed in so-called call-by-need languages (such as Haskell), the above definitions are very
sensible, and stand for the following list structure:

21

'

Bt 2 |

However, call-by-value languages (such as HOFL, Scheme, ML, Java, C, etc) require that all
definitions be completely evaluated to values before they can be bound to a name or inserted in a
data structure. In this class of languages, the attempt to evaluate (cons 1 b) fails because the
value of b cannot be determined.

Nevertheless, by using the delaying power of abstractions, we can get something close to the
above structure in HOFL. In the following program, the references to the recursive bindings
one-t wo and t wo- one are “protected” within abstractions of zero variables (which are known as
thunks). Any attempt to use the delayed variables requires applying the thunks to zero
arguments (as in the expression ((snd stream)) withintheprefi x function).

(program (n)
(bindpar ((pair (abs (a b) (prepend a (prepend b (enpty)))))
(fst (abs (pair) (head pair)))
(snd (abs (pair) (head (tail pair)))))
(bindrec ((one-two (pair 1 (abs () two-one)))
(two-one (pair 2 (abs () one-two)))
(prefix (abs (num stream
(if (= num0)
(enpty)
(prepend (fst strean)
(prefix (- num 1)

((snd stream))))))

(prefix n one-two)))))

When the above program is applied to the input 5, theresultis(1 2 1 2 1).

Implementing the “knot-tying” aspect of the recursive bindings of bi ndr ec withint he env-
eval - st ati ¢ function of the statically scoped HOFL interpreter provesto be rather tricky. Here
isaversion of thebi ndrec clauseinenv-eval - stati ¢ that is close, but doesn’t quite work:

Buggy version of BINDREC cl ause i n ENV- EVAL- STATI C
((bi ndrec? exp)
(env-eval -static (bindrec-body exp)
(letrec ((new env
(env-extend
(bi ndr ec- names exp)
(map (lanmbda (defn)
(env-eval -static defn new env))
(bi ndrec-defns exp))
env)))
new env)))

22

The above clause attempts to use the knot-tying ability of Scheme’s own recursive binding
construct, | et r ec, to implement HOFL’ s recursive binding construct. Unfortunately, because
Scheme is a call-by-value language, we come face to face with the same problem encountered in
the recursive list example from above: the evaluation of the binding expression requires
evaluating areference to thel et r ec-bound variable new env before abinding for it has been
added to the environment!

We can fix the problem in the same way we fixed the recursive list problem: by using thunks to
delay evaluation of the recursive bound variable. In particular, rather than storing the result of
evaluating the definition in the environment, we can store in the environment a thunk for
evaluating the definition:

Fi xed version of BI NDREC cl ause i n ENV- EVAL- STATI C
((bi ndrec? exp)
(env-eval -static (bindrec-body exp)
(letrec ((new env
(env-extend
(bi ndr ec- names exp)
(map (lanmbda (defn)
(lanbda () ;; Introduce a thunk!
(env-eval -static defn newenv)))
(bi ndrec-defns exp))
env)))
new env)))

Once we do this, we must ensure (1) that all entities stored in the environment are thunks and (2)
that whenever athunk islooked up in the environment, it should be “dethunked” —i.e., applied to
zero argumentsto retrieve its value. This makes sense if you think in terms of types. Point (1)
says that the type of environmentsis changing from (vari able ® value) to (variable ®
(unit ® value)),whereunit isthetype of one element. Point (2) saysthat since the result of
an environment lookup is now of type (unit ® val ue) , it must be applied to zero arguments
in order to get avalue.

To implement point (1) we introduce the following auxiliary function:

(define map-del ay
(lambda (I st)
(map (lanmbda (x) (larmbda () x)))

Ist)))
We use map- del ay within env-run-static andfunappl y-stati ¢ asshown below:

(define env-run-static
(lambda (pgm i nts)
(env-eval -dynam ¢ (desugar (program body pgm)
(env-extend (program parans pgm
(map-del ay ints)
(env-enpty))
)))

(define funapply-static

23

(lambda (cl osure actual s env)
(env-eval -static (closure-body cl osure)
(env-extend (cl osure-parans closure)
(map-del ay actual s)
(cl osure-env cl osure)

))))

Point 2 isimplemented by changing the variable reference clause of env- eval - stati ¢ as
follows:

((varref? exp)
(let ((thunk (env-1ookup (varref-name exp) env)))
(i f (unbound? thunk)
(throw 'unbound-vari abl e (varref-name exp))
((thunk))))) ; Force delayed conputation

The above changes work fine, but they are inefficient. In particular, they require that arecursive
definition expression be evaluated every timeit islooked up in the environment. It turns out that
Scheme has a more efficient mechanism for delaying computations than thunks. The construct
(delay E) delays the expression of E by returning a“promise”; if V isapromise, its delayed
computation can be forced viathe application (force V). The promise “remembers’ the value of
its computation, so an attempt to force a promise the second time performs no computation but
returns the previously computed value. By replacing all instance of thunks and dethunking by
delay and force in the code presented above, a more efficient implementation of recursive
binding can be achieved.

24

