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NAMING ISSUES

This is a second draft of this document.  Although not complete, only some minor sections are
missing.

This handout summarizing naming issues (e.g., namespaces, scoping, block structure,
environments, and closures) for the real and toy languages that we have studied so far in the
course. It is required reading for completing Problem Set 4.

1. Declarations

Every programming language provides constructs that that introduce names for the kinds of
entities that are manipulated by the language. Such constructs are known as declarations or
binding constructs.  Below are some of the languages we have studied, along with a list of
(some of) their declaration constructs:

Toy Languages

1. INTEX:
• program: introduces parameters naming program inputs;

2. BINDEX/IBEX
• program: introduces parameters naming program inputs;
• bind: introduces a name for a calculated value;
• bindpar, bindseq:  introduce names for calculated values (desugar into bind).

3. FOFL
• fun: introduces function names and function parameters;
• program, bind, bindpar, bindseq:  as in BINDEX/IBEX

4. FOBS
• funrec: introduces function names and function parameters;
• program, bind, bindpar, bindseq, fun:  as in FOFL (collections of fun desugar

to funrec).

5. HOFL
• abs: introduces function parameters;
• bindrec: introduces recursively bound values;
• program, bind, bindpar, bindseq, fun, funrec:  as in FOBS (funrec

desugars into bindrec and abs).
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Real Languages

6. Scheme:
• lambda: introduces function parameters;
• let: introduces names for calculated values (desugars into lambda);
• letrec: introduces names for recursively defined values;
• define: adds a name/value binding to the current environment (sequences of defines

desugar into letrec).

7. ML:
• fn: introduces patterns for function parameters;
• val: introduces patterns for calculated values ;
• fun: introduces names and function parameter patterns for recursively defined

functions (similar to a combination of val and fn except for recursive scope);
• case: introduces patterns for summands of a discriminant;
• datatype: introduces names of data type constructors;
• type: introduces names that abbreviate types;
• exception: introduces names for exception constructors;
• handle: introduces patterns for the handled exception.
• structure: introduces names for structures.
• signature: instroduces names for signatures.

8. Java:
• method: introduces names for instance and class methods and their parameters (class

methods are distinguished by the static keyword);
• class: introduces names for classes;
• instance variable declaration syntax (<type> <name> = <exp>, within a class

declaration): introduces names for instance variables;
• class variable declaration syntax (static <type> <name> = <exp>, within a class

declaration): introduces names for class variables;
• local variable declaration syntax (<type> <name> = <exp>, within a method body):

introduces names for local variablesl
• catch: introduces a named for the caught exception.

2. Scope

Every declaration construct has a binding occurrence that introduces the declared name, and
reference occurences that refer to declared name. For example, in the Scheme abstraction
(lambda (x) (* x x)), the first x is the binding occurrence, and the second and third xs are
reference occurrences. Typically, the binding occurrence and reference occurrences have the
same syntax; they are distinguished by their positions within the declaration construct. So in
lambda, for instance, the parenthesized list of names following the lambda keyword are the
binding occurrences, and the uses of these names in the body are reference occurrences.

Once declared, a name can usually only be used within a restricted part of the program. The
region of a program in which it is possible to reference a declared name is called the scope of the
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declared name.   In statically scoped languages (see Section 6) the scope of declared names can
be shown via nested boxes called lexical contours.  For example, the following diagram shows
the lexical  contours for a sample HOFL program:

Each contour shows the region of the program in which the names declared by the declaration in
the contour can be used. For instance, the contour labeled C3 shows the region of the program in
which the variable op introduced by (abs (op) ...) can be used. The fact that the contour C2
for the (bind n (- n 1) ...) expression includes the binding occurrence n and the body
expression but not the definition expression (- n 1) indicates that the definition expression of a
bind construct is not within the scope of the declared name. In contrast, the diagram indicates
that the body and all definition expressions of a bindrec construct are within the scope of the
declared names. This means that any definition expression of a bindrec can refer to the names
declared for any of the definition expressions, including itself or later definitions. This makes it
possible for the test definition to have a so-called forward reference to add and mul.

A name declared in an outer contour may be used within an inner contour unless the inner
contour declares the same name as the outer contour. For example, the name op declared in C3
may be used within C4. However, the program parameter n declared in C0 may not be used
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within contours C2, C5, C6, C7, or C8, since all of these contours also declare a variable named
n.  The inner declarations of n are said to shadow the outer one, and the contours of the inner
declarations are said to be holes in the scope of the outer declarations.

Lexical contours are especially helpful for reasoning about programs in which the same name is
introduced by multiple declarations.  In the above example, there are 2 logically distinct
variables named op, 4 logically distinct variables named x, and 6 logically distinct variables
named n.

In a statically scoped language, it is always possible to consistently rename binding occurrences
and their corresponding reference occurrences in such a way that each binding occurrence has a
unique name. For instance, performing consistent renaming on the sample program above can
yield the following program, in which each potentially ambiguous variable name has been
renamed using the index of its contour in the above diagram:

(program (n0)
  (bindrec ((make-op (bind n2 (- n0 1)
                       (abs (op3)
                         (abs (x4) (op3 x4 n2)))))
            (test (abs (op5 n5) (op5 (mul n5) (add n5))))
            (add (make-op (abs (n6 x6) (+ n6 x6))))
            (mul (make-op (abs (n7 x7) (* n7 x7))))
            )
    (test (abs (n8 x8) (- n8 x8)) n0)
  )
)

Consistent renaming that maintains program meaning is known as α-renaming. Alpha-renaming
refers to any process of consistent renaming, not just renamings that make all binding
occurrences unique. In the programming language literature, it is common to refer to α-
equivalence classes, which are equivalence classes of expressions modulo α-renaming. This
means that expressions that differ only in the naming of their variables are considered equivalent.
For instance, the HOFL abstractions (abs (a) (abs (b) (+ a b))) and (abs (x) (abs (y)
(+ x y))) are α-equivalent.  Alpha-equivalence captures the notion that it is not the choice of
names that matters, but rather the connectivity of reference occurrences and binding occurrences.

Even though names in some sense “do not matter”, one must still pay close attention to particular
name choices when α-renaming a program. For instance, suppose we want to rename the b in
(abs (a) (abs (b) (+ a b))). We can choose any name we want as the new name for b
except a. The problem with renaming b to a is that in the resulting expression, (abs (a) (abs
(a) (+ a a))), the first a within (+ a a) no longer references the outer declaration of a but
the inner one. We say that this reference occurrence of a has been accidentally captured by the
inner declaration of a. In the presence of such variable capture, the resulting expression is not α-
equivalent  to the original.
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3. Namespaces

A programming language may have several different categories of names. Each such category is
called a namespace.  For example, Java has distinct namespaces for packages, classes, methods,
instance variables, class variables, and method parameters/local variables.

In a language with multiple namespaces, the same name can simultaneously be used in different
namespaces without any kind of naming conflict. For example, consider the following Java class
declaration:

public class Circle {

  // Instance variable of a Circle object.
  public double radius;

  // Constructor method for creating Circle objects.
  public Circle (double r) {
    this.radius  = r;
  }

  // Instance  method for scaling Circles.
  public Circle scale (double factor) {
    return new Circle(factor * this.radius);
  }
}

It turns out that we can rename every one of the names appearing in the above program to
radius (as shown below) and the class will have the same meaning!

public class radius {

  // Instance variable of a circle object.
  public double radius;

  // Constructor method for creating Circle objects.
  public radius (double  radius) {
    this.radiu  =  radius;
  }

  // Instance  method for scaling Circles.
  public radius radius (double radius) {
    return new radius(radius * this.radius);
  }
}

Of course, in order to use the renamed class, we would need to change uses of the original class
consistently. For instance, the expression (new Circle(10)).scale(2).radius would have to
be renamed to (new radius(10)).radius(2).radius.

Although using the name radius to stand for entities in four different namespaces (class,
instance variable, instance variable name, parameter name) would make the program very
difficult for a human program to read, the Java compiler and Java bytecode interpreter treat the
renamed program identically to the original.



6

Java has an unusually high number of namespaces. But many languages have at least two
namespaces: one for functions, and one for variables. For instance, in this category are C, Pascal,
and Common Lisp, as well as the toy languages FOFL and FOBS that we have studied. In
contrast, many functional languages, such as Scheme, ML, and Haskell (as well as the toy HOFL
language) have a single namespace for functions and variables. This is parsimonious with the
first-classness of functions, which allows functions to be named like any other values.

4. Free Variables

This section still needs to be written.

5. Block Structure

This section is still under construction. It will involve the following examples:

(define index-of-bs
  (lambda (elt lst)
    (define index-loop
      (lambda (i L)
        (if (null? L)
            -1
            (if (eqv? elt (car L))
                i
                (index-loop (+ i 1) (cdr L))))))
    (index-loop 1 lst)))

(define index-of-no-bs
  (lambda (elt lst)
    (index-loop 1 lst elt)))

(define index-loop
  (lambda (i L elt)
    (if (null? L)
        -1
        (if (eqv? elt (car L))
            i
            (index-loop (+ i 1) (cdr L) elt)))))

(define cartesian-product-bs
  (lambda (lst1 lst2)
    (define prod
      (lambda (lst)
        (if (null? lst)
            '()
            (let ((elt (car lst)))
              (define map-duple
                (lambda (L)
                  (if (null? L)
                      '()
                      (cons (list elt (car L))
                            (map-duple (cdr L))))))
              (append (map-duple lst2)
                      (prod (cdr lst)))))))
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    (prod lst1)))

(define cartesian-product-no-bs
  (lambda (lst1 lst2)
    (prod lst1 lst2)))

(define prod
  (lambda (lst1 lst2)
    (if (null? lst1)
        '()
        (let ((elt (car lst1)))
          (append (map-duple lst2 elt)
                  (prod (cdr lst1) lst2))))))

(define map-duple
  (lambda (L elt)
    (if (null? L)
        '()
        (cons (list elt (car L))
              (map-duple (cdr L) elt)))))

(lambda (L elt)
    (if (null? L)
        '()
        (cons (list elt (car L))

              (map-duple (cdr L) elt)))))

6. Scoping Mechanisms

In order to understand a program, it is essential to understand the meaning of every name. This
requires being able to reliably answer the following question: given a reference occurrence of a
name, which binding occurrence does it refer to?

In many cases, the connection between reference occurrences and binding occurrences is clear
from the meaning of the binding constructs.  For instance, in the HOFL abstraction

(abs (a b) (bind c (+ a b) (div c 2)))

it is clear that the a and b within (+ a b) refer to the parameters of the abstraction and that the c
in (div c 2) refers to the variable introduce by the bind expression.

However, the situation becomes murkier in the presence of functions whose bodies have free
variables. Consider the following HOFL program:

     (program (a)
  (bind add-a (abs (x) (+ x a))
    (bind a (+ a 10)
      (add-a (* 2 a)))))
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The add-a function is defined by the abstraction (abs (x) (+ x a)) , which has a free variable
a. The question is: which binding occurrence of a in the program does this free variable refer to?
Does it refer to the program parameter a or the a introduced by the bind expression?

A scoping mechanism determines the binding occurrence in a program associated with a free
variable reference within a function body. In languages with block structure and/or higher-order
functions, it is common to encounter functions with free variables. Understanding the scoping
mechanisms of such languages is a prerequisite to understand the meanings of programs written
in these languages.

We will study two scoping mechanisms in the context of the HOFL language: static scoping and
dynamic scoping. First we introduce some conventions that are used to explain both scoping
mechanisms. Then we explain static and dynamic scoping. We conclude with a discussion of
some other issues involved in scoping.

6.1 Environment Diagrams

Scoping mechanisms can be explained in the context of environment diagrams, which are a
visual notation for the environment model of execution. We will use the following conventions
in drawing environment diagrams.

An environment frame represents an environment extension with bindings between names and
values. Environment frames are depicted as boxes with bindings. For example, here is a frame
with three bindings:

a

b

c

17

#t

"Hi!"

An environment is represented as a linked chain of environment frames. For example, the
following diagram shows three environments:

a

b

c

17

#t

"Hi!"

b
d

a 5

23

"Ho!"

ENV1

ENV2

ENV3
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In a chain of frames, each environment frame except the last one points to its parent
environment. The bindings in a frame shadow any bindings with the same names in its parent
environment.  Here are the results of looking up various names in the above environments:

env-lookup('a, ENV1) = 17
env-lookup('b, ENV1) = #t
env-lookup('c, ENV1) = "Hi!"
env-lookup('d, ENV1) = unbound

env-lookup('a, ENV2) = 5
env-lookup('b, ENV2) = #t
env-lookup('c, ENV2) = "Hi!"
env-lookup('d, ENV2) = unbound

env-lookup('a, ENV3) = 5
env-lookup('b, ENV3) = 23
env-lookup('c, ENV3) = "Hi!"
env-lookup('d, ENV3) = "Ho!"

In the environment model, every expression is evaluated with respect to an environment. The
environment determines the meaning of the free variables that appear within the expression. In
many cases, the environment used for evaluating an expression is also used to evaluate its
subexpresssions. For instance:

• To evaluate the conditional expression (if E1 E2 E3) in environment ENV,  we first
evaluated E1 in ENV. If the result is true, we return the result of evaluating E2 in ENV; else
we return the result of evaluating E3 in ENV.

• To evaluate the primitive application (primop E1 ... En) in environment ENV,  we must
first evaluate the operan expressions E1 through En in ENV. We then return the result of
applying the primitive operator primop to the resulting operand values.

• To evaluate the function application (E0 E1 ... En) in environment ENV,  we must first
evaluate the expressions E0 through En in ENV. We then return the result of applying the
function value to the operand values. (The details of what it means to apply a function is at
the heart of scoping and, as we shall see, differs from mechanism to mechanism.)

The evaluation of some bindings constructs involves evaluating some subexpressions in an
extension of the given environment. For instance, consider the evaluation of the expression
(bind c (+ a b) (div c 2)) in the following environment ENV0:

The result of this expression is the result of evaluating the body (div c 2) in an environment
ENV1 that is the result of extending ENV0 with a binding between c and the result of
evaluating (+ a b) in E0.  Here is the environment ENV1 resulting from the extension:
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Evaluating (div c 2) in ENV1 yields 5.

In general, evaluating (bind name defn body) in environment ENV is the result of evaluating
body in the environment that results from extending ENV with a frame containing a single
binding between name and the result of evaluating defn in ENV.

A bindpar is evaluated similarly to bind, except that the new frame contains one binding for
each of the name/defn pairs in the bindpar. As in bind, all defns of bindpar are evaluated in
the original frame, not the extension.

A bindseq expression should be desugared into a sequence of nested binds before being
evaluated.

The evaluation of a bindrec expression is a little bit tricky and will be explained later.

Finally, it is necessary to explain what it means to run a HOFL program.  According to the
environment model, the result of running a program on a given set of integer arguments is the
result of evaluating the body of the program in an environment that binds the program
parameters to the arguments. For example, running consider the following program:

(program (a b) (bind c (+ a b) (div c 2)))

Running this program on the inputs 3 and 8 would give rise to the evaluation of the bind
expression in the environment ENV0 considered above. Note that the environment frame created
to evaluate the body of a program has no parent environment. It effectively serves as the “global
environment” mentioned in SICP 3.2.

6.2 Static Scoping: Contour Model

In static scoping, the meaning of every variable reference is determined by the contour boxes
introduced in Section 2. To determine the binding occurrence of any reference occurrence of a
name, find the innermost contour enclosing the reference occurrence that binds the name. This is
the desired binding occurrence.

For example, below is the contour diagram associated with the add-a example. The reference to
a in the expression (+ x a) lies within contour boxes C1 and C0. C1 does not bind a, but C0
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does, so the a in (+ x a) refers to the a bound by (program (a) ...). Similarly, it can be
determined that:
• the a in (+ a 10) refers to the a bound by (program (a) ...);
• the a in (* 2 a) refers the a bound by (bind a ...);
• the x in (+ x a) refers to the x bound by (abs (x) ...).
• the add-a in (add-a (* 2 a)) refers to the add-a bound by (bind add-a ...) .

Because the meaning of any reference occurrence is apparent from the lexical structure of the
program, static scoping is also known as lexical scoping.

As another example of a contour diagram, consider the contours associated with the following
program containing a create-sub function:

By the rules of static scope:
• the n in (- x n) refers to the n bound by the (abs (n) ...) of create-sub;
• the n in (- n 1) refers to the n bound by the (abs (n) ...) of test;



12

• the n in (+ n 1) refers to the n bound by (program (n) ...).

6.3 Static Scoping: Environment Model

We would like to be able to explain static scoping within the environment model of evaluation. It
turns out that any scoping mechanism is determined by how the following two questions are
answered within the environment model:

1. What is the result of evaluating an abstraction in an environment?
2. When creating a frame to model the application of a function to arguments, what should

the parent frame of the new frame be?

In the case of static scoping, answering these questions yields the following rules:

1. Evaluating an abstraction ABST in an environment ENV returns a closure that pairs
together ABST and ENV.  The closure “remembers” that ENV is the environment in which
the free variables of ABST should be looked up; it is like an “umbilical cord” that
connects the abstraction to its place of birth. We shall draw closures as a pair of circles,
where the left circle points to the abstraction and the right circle points to the
environment:

2.  To apply a closure to arguments, create a new frame that contains the formal parameters
of the abstraction of the closure bound to the argument values. The parent of this new
frame should be the environment remembered by the closure. That is, the new frame
should extend the environment where the closure was born, not (necessarily) the
environment in which the closure was called. This creates the right environment for
evaluating the body of the abstraction as implied by static scoping: the first frame in the
environment contains the bindings for the formal parameters, and the rest of the frames
contain the bindings for the free variables.

We will show these rules in the context of using the environment model to explain executions of
the two programs from above. First, consider running the add-a program on the input 3. This
evaluates the body of the add-a program in an environment ENV0 binding a to 3:

To evaluate the (bind add-a …) expression, we must first evaluation the definition (abs (x)
(+ x a)) in ENV0. According to rule 1 from above, this should yield a closure pairing the
abstraction with ENV0. A new frame ENV2 should then be created binding add-a to the closure:
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Next the expression (bind a …) is evaluated in ENV2. First the definition (+ a 10) is
evaluated in ENV1, yielding 13.  Then a new frame ENV3 is created that binds a to 13:

Finally the function application (add-a (* 2 a)) is evaluated in ENV3. First, the
subexpressions add-a and (* 2 a) must be evaluated in ENV3; these evaluations yield the add-
a closure and 26, respectively. Next, the closure is applied to 26. This creates a new frame ENV1
binding x to 26; by rule 2 from above, the parent of this frame is ENV0, the environment of
closure; the environment ENV3 of the function application is simply not involved in this
decision.
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As the final step, the abstraction body (+ x a) is evaluated in ENV1.  Since x evaluates to 26 in
ENV3 and a evaluates to 3, the final answer is 29.

As a second example of static scoping in the environment model, consider running the create-sub
program from Section 6.2 on the input 12. Below is an environment diagram showing all
environments created during the evaluation of this program. You should study this diagram
carefully and understand why the parent pointer of each environment frame is the way it is. The
final answer of the program (which is not shown in the environment model itself) is 4.

In both of the above environment diagrams, the environment names have been chosen to
underscore a critical fact that relates the environment diagrams to the contour diagrams.
Whenever environment frame ENVi has a parent pointer to environment frame ENVj in the
environment model, the corresponding contour Ci is nested directly inside of Cj within the
contour model.  For example, the environment chain ENV6 → ENV4 → ENV3 → ENV0
models the contour nesting C6 → C4 → C3 → C0, and the environment chains ENV2c→
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ENV1a → ENV0, ENV2a→ ENV1b → ENV0, and ENV2b→ ENV1b → models the contour
nesting C2 → C1 → C0.

These correspondences are not coincidental, but by design. Since static scoping is defined by the
contour diagrams, the environment model must somehow encode the nesting of contours. The
environment component of closures is the mechanism by which this correspondence is achieved.
The environment of a closure is guaranteed to point to a frame F that models the contour
enclosing the abstraction of the closure. When the closure is applied, the newly constructed
frame extends F with a new frame that introduces bindings for the parameters of the abstraction.
These are exactly the bindings implied by the contour of the abstraction. Any expression in the
body of the abstraction is then evaluated relative to the extended environment.

6.3 Static Scoping: Implementation

Rules 1 and 2 of the previous section are easy to implement in an environment model interpreter.
The implementation is shown below.  Note that it is not necessary to pass env as an argument to
funapply-static, because static scoping dictates that the call-time environment plays no role in
applying the function.

(define env-eval-static
  (lambda (exp env)
               .
               .
               .
    ;; Clause corresponding to rule 1
    ((abs? exp)
     (make-closure exp env)) ;; Remember environment of creation

    ;; Clause corresponding to rule 2
    ((funapp? exp)
     (let ((closure (env-eval-static (funapp-rator exp) env))
           (actuals (env-eval-list-static (funapp-rands exp) env)))
       (if (not (closure? closure))
           (throw 'application-of-non-closure closure)
           (funapply-static closure actuals)))) ;; Ignore call-time env
               .
               .
               .
   )
 )

;; Auxiliary function used by clause for rule 2
    (define funapply-static

  (lambda (closure actuals)
    (env-eval-static (closure-body closure)
                     (env-extend (closure-params closure)
                                 actuals
                                 ;; Use environment of creation
                                 (closure-env closure)))))

6.4 Dynamic Scoping: Environment Model
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In dynamic scoping, environments follow the shape of the invocation tree for executing the
program.  Recall that an invocation tree has one node for every function invocation in the
program, and that each node has as its children the nodes for function invocations made directly
within in its body, ordered from left to right by the time of invocation (earlier invocations to the
left). Since bind desugars into a function application, we will assume that the invocation tree
contains nodes for bind expressions as well.  We will also consider the execution of the top-level
program to be a kind of function application, and its corresponding node will be the root of the
invocation tree. For example, here is the invocation tree for the add-a program:

As a second example, here is the invocation tree for the create-sub program:

Note: in some cases (but not the above two),  the shape of the invocation tree depends on the
values of the arguments at certain nodes, which in turn depends on the scoping mechanism. So
the invocation tree cannot in general be drawn without fleshing out the details of the scoping
mechanism.

The key rules for dynamic scoping are as follows:

1. Evaluating an abstraction ABST in an environment ENV  just returns ABST. In dynamic
scoping, there there is no need to pair the abstraction with its environment of creation.

2. To apply a closure to arguments, create a new frame that contains the formal parameters
of the abstraction of the closure bound to the argument values. The parent of this new
frame should be the environment in which the function application is being evaluated –
that is, the environment of the invocation (call), not the environment of creation. This
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means that the free variables in the abstraction body will be looked up in the environment
where the function is called.

Consider the environment model showing the execution of the add-a program on the argument 3
in a dynamically scoped version of HOFL. According to the above rules, the following
environments are created:

The key differences from the statically scoped evaluation are (1) the name add-a is bound to an
abstraction, not a closure and (2) the parent frame of ENV3 is ENV2, not ENV0. This means that
the evaluation of (+ x a) in ENV3 will yield 39 under dynamic scoping, as compared to 29
under static scoping.

Below is an environment diagram showing the environments created when the create-sub
program is run on the input 12.  Again, you should study the diagram and justify the target of
each parent pointer.  Under dynamic scoping, the first invocation of sub3 (on 13) yields 1
because the n used in the subtraction is the program parameter n (which is 12) rather than the 3
used as an argument to create-sub when creating sub3. The second invocation of sub3 (on 0)
yields -1 because the n found this time is the argument 1 to test. The invocation of sub2 (on –1)
finds that n is this same 1, and returns –2 as the final result of the program.



18

6.5 Dynamic Scoping: Implementation

The two rules of the dynamic scoping mechanism are easy to encode in the environment model.
For the first rules, the evaluation of an abstraction just returns the abstraction. For the second
rules, the application of a function passes the call-time environment to funapply-dynamic, where
it is used as the parent of the environment frame created for the application.

(define env-eval-dynamic
  (lambda (exp env)
              .
              .
              .
    ((abs? exp) exp) ; No need to create a closure in dynamic scope

    ((funapp? exp)
      (let ((abstraction (env-eval-dynamic (funapp-rator exp) env))
            (actuals (env-eval-list-dynamic (funapp-rands exp) env)))
        (if (not (abs? abstraction))
            (throw 'application-of-non-function abstraction)
            (funapply-dynamic abstraction actuals env)))) ; Pass env of call
              .
              .
              .
   )
)
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 (define funapply-dynamic
   (lambda (abstraction actuals env)
     (env-eval-dynamic (closure-body closure)
                       (env-extend (abs-params closure)
                                   actuals
                                   env ; Extend the env of call
                                   ))))

6.6 Other Scoping Issues

This section still needs to be written.

7. Recursive Bindings

HOFL’s bindrec construct allows creating mutually recursive structures. For example, here is
the classic even?/odd? mutual recursion example expressed in HOFL:

(program (n)
  (bindrec ((even? (abs (n)
                     (if (= n 0)
                         #t
                         (odd? (- n 1)))))
             (odd? (abs (n)
                     (if (= n 0)
                         #f
                         (even? (- n 1)))))
             )
     (prepend (even? 5)
              (prepend (odd? 5)
                       (empty)))))

The scope of the names bound by  bindrec (even? and odd? in this case) includes not only the
body of the bindrec expression, but also the definition expressions bound to the names.  This
distinguishes bindrec from bindpar, where the scope of the names would include the body, but
not the definitions.  The difference between the scoping of bindrec and bindpar can be seen in
the two contour diagrams on the next page. In the bindrec expresion, the reference occurrence
of odd? within the even? abstraction has the binding name odd? as its binding occurrence; the
case is similar for even?.  However, when bindrec is changed to bindpar in this program, the
names odd? and even? within the definitions become unbound variables.

How is bindrec handled in the environment model?  We do it in three strages. First, we create
an empty environment frame that will contain the recursive bindings, and set its parent pointer to
be the environment in which the bindrec expression is evaluated. Second, we evaluate each of
the definition expressions with respect to the empty environment. If any of the definition
expressions attempts to evaluate one of the recursively bound variables, we throw up our hands
and say that the bindrec is ill-defined.  In the third and final stage, we populate the new frame
with bindings between the binding names and the values computed in step 2.  Adding the
bindings effectively “ties the knot” of recursion by making cycles in the graph structure of the
environment diagram.
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The result of this process for the even?/odd? example is shown below, where it is assumed that
the program was called on the input 5. The body of the program would be evaluated in
environment ENV1 constructed by the bindrec expression. Since the environment frames for
containing x and y would all have ENV1 as their parent pointer, the references to odd? and
even? in these environments would be well-defined.

In order for a bindrec to be meaningful, the definition expressions cannot require immediate
evaluation of the bindrec -bound variables. For example, the following bindrec example
clearly doesn’t work because we’re asking to use the value x before we’ve defined it in the
process of defining it.

(bindrec ((x (+ x 1)))
  (* x 2))

In contrast, in the even?/odd? example we are not asking for the values of even? and odd? in
the process of evaluating the definitions.  Rather the definitions are abstractions that will refer to
even? and odd? at a later time, when they are invoked. Abstractions serve as a sort of delaying
mechanism that make the recursive bindings sensible.

As a more subtle example of a meaningless bindrec, consider the following

(bindrec ((a (prepend 1 b))
          (b (prepend 2 a)))
  b)

Unlike the above case, here we can imagine that the definition might mean something sensible.
Indeed in so-called call-by-need languages (such as Haskell), the above definitions are very
sensible, and stand for the following list structure:
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However, call-by-value languages (such as HOFL, Scheme, ML, Java, C,  etc) require that all
definitions be completely evaluated to values before they can be bound to a name or inserted in a
data structure. In this class of languages, the attempt to evaluate (cons 1 b) fails because the
value of b cannot be determined.

Nevertheless, by using the delaying power of abstractions, we can get something close to the
above structure in HOFL.  In the following program, the references to the recursive bindings
one-two and two-one are “protected” within abstractions of zero variables (which are known as
thunks).  Any attempt to use the delayed variables requires applying the thunks to zero
arguments (as in the expression ((snd stream)) within the prefix function).

(program (n)
  (bindpar ((pair (abs (a b) (prepend a (prepend b (empty)))))
            (fst (abs (pair) (head pair)))
            (snd (abs (pair) (head (tail pair)))))
    (bindrec ((one-two (pair 1 (abs () two-one)))
              (two-one (pair 2 (abs () one-two)))
              (prefix (abs (num stream)
                        (if (= num 0)
                            (empty)
                            (prepend (fst stream)
                                     (prefix (- num 1)
                                             ((snd stream)))))))
                )
      (prefix n one-two)))))

When the above program is applied to the input  5, the result is (1 2 1 2 1).

Implementing the “knot-tying” aspect of the recursive bindings of bindrec within the env-
eval-static function of the statically scoped HOFL interpreter proves to be rather tricky. Here
is a version of the bindrec clause in env-eval-static that is close, but doesn’t quite work:

;; Buggy version of BINDREC clause in ENV-EVAL-STATIC
((bindrec? exp)
 (env-eval-static (bindrec-body exp)
                  (letrec ((new-env
                            (env-extend
                              (bindrec-names exp)
                              (map (lambda (defn)
                                     (env-eval-static defn new-env))
                                   (bindrec-defns exp))
                               env)))
                    new-env)))
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The above clause attempts to use the knot-tying ability of Scheme’s own recursive binding
construct, letrec, to implement HOFL’s recursive binding construct. Unfortunately, because
Scheme is a call-by-value language, we come face to face with the same problem encountered in
the recursive list example from above: the evaluation of the binding expression requires
evaluating a reference to the letrec-bound variable new-env before a binding for it has been
added to the environment!

We can fix the problem in the same way we fixed the recursive list problem: by using thunks to
delay evaluation of the recursive bound variable. In particular, rather than storing the result of
evaluating the definition in the environment, we can store in the environment a thunk for
evaluating the definition:

;; Fixed version of BINDREC clause in ENV-EVAL-STATIC
((bindrec? exp)
 (env-eval-static (bindrec-body exp)
                  (letrec ((new-env
                            (env-extend
                              (bindrec-names exp)
                              (map (lambda (defn)
                                     (lambda () ;; Introduce a thunk!
                                       (env-eval-static defn new-env)))
                                   (bindrec-defns exp))
                               env)))

                    new-env)))

Once we do this, we must ensure (1) that all entities stored in the environment are thunks and (2)
that whenever a thunk is looked up in the environment, it should be “dethunked” – i.e., applied to
zero arguments to retrieve its value.  This makes sense if you think in terms of types. Point (1)
says that the type of environments is changing from (variable → value) to (variable →
(unit → value)), where unit is the type of one element.  Point (2) says that since the result of
an environment lookup is now of type (unit → value) , it must be applied to zero arguments
in order to get a value.

To implement point (1) we introduce the following auxiliary function:

(define map-delay
  (lambda (lst)
    (map (lambda (x) (lambda () x)))
         lst)))

We use map-delay within env-run-static and funapply-static as shown below:

 (define env-run-static
  (lambda (pgm ints)
    (env-eval-dynamic (desugar (program-body pgm))
                      (env-extend (program-params pgm)
                                  (map-delay ints)
                                  (env-empty))
                      )))

(define funapply-static
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  (lambda (closure actuals env)
    (env-eval-static (closure-body closure)
                     (env-extend (closure-params closure)
                                 (map-delay actuals)
                                 (closure-env closure)
                                 ))))

Point 2 is implemented by changing the variable reference clause of env-eval-static as
follows:

((varref? exp)
 (let ((thunk (env-lookup (varref-name exp) env)))
   (if (unbound? thunk)
       (throw 'unbound-variable (varref-name exp))
       ((thunk))))) ; Force delayed computation

The above changes work fine, but they are inefficient. In particular, they require that a recursive
definition expression be evaluated every time it is looked up in the environment. It turns out that
Scheme has a more efficient mechanism for delaying computations than thunks. The construct
(delay E) delays the expression of E by returning a “promise”; if V is a promise, its delayed
computation can be forced via the application (force V). The promise “remembers” the value of
its computation, so an attempt to force a promise the second time performs no computation but
returns the previously computed value.  By replacing all instance of thunks and dethunking by
delay and force in the code presented above, a more efficient implementation of recursive
binding can be achieved.


