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TYPES

1. Static Properties of Programs

Programs have both dynamic and static properties. A dynamic property is one that can be
determined in general only at run-time by executing the program.  In contrast, static properties
are those that can be determined without executing the program. Such properties are often
determined at compile time by a compiler.

For instance, consider the following Scheme expression:

(let ((n (read))   ; Scheme's READ reads a value from user
      (sq (lambda (x) (* x x)))
  (if (integer? n)
      (+ (sq (- n 1)) (sq (+ n 1)))
      0))

The value of this expression is a dynamic property, because it cannot be known until run-time
what input will be entered by the user.  However, there are numerous static properties of this
program that can be determined at compile-time:

• The free variables of the expresson are + and *.

• The result of the expression is an a non-negative even integer.

• If the user enters an input, the program is guaranteed to terminate.

A property is only static if it is possible to compute it at run-time. In general, most interesting
program properties are uncomputable (e.g., does the program halt? is a particular variable
guaranteed to be intialized?). There are two ways to address the problem of uncomputability:

1. Make a conservative approximation to the desired property. E.g., for the halting problem
answer either "yes, it halts" or "it may not halt".

2. Restrict the language to the point where it is possible to determine the property unequivocally.
Such restrictions reduce the expressiveness of the language.

2. Types

Intuitively, types are sets of values. For instance, Java’s integer type stands for the set of all
integers, while the boolean type stands for the set of values true and false. In general, finer
grained distinctions might be helpful (e.g. even integers, positive integers), but we will stick with
the notion of disjoint types supported by most programming languages.

In Scheme (as well as all the toy languages we have studied thus far this semester), every value
carries with it a dynamic type that is only checked by primitive operations. In most other modern
programming languages, the type of an expression is a static property, not a dynamic one.
Proponents of static types give the following reasons for including them in programming
languages:

1. Static types help programmers catch errors in their programs before running them.

2. Static types provide information to the compiler that can eliminate the time associated with
run-time type checks and the space required to store run-time types.
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3. Static types provide documentation about the program that can facilitate reasoning about the
program, both by humans and by other programs (e.g. compilers).

3.  Monomorphic Typed Languages

In a monomorphically typed language, each expression can be assigned a single type. Here we consider
monomorphic type systems in the context of two languages:

(1) HOFLEMT: HOFL with Explicit Monomorphic Types
(2) HOFLIMT: HOFL with Implicit Monomorphic Types

3.1 HOFLEMT Syntax

Figure 1 presents the grammar for HOFLEMT, a statically-typed version of HOFL with explicit types.
The grammar is similar to that for the dynamically-typed HOFL except for a few additions and changes.

The major addition is the introduction of type phrases via the non-terminals B and T. According to the
grammar, a type may be of three different forms:

• Base types B are names that designate the types of HOFL literals:
3. unit – the type of the one-point set {#u};
4. bool – the type of the two-point set {#t, #f};
5. int – the type of integers;
6. string – the type of strings;

• A list type of the form (listof T) designate lists all of whose elements have type T. In HOFLEMT,
only homogeneous lists are supported -- that is, lists in which all elements must be of the same type.
For example (listof int) designates lists of integers, and (listof bool) designates lists of
booleans, but it is not possible to have a list that contains both integers and booleans.

• A function type of the form (-> (T1 ... Tn) T0) designates functions whose n arguments, in
order,  have types T1 ... Tn, and whose result has type T0.  For example, an incrementing function
on integers would have type (-> (int) int),  an addition function on integers would have type (-
> (int int) int), and a less-than function on integers would have type (-> (int int) bool).

In HOFLEMT, the syntax of abstractions, recursions, and the empty list primitive application
have been extended to include type information:

• In an abstraction (abs ((I1 T1) ... (In Tn)) E), each formal parameter name is paired
with the type of that parameter. For example, here is a function that takes an integer and a
boolean; it increments the integer if the boolean is true, but doubles it if the boolean is false:

(abs ((n int) (b bool))
  (if b (+ n 1) (* n 2)))

As another example, consider a function that composes a string to integer function with an
integer to boolean function:

(abs ((f (-> (int) bool)) (g (-> (string) int)))
  (abs ((x string))
    (f (g x))))
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HOFLEMT Program Grammar
P  ∈ Program
P → (program (I1 ... In) E)

HOFLEMT Expression Grammar
L  ∈ Literals
L → #u                      ; Unit Literal
L → {#t,#f}      ; Boolean Literal
L → N                       ; Integer Literal
L → R                       ; String Literal

Ο ∈ Primop = {+, -, *, div, mod,
             <, <=, =, !=, >=, >,
             band, bor, not,
             prepend, head, tail, empty  ; Note: empty is special
             }

E ∈ Expressions
E → L                                      ; Literal
E → I                                      ; Variable Reference
E → (O E1 ... En)                          ; Primop Application
E → (empty T)                              ; Empty List Primapp
E → (abs ((I1 T1) ... (In Tn)) E)          ; Abstraction
E → (E0 E1 ... En)                         ; Function Application
E → (if E1 E2 E3)                          ; Conditional
E → (bindpar ((I1 E1) ... (In En)) E)      ; Parallel bindings
E → (bindrec ((I1 T1 E1) ... (In Tn En)) E) ; Local recursion

HOFLEMT Type Grammar

B  ∈ BaseType
B → unit                      ; Unit Type (one-point set)
B → bool                      ; Boolean Type (two-point set)
B → int                       ; Integer Type
B → string                    ; String Type

T  ∈ Type
T → B                         ; Base Type
T → (listof T)                ; List Type (with components of type T)
T → (-> (T1 ... Tn) T0)       ; Function (Arrow) Type

Figure 1: Grammar for HOFLEMT
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• In a local recursion (bindrec ((I1 T1 E1) ... (In Tn En)) E), each binding is
annotated with the type of that binding. For example:

(bindrec ((even? (-> (int) bool)
          (abs ((n int))
            (if (= n 0)
                #t
                (odd? (- n 1)))))
         (odd? (-> (int) bool)
           (lambda ((n int))
             (if (= n 0)
                 #f
                 (even? (- n 1))))))

   (even? 5))

• The empty list primitive application has a type annotation that indicates what type of empty
list is being created.  For example, (empty bool) creates an empty list of booleans,  (empty
(-> (int) bool) creates an empty list of integer predicates, and (empty (listof int))
creates an empty list of integer lists.

The following HOFLEMT program illustrates all three different kinds of type annotations. The
type annotations have been highlighted in bold for emphasis. Make sure you can justify to
yourself why all the type annotations are the way they are.

(program (a b m n)
  (bindrec ((from-to (-> (int int) (listof int))
               (abs ((lo int) (hi int))
                 (if (> lo hi)
                     (empty int)
                     (prepend lo (from-to (+ lo 1) hi)))))
            (map (-> ((-> (int) (listof bool)) (listof int))
                     (listof (listof bool)))
              (abs ((f (-> (int) (listof bool)))
                    (lst (listof int)))
                (if (empty? lst)
                    (empty (listof bool))
                    (prepend (f (head lst))
                             (map f (tail lst)))))))
(bind ints (from-to m n)
      (bindpar ((bools1 (map (abs ((n int))
                               (prepend (> n a)
                                        (prepend (< n b)
                                                 (empty bool))))
                             ints))
                (bools2 (map (abs ((n int))
                               (prepend (> n 0)
                                        (empty bool)))
                             ints)))
        (prepend bools1 (prepend bools2 (empty (listof (listof bool))))))))

As we shall see later, the explicit type annotations in HOFLEMT are designed to support
automatic type checking.  It turns out that the HOFLEMT annotations are the minimal set of
annotations that allow the expression to be type checked via a simple type “evaluator” that
“evaluates” each expression to its type. Program parameters do not need to be annotated since
they are assumed to be ints. Unlike bindrec, the bind and bindpar constructs do not require the
type of the named definition(s) to be given an explicit type. This is because in these constructs
the,  the type checker can determine the type of the name(s) from the type of the definition(s). In
contrast, the recursive scope of bindrec makes it generally necessary to know the type of a
recursively bound name(s) as part of calculating the type of the associated definition(s).
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3.2 HOFLEMT Typing Rules

A HOFLEMT expression E is said to be well-typed  if it is possible to prove that it has a type T
using a set of typing rules. It turns out that for any well-typed HOFLEMT expression E that has
a type T, the run-type value of E is guaranteed to be a member of the set of values denoted by T.
It is impossible to encounter a type error when evaluating a well-typed expression at run-time.

We use the notation  E:T  to indicate that E is a well-typed expression with type T. For example:

#u : unit
#t : bool
5 : int
(prepend 42 (prepend –17 (empty int))) : (listof int)
(abs ((x int)) (> x 0)) : (-> (int) bool)

Type environments  are environments that associate value variable names with types. For
example, the type environment {a:int, b:bool,f:(-> (int) int)} associates the name a
with the type int, the name b with the type bool, and the name f with the type (-> (int)
int). If A is a type environment, I is a term variable, and T is a type, we use the notation A(I) to
denote the type bound to I in type environment A, and A+{I1 : T1,… , In : Tn}  to stand for the
environment A extended with bindings between I1…In and T1…Tn, respectively.

Just as expressions can be evaluated relative to a value environment, expressions can be typed
relative to a type environment. A type judgment of the form A |- E : T is pronounced "Given the
type environment A, E has type T", or, more succinctly, "A proves that E has type T.

The well-typedness of expressions can be formalized in terms of a set of typing rules.  A typing
rule has the form

(rulename) 
Hypothesis1;...; Hypothesisn

Conclusion

where each of the hypotheses and conclusions is a typing judgement. Such a rule is pronounced
as follows: "If the hypotheses Hypothesis1 ... Hypothesisn are all true, then the conclusion
Conclusion is true." The name rulename  is just a handy way to refer to a particular rule.

The typing rules for HOFLEMT appear in Figure 2. These rules use the following metavariable
conventions:

• A ranges over type environments
• N ranges over numeric literals
• E ranges over expressions
• I ranges over term variables
• T ranges over types

The typing rules in Figure 2 can be used to prove that a given HOFLEMT expression is well-
typed. A proof that  expression E is well-typed with respect to a type environment A is a tree of
type judgements where:

• The root of the tree is A |- E : T for some type T;
• Each judgement J appearing in the tree is justified by instantiating one of the typing rules

such that J is the conclusion of the instantiated rule and the children judgements of J are
the hypotheses of the instantiated rule.

Such a tree of judgements whose root is the judgement J is said to be a type derivation (or
typing)  for J.
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(int)  
    A|−N:int

    (Other literal rules are similar)

(var)  
    A|−I:A(I)

 (if)  
    

A|−E1:bool; A|−E2:T; A|−E3:T

A|−(if E1 E2 E3):T

 (abs) 
    

A+{I 1:T1 , ..., In:Tn}|−E:T

A|−(abs ((I1 T1) ... (In Tn)) E) : (− >  (T1...Tn) T)

 (app) 
    

A | −E1:T1; ... ; A|−En:Tn
A|−E0:(− >  (T1 ... Tn) T)

A|-(E0 E1 ... En):T

 (bindpar) 
    

A +{I1:T1, ..., In:Tn}|−E:T
A|−E1:T1; ...; A|−En:Tn

A|−(bindpar ((I1 E1) ... (I1 En)) E):T
The bind construct is treated like bindpar with a single binding.

 (bindrec) 
    

Arec|−E:T
Arec|−E1:T1; ...; A|−En:Tn

A|−(bindrec ((I1 T1 E1) ... (In Tn En)) E):T
where Arec = A + {I1:T1,…,,In:Tn]

 (add) 
    

A|−E1:int; A|−E2:int
A|−(+ E1 E2):int

There are analogous rules for the other primitive applications. To allow list operations to be
polymorphic, we need special rules for list primitives (shown below).

(prepend) 
    

A|−E1:T; A|−E2:(listof T)
A|−(prepend E1 E2):T

(head) 
    

A|−E:(listof T)
A|−(head E):T

(tail) 
    

A|−E:(listof T)
A|−(tail E):(listof T)

 (empty) 
    A|−(empty T):(listof T)

(empty?) 
    

A|−E:(listof T)
A|−(empty? E):bool

Figure 2: Typing rules for HOFLEMT
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For example, consider the term

(bind app5 (abs ((f (-> (int) bool)))
             (f 5))
  (app5 (abs ((x int))
          (> x 0)))

Suppose that we want to show that this term is well-typed with respect to the empty
environment. Because the typing derivation will be a rather wide tree, we will introduce the
following abbreviations to make it narrower:

TIB = (-> (int) bool)
TIBB = (-> (TIB) bool)
A1 = {f: TIB }
A2 = {app5: TIBB }
A3 = {app5: T IBB, x:int}

Below is a typing derivation for the term that proves that it has type bool. Each horizontal line is
labeled with the name of the instantiated rule. Note that the leaves of the typing derivation are
judgements involving literals or variables; these have no hypotheses. Also note that the “shape”
of the derivation is an “upside down” abstract syntax tree for the expression at the root. That is, a
judgement for an expression E follows from the judgements of its direct subexpressions.

(bind)

(abs)

(app)

(var)
A1 | − f :T IB

; (int)
A1 | −5 : int

;

A1 | −(f 5) : bool
;

{}| −(abs ((f TIB )) (f 5)): TIBB;
 (app)

(var)
A2 | −app5: TIBB

;  (abs)

(gt)

(var)
A3 | -x: int

; (int)
A3 | -0 : int

A3 |- (>  x 0)) :bool

A2 | -(abs ((x int)) (>  x 0)): TIB

A2 | −(app5 (abs ((x int)) (>  x 0)):bool

{}| −(bind app5 (abs ((f TIB ) (f 5)) (app5 (abs ((x int)) (> x 0))) :bool

As shown above,  type derivations can be drawn as trees in which all hypotheses for a rule are on
the same line above the horizontal bar and the conclusion of a rule is below the horizontal bar.
We shall call this the horizontal format for a type derivation.

Using the horizontal format, it is very easy to run out of horizontal space when drawing a type
derivation. Below, we illustrate an alternative vertical format for displaying the above type
derivation that makes much better use of horizontal space:

    + (var) A1 |- f : TIB
    + (int) A1 |- 5 : int
  + (app) A1 |- (f 5) : bool
+ (abs) {} |- (abs ((f TIB)) (f 5)): TIBB
| + (var) A2 |- app5 : TIBB
| |   + (var) A3 |- x : int
| |   + (int) A3 |- 0 : int
| | + (gt) A3 |- (> x 0) : bool
| + (abs) A2 |- (abs ((x int)) (> x 0)) : TIB
+  (app) A2 |- (app5 (abs ((x int)) (> x 0))) : bool
(bind) {} |- (bind app5 (abs ((f TIB)) (f 5))
               (app5 (abs ((x int)) (> x 0))) : bool

In this alternative representation, each conclusion of a rule is labeled with the name of the rule
used to derive it, and the hypotheses of the rule are those judgements on the lines labelled “+”
directly above the leftmost character of the rule name. Vertical lines are used to connect the
hypotheses of the same rule.
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Vertical format makes it easier to draw type derivations for more complex expressions using
fewer abbreviations without running out of space. For example, below is a type derivation for the
following expression:

(bindpar ((app5_1 (abs ((f (-> (int) int))) (f 5))
          (app5_2 (abs ((f (-> (int) (-> (int) int)))) (f 5))
          (make-sub (abs ((n int)) (abs ((x int)) (- x n)))))
  (app5_1 (make-sub ((app5_2 make-sub) 3)))

The type derivation uses the following abbreviations:

TII  = (-> (int) int)
A1 = {app5_1: (-> (TII) int),
     app5_2: (-> ((-> (int) TII)) TII),
     make-sub: (-> (int) TII)}

    + (var) {f:TII} |- f : TII
    + (int) {f:TII} |- 5 : int
  + (app) {f:TII} |- (f 5) : int
+ (abs) {} |- (abs ((f TII) (f 5)) : (-> (TII) int)
|   + (var) {f:(-> (int) TII)} |- f : (-> (int) TII)
|   + (int) {f:(-> (int) TII)} |- 5 : int
| + (app) {f:(-> (int) TII)} |- (f 5) : TII
+ (abs) {} |- (abs ((f (-> (int) TII))) (f 5)) : (-> ((-> (int) TII)) TII)
|     + (var) {n:int,x:int} |- x : int
|     + (var) {n:int,x:int} |- n : int
|   + (sub) {n:int,x:int} |- (- x n) : int
| + (abs) {n:int} |- (abs ((x int)) (- x n)) : TII
+ (abs) {} |- (abs ((n int)) (abs ((x int)) (- x n))) : (-> (int) TII)
| + (var) A1 |- app5_1 : (-> (TII) int)
| | + (var) A1 |- make-sub : (-> (int) TII)
| | |   + (var) A1 |- app5_2: (-> ((-> (int) TII)) TII)
| | |   + (var) A1 |- make-sub: (-> (int) TII)
| | | + (app) A1 |- (app5 make-sub): TII
| | | + (int) A1 |- 3: int
| | + (app) A1 |- ((app5 make-sub) 3) : int
| + (app) A1 |- (make-sub ((app5 make-sub) 3)) : TII
+ (app) A1 |- (app5 (make-sub ((app5 make-sub) 3))) : int
(bindpar) {} |- (bindpar ((app5_1 (abs ((f TII)) (f 5))
                          (app5_2 (abs ((f (-> (int) TII))) (f 5))
                          (make-sub (abs ((n int))
                                      (abs ((x int))
                                        (- x n)))))
                  (app5_1 (make-sub ((app5_2 make-sub) 3))) : int

Note that the above derivation contains two separate copies of the apply-to-5 function: one that
assumes the argument f has type (-> (int) int) and the other that assumes that the argument f
has type (-> (int) (-> (int) int)). Two separate copies of this function are needed in
HOFLEMT because it is a monomorphic language: every expression has exactly one type.
Since the function is applied at two different argument types, it is necessary to have one copy of
the function per argument type.

Examples of real-life monomorphic languages include C, Pascal, and Fortran. As suggested by
the above example, in monomorphic languages it may be necessary to create many copies of the
same function that differ only in their type. For example, in monomorphic languages, it is
necessary to write separate sorting routines for arrays of integers and arrays of floating point
numbers because these two arrays have different types!  Even worse, in Pascal, the size of the
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array is part of the array type, so one must write a different sorting function to sort arrays of 10
integers and arrays of 11 integers!

Above we only considered showing that HOFLEMT expressions are well-typed. It is also
possible to show that HOFLEMT programs are well-typed. This can be done by showing that the
body of the program is well-typed with respect to a type environment where each program
parameter is bound to the int type.

It is possible to check the well-typedness of a HOFLEMT expression or program via an
automatic type checker. A type checker is very much like an evaluator, except that rather than
finding the type of an expression relative to a value environment, it determines the type of an
expression relative to a type environment.

3.3 HOFLIMT

The HOFLIMT language is an implicitly typed version of HOFLEMT.  Each HOFLIMT
program or expression is the result of erasing the type annotations of a corresponding
HOFLEMT program or expression. The typing rules of HOFLIMT are those of HOFLEMT in
which the type annotations have been erased from every expression. For example, below is a
HOFLIMT type derivation for the following expression:

(bind app5 (abs (f) (f 5)) (app5 (abs (x) (> x 0))))

+ (var) A1 |- f : TIB
    + (int) A1 |- 5 : int
  + (app) A1 |- (f 5) : bool
+ (abs) {} |- (abs (f) (f 5)): TIBB
| + (var) A2 |- app5 : TIBB
| |   + (var) A3 |- x : int
| |   + (int) A3 |- 0 : int
| | + (gt) A3 |- (> x 0) : bool
| + (abs) A2 |- (abs (x) (> x 0)) : TIB
+  (app) A2 |- (app5 (abs (x) (> x 0))) : bool
(bind) {} |- (bind app5 (abs (f) (f 5))
               (app5 (abs (x) (> x 0))) : bool

4.  Polymorphic Typed Languages

In a polymorphic typed language, each expression can potentially be assigned multiple types. Here we
develop the notion of polymorphic types and study them in the context of two toy languages:

(1) HOFLEPT: HOFL with Explicit Polymorphic Types
(2) HOFLIPT: HOFL with Implicit Polymorphic Types

4.1 Polymorphic Types

Here we informally introduce the explicitly typed HOFLEPT language via a series of examples.

As noted above, monomorphic types can be constraining.  Consider a map function written in
HOFLEPT. To write such a function, we have to fix the element type of the input list and of the
output list. For example, we might say that map maps an integer list to an integer list.

(bindrec ((map (-> ((-> (int) int) (listof int)) (listof int))
            (abs ((f (-> (int) int)) (lst (listof int)))
              body of map)))
  body of bindrec)

But sometimes we want to use mapping in the context of other types. For example,
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if we want to map a list of integers to a list of booleans we need to define a second mapping
function

(bindrec ((map-int-bool (-> ((-> (int) bool) (listof int)) (listof bool))
            (abs ((f (-> (int) bool)) (lst (listof int)))
              body of map)))
  body of bindrec)

and if we want one that maps boolean lists to boolean lists we need to define a third:

(bindrec ((map-bool-bool (-> ((-> (bool) bool) (listof bool)) (listof bool))
            (abs ((f (-> (int) bool)) (lst (listof bool)))
              body of map)))
  body of bindrec)

In all three cases, the code labeled body of map is exactly the same. So we essentially have
several different copies of a mapping function that differ only in their type annotations. In
general, it is bad software engineering practice to make multiple copies of an abstraction.
Copying is a tedious process that can introduce bugs.  More important, the existence of multiple
copies makes it more difficult to change the implementation of the abstraction, since any such
change must be made consistently across multiple copies. In practice, such changes are often
either made to only some of the copies, or they are simply not made at all.

Software engineering principles suggest an alternative approach: develop some sort of template
that captures the commonalities between the different versions of map and an associated
mechanism for instantiating the template. We will explore one such approach here, although
there are others.

We introduce a new type of the form (forall (I1 ... In) T) that serves as a template for
types that have a similar form. For example, all of the mapping types above can be captured by
the following forall type:

map : (forall (A B) (-> ((-> (A) B) (listof A)) (listof B)))

Here, the A and B are formal type parameters that stand in the place of actual types that will be
supplied later.  The formal type parameters of a forall type serve the same role as the formal
parameters of an abs, the only difference being that abs-bound names stand for values whereas
forall-bound names stand for types. Foralls can be nested just like abss, and the type
variables they introduce obey the same scoping conventions as those for abs-bound variables.

An expression that has a forall type is said to designate a polymorphic value.  The value is
polymorphic in the sense that it can have different types in different contexts. In a language with
polymorphic values, it is unnecessary to make multiple copies of the map function with different
types. Instead, there is a mechanism for specifying how a single polymorphic map function
should be instantiated with particular types.

Let's assume for the moment that there's some way to define a map function with the above
forall type (we'll see how to do this later).  Then we need some way to supply actual types for
the formal type parameters in the forall.  This is accomplished by a polymorphic projection
special form, which has the form (papp E T1 ... Tn). Intuitively, papp is a declaration that an
expression E with forall type should in this particular case have its formal type parameters
instantiated with the actual types T1 ... Tn.  For example, here are the types of some papp
expressions involving map:

(papp map int int) : (-> ((-> (int) int) (listof int)) (listof int))
(papp map int bool) : (-> ((-> (int) bool) (listof int)) (listof bool))
(papp map bool int) : (-> ((-> (bool) int) (listof bool)) (listof int))
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(papp map bool bool) : (-> ((-> (bool) bool) (listof bool)) (listof bool))

Once we have projected the polymorphic map value onto particular types, we can use it as a
regular function value. E.g.:

((papp map int int) (abs ((x int)) x)
                    (prepend 2 (prepend -3 (prepend 5 (empty int))))
=> (4 9 25)

((papp map int bool) (abs ((x int)) (> x 0))
                     (prepend 2 (prepend -3 (prepend 5 (empty int))))
=> (#t #f #t)

((papp map int bool) (abs ((b bool)) (if b 1 0))
                     (prepend #t (prepend #f (prepend #t (empty bool))))
=> (1 0 1)

((papp map bool bool) (abs ((b bool)) (not b))
                      (prepend #t (prepend #f (prepend #t (empty bool))))
=> (#f #t #f)

It is an error to attempt to use map as a function without first projecting it. For example,

(map (abs ((b bool)) (not b)) (prepend #t (empty bool)))

is not well typed because the operator should have an arrow type, while map has a forall type.

As another example, consider the app5 function in HOFL:

(bind app5 (abs (f) (f 5))
     body of bind)

In dynamically typed HOFL, the function f supplied to app5 must accept an integer, but it can
return any type of value. In HOFLEMT, app5 can return only a single type of value. In a
polymorphic version of HOFL, we can define a version of app5 that has the following type:

app5 : (forall (T) (-> ((-> (int) T)) T))

Below are some sample uses of the polymorphic app5 function in the explicitly typed HOFLEPT
language (formally described later). (We shall assume that make-sub is the function used in the
previous section with type (-> (int) (-> (int) int))).)

((papp app5 int) (abs ((x int)) (* x x))) -> 25

((papp app5 bool) (abs ((x int)) (> x 0))) -> #t

((papp apply int) (make-sub 3)) -> 2

(((papp app5 (-> (int) int)) make-sub) 3) -> -2

Although we shall not do so in HOFLEPT, the built-in list operations could naturally be
characterized with forall types:

prepend : (forall (T) (-> (T (listof T)) (listof T)))
head : (forall (T) (-> ((listof T)) T))
tail : (forall (T) (-> ((listof T)) (listof T)))
empty? : (forall (T) (-> ((listof T)) bool))
empty : (forall (T) (-> () (listof T)))
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The only thing we are missing is a way to create polymorphic values, i.e., values of forall
type.  We introduce a new expression construct  (pabs (I1 ... In) E) whose only purpose is
to convert the value of E into a polymorphic value.  The pabs introduce formal type parameters
I1 ... In that may be referenced within the body expression E. For example, here is the
definition of app5:

(bind app5 (pabs (T)
             (abs ((f (-> (int) T)))
               (f 5)))
  body of bind)

The type of app5 in the above expression would be:

(forall (T) (-> ((-> (int) T)) T))

Note how the parameter T introduced by pabs can be used within the type expression for f.
The names introduced by pabs are in a different namespace from those introduced by pabs:
pabs-bound names designate types whereas abs-bound names designate values.  The two
namespaces do not interfere with each other.  For example, consider the following test function:

(bind test (abs ((t int))
            (pabs (t)
              (abs ((x t)) t)))
  body of bind)

In the expression (abs ((x t)) t), the first t refers to the pabs-bound variable while the
second t refers the the abs-bound variable.

Now we're ready to see the definition of the polymorphic map function in HOFLEPT:

(bindrec ((map (forall (A B) (-> ((-> (A) B) (listof A)) (listof B)))
            (pabs (A B)
              (abs ((f (-> (A) B))
                    (lst (listof A)))
                (if (empty? lst)
                    (empty B)
                    (prepend (f (head lst))
                             ((papp map A B) f (tail lst))))))))
  body of bindrec)

The plethora of type annotations make the definition rather difficult to read, but once the
polymorphic map function is defined, we can use papp to instantiate map to whatever type we
desire.

4.2 Formal Description of HOFLEPT

The formal details of the polymorphic features of the HOFLEPT language are summarized in
Figure 3. HOFLEPT has the same type grammar as HOFLEMT except that there is one new type
construct (forall).  It has the same expression grammar as HOFLEMT except that there are two
new expression constructs (pabs and papp).  It has the same typing rules as HOFLEMT except
that there are two new rules, (pabs) and (papp), which  indicate the interplay between the new
constructs. The pabs expression is the only form that can produce values of forall type, while
the papp expression is the only form that can consume values of forall type.  In this respect,
pabs, papp and forall share a similar relationship to abs, application, and -> types: abs is the
only construct creating values of -> type, and application is the only construct that consumes
values of -> type.
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New type syntax:
T  → (forall (I1 ... In) T)

New expression syntax:
E → (pabs (I1 ... In) E)

E → (papp E T1 ... Tn)

New type rules:

(pabs) 
    

J1,...,Jnare not free in A
A|−E:T

A|−(pabs (J1  ... Jn) E):(forall (J1 ... Jn) T)

 (papp) 
    

A|−E:(forall (J1 ... J n) T)

A|−(papp E T1 ... Tn):T[T1,...,Tn/J1,...,Jn]

Figure 3: Summary of the extensions to HOFLEMT that yield HOFLEPT

Two features of the typing rules deserve explanation:

1.  In the (papp) rule,  the notation T[T1,...,Tn/ J1,...,Jn]  is pronounced "the result of
simultaneously substituting T1. for J1, ... , and Tn  for Jn  in T. " The simultaneouse
substitution process is very similar to that which we studied for the substitution model, except
that the substitution is being performed on a type abstract syntax tree rather than an expression
abstract syntax tree.

2. In the (pabs) rule, the condition "J1 ... Jn are not free in A" is a subtle technical detail.  It
turns out that it is safe to abstract over the variables J1 ... Jn  in T with a forall only if the
type variables J1 ... Jn  do not appear as free variables in the type bindings in the type
environment A. To see why the restriction is necessary, consider the following (contrived)
example:

(bindrec ((polytest (forall (t) (-> (t) (forall (t) t)))
            (pabs (t)
              (abs ((x t))
                (pabs (t) x)))))
  body of bindrec)

In the forall type given to polytest, the type t of x, which should reference the outer t,
has been captured by the inner t.  The restriction in the (pabs) rule outlaws this sort of name
capture.

As a simple illustration of the power of polymorphism, we revisit an example from above that
required two copies of the apply-to-5 function in a monomorphic system. In the polymorphic
system, it requires only one copy of the apply-to-5 function. Here is the HOFLEPT expression;
the type derivation appears below:

(bindpar ((app5 (pabs (A) (abs ((f (-> (int) A))) (f 5))))
          (make-sub (abs ((n int)) (abs ((x int)) (- x n)))))
  ((papp app5 int)
   (make-sub (((papp app5 (-> (int) int)) make-sub) 3)))
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The type derivation uses the following abbreviations:

TIA = (-> (int) A)
TII = (-> (int) int)
Tapp5 = (forall (A) (-> (TIA) A))
A1 = {app5: Tapp5, make-sub: (-> (int) TII)}

      + (var) {f:TIA} |- f : TIA
      + (int) {f:TIA} |- 5 : int
    + (app) {f:TIA} |- (f 5) : A
  + (abs) {} |- (abs ((f TIA)) (f 5)) : (-> (TIA) A)
+ (pabs) {} |- (pabs (A) (abs ((f TIA)) (f 5))) : Tapp5
|     + (var) {n:int,x:int} |- x : int
|     + (var) {n:int,x:int} |- n : int
|   + (sub) {n:int,x:int} |- (- x n) : int
| + (abs) {n:int} |- (abs ((x int)) (- x n)) : TII
+ (abs) {} |- (abs ((n int)) (abs ((x int)) (- x n))) : (-> (int) TII)
|   + (var) A1 |- app5 : Tapp5
| + (papp) A1 |- (papp app5 int): (-> (TII) int)
| | + (var) A1 |- make-sub : (-> (int) TII)
| | |     + (var) A1 |- app5: Tapp5
| | |   + (papp) A1 |- (papp app5 (-> (int) int)): (-> ((-> (int) TII)) TII)
| | |   + (var) A1 |- make-sub: (-> (int) TII)
| | | + (papp) A1 |- ((papp app5 (-> (int) int)) make-sub): TII
| | | + (int) A1 |- 3: int
| | + (app) A1 |- (((papp app5 (-> (int) int)) make-sub) 3) : int
| + (app) A1 |- (make-sub (((papp app5 (-> (int) int)) make-sub) 3)) : TII
+ (app) A1 |- ((papp app5 int)
              (make-sub (((papp app5 (-> (int) int)) make-sub) 3))) : int
(bindpar) {} |- (bindpar ((app5 (pabs (A)
                                  (abs ((f (-> (int) A))) (f 5))
                          (make-sub (abs ((n int))
                                      (abs ((x int))
                                        (- x n)))))
                  ((papp app5 int)
                   (make-sub (((papp app5 (-> (int) int))
                                make-sub)
                              3))) : int

There is an implicitly typed HOFLIPT language that has the same relationship to HOFLEPT as
HOFLIMT has to HOFLEMT.  The expression of HOFLIPT are the type erasures of those in
HOFLEPT, and the typing rules of HOFLIPT are those of HOFLEPT in which all type
annotations have been erase from all expressions.
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5. Other Typing Issues

In our study of typed versions of HOFL, we have only scratched the surface of type systems,
which are currently a hot area of programming language research. Here are a few notes
indicating other dimensions of type systems:

• We considered types that described only primitive data, functions, and lists. In general, type
systems must handle additional constructs like arrays, records, variants, and exception
handling constructs.

• In the above system, the criterion for type compatibility was very narrow. A function with
formal parameter type S could only be applied to an argument of type T if S is exactly equal
to T.  However, in many situations there is a natural notion of subtyping whereby it is OK if
T is a subtype of S. For instance if a function extracts the field phone from a record
argument, then all that matters is that the argument is a record with a phone field. Whether it
has additional fields is irrelevant. In this case, any record type with a phone field would be a
subtype of the record type with just a phone field.  Subtyping plays an important role in
typed object-oriented languages. (There are numerous issues of typing in object-oriented
languages that have not been resolved.)

• As illustrated by the map example from above, explicit types can get very messy. A number
of systems have been developed to reduce or eliminate the type annotations specified by the
user.  Some systems support implicit projection, in which the the papp construct is not
necessary because it can be inferred by the type checker.  In type inference or type
reconstruction systems, the programmer writes very few type annotations at all; most are
automatically inferred. ML and Haskell are two modern languages that make heavy use of
type inference technology.   A drawback of systems with type inference is that certain
programs cannot be written (because their types cannot be inferred). An alternative approach
are soft typing systems, which attempt to infer the type of a program but do not prevent the
program from being run if a type cannot be found.


