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CS251 JEOPARDY: The Home Version
The game that turns CS251 into CS25fun

Naming

[1]  List all of the free variables of the following HOFL expression:

(abs (a)
   (a b (abs (b) (+ b c))))

[2]  List all of the following languages that are block structured:

• Pascal
• C
• Java
• Scheme
• ML

[3]  The following is a legal program in both FOBS and HOFL. In FOBS, it denotes the
factorial function, while in HOFL it does not. What programming language feature
accounts for the difference in meaning between the two languages?

    (program (n)
      (funrec ((fact (fact)
                 (if (= fact 0)
                     1
                     (* fact (fact (- fact 1))))))
        (fact n)))

[4]  Give the value of the following expression in both lexically scoped and dynamically
scoped versions of Scheme:

(let ((a 1)
      (b 2))
  (let ((f (let ((a 10))
             (lambda () (+ a b)))))
    (let ((b 20))
      (f))))

[5] Give the value of the following Scheme expression under all four parameter passing
mechanisms: call-by-value, call-by-name, call-by-need, call-by-reference. Assume
procedure arguments are evaluated in left-to-right order.

(let ((a 1))
  (let ((b a))
    (let ((c (begin (set! a (+ a 1)) a))))
      (begin (set! b 10)
             (+ a (+ c c))))))
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Laziness

[1]  Which one of the following does not belong:
• lazy data
• call-by-value
• memoization
• call-by-need.

[2]  In his paper "Why Functional Programming Matters", John Hughes argues that
laziness is important because it enhances something?  What?

[3]  Below are two definitions of an if0 construct: the left defined by desugaring, the right
defined as a function:

(if0 Enum Ezero Enonzero )          (define if0
desugars to                           (lambda (Enum Ezero Enonzero)
(if (= Enum 0) Ezero Enonzero)          (if (= Enum 0) Ezero Enonzero)))

List all of the following parameter-passing mechanisms under which the two definitions are
equivalent:

• call-by-value
• call-by-name
• call-by-need

[4]  What are the elements of the list returned by evaluating the following Haskell expression?

    take 5 (scanl (+) 0 elts) where elts = 1 : (map (2 *) elts)

[5]   What is the value of the following statically-scoped call-by-value Scheme expression?
Assume left-to-right operand evaluation.

   (let ((n 0))
     (let ((inc! (lambda (x) (begin (set! n (+ n x)) n))))
       (let ((inc1 (lambda () (inc! 1)))
             (inc2 (delay (inc! 2))))
         (+ (* (inc1) (force inc10))
            (* (inc1) (force inc10))))))

Extra: What if the operand evaluation order is right-to-left?
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Data

[1]  What data structure is commonly used in interpreters to associate names with values?

[2]  What feature in Scheme, ML, and Java is responsible for reclaiming storage used by
values that are no longer accessible from the program?

[3]  ML's datatype  and Haskell's data  construct are examples of "sum-of-product"
data type declarations. What are traditional names for "sum" and "product " in
programming languages?

[4]  What is the value of the following ML program?

let val yourMom = [[1,2], [3,4,5,6,7], [8]]
 in map (foldr (fn (_,x) => 1+x) 0) yourMom

   end

[5]  What problem does invoking the following C function lead to?

int* elts (int c, int n) {
  int a[n];
  int i;
  for (i = 0; i < n; i++) {
    a[i] = c*i;
  }
  return a;
}

Extra: How can the problem be fixed?
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Transformations

[1]   What common program transformation have we studied that Alan Perlis once quipped
could cause “cancer of the semi-colon”?

[2] What is the name of a transformation that can transform an ML function of type

int * char -> bool

to a function of type

int -> char -> bool

[3]  Consider the following program transformation:

(+ E E) => (* 2 E)

For each of the following programming paradigms, indicate whether the above
transformation is safe – that is, it preserves the meaning of the expression for all possible
expressions E.

• functional
• imperative
• object-oriented

[4]  Consider the following transformation in an imperative version of Scheme:

((lambda (x) 3) E) => 3

List all of the following parameter passing mechanisms for which the above transformation
is safe – that is, it preserves the meaning of the expression for all possible expressions E.

• call-by-value
• call-by-name
• call-by-need
• call-by-reference

Assume arguments to a procedure call are evaluated in left-to-right order.

[5]  In Scheme, the special form (or E1 E2) first evaluates E1 to a value V1. If V1 is not
false, it is returned without evaluating E2. If V1 is false, the value of E2 is returned. Bud
Lojack suggests the following desugaring rule for (or E1 E2)

 (or E1 E2) desugars to (let ((x E1)) (if x x E2))

Unfortunately, this desugaring has a bug.  Give a concrete expression in which the
desugaring fails to have the right meaning.
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Imperative Programming

[1]  List all of the following languages in which a variable is always bound to an explicit
mutable cell.

• Scheme
• ML
• Java
• Haskell
• C

[2] What programming language property corresponds to the mathematical notion of
"substituting equals for equals" (Functional languages have it; imperative languages
don't.)

[3] What is the value of executing f(5), where f is the following C function?

int f (int n) {
  int ans = 1;
  while (n > 0) {
    n = n - 1;
    ans = n * ans;
  }
  return ans;
}

[4] What is the value of executing g(1,2) in the context of the following C definitions?

void h (int x, int* y) {
  x = x + *y;
  *y = *y + x;
}

int g (int a, int b) {
  h(a, &b);
  return a * b;
}

[5]  What is the value of the following Scheme program? Assume operands are evaluated
from left to right. (Hint: draw environments!)

(let ((f (let ((a 0))
           (lambda ()
             (begin (set! a (+ a 1))
                    (let ((b 0))
                      (lambda ()
                         (begin (set! b (+ a b))
                                b))))))))

     (let ((p (f))
    (+ (p)
       (let ((q (f))
         (+ (q)
            (+ (p) (q))))))
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Control

[1]  Name the property that allows Scheme to perform iterations in constant space without
explicit looping constructs.

[2]  Which one of the following most closely models Pascal's goto construct?

• Scheme’s error construct
• Scheme's call-with-current-continuation construct
•     ML’s raise construct?
•     Java's try/catch construct?
•     Java's break construct?

[3]  What is the value of the following expression in a version of Scheme supporting raise
and handle?

(handle err (lambda (y) (+ y 200))
  (let ((f (lambda (x) (+ (raise err x) 1000))))
    (handle err (lambda (z) (+ z 50))
      (f 4)))

Extra: what if the handles are replaced by traps?

[4]  Consider the following procedure in a version of Scheme supporting label and jump:

(define test
  (lambda (x)
    (+ 1 (label a
           (+ 20 (label b
                   (+ 300 (jump a (label c
                                    (if (> x 0)
                                        (+ 4000 (jump c x))
                                        (jump b x)))))))))))

What is the value of the expression (+ (test 0) (test 5))? Assume operands are
evaluated left-to-right.

[5]  What is the value of the following expression in a version of Scheme supporting label
and jump?

(let ((twice (lambda (f) (lambda (x) (f (f x))))))
  (let ((g (label a (lambda (z) (jump a z)))))
    (((g twice) 1+) 0)))
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Types

[1]  Name a "real-world" statically-typed language that does not require explicit types.

[2]  What feature is lacking in Java's type system that makes it impossible to write a general
Scheme or ML style map function in Java?

[3]  What type would the ML type reconstructer infer for the following function definition?

fun some pred []= NONE
  | some pred (x::xs) =
      if (pred x)
      then SOME(x)
      else some pred xs

[4]  Write an  explicitly typed HOFLEMT expression that has the following type. The
function must actually use each of its arguments.

(-> (int (-> (int) bool)) bool)

[5]  Translate the following (implicitly typed) HOFLIPT expression into an explicitly typed
HOFLEPT expression with the most general possible type.

(abs (f x) (f x x))

Extra: What is the type of your HOFLEPT expression?

Potpourri

[1]  Complete the following Guy Steele poem by filling in the <???>

A one slot cons is called a <???>
A two-slot cons makes lists as well
And I would bet a coin of bronze
There isn't any three-cell  cons.

[2]  Who was the inventor of the lambda calculus, a formal system upon which functional
programming is based?

[3]   Is it possible to write an interpreter for an imperative language in a purely
functional language?

[4]  Name one of the inventors of the type reconstruction algorithm we studied in class.

[5]  List four properties that values must have in order to be considered “first-class”.


