
1

CS251 Programming Languages Handout #32
Prof. Lyn Turbak April 11, 2001
Wellesley College

POLYMORPHIC TYPES

1. Polymorphic Typed Languages

1.1 Polymorphic Types

In a typed language with parametric polymorpism, each expression can potentially be assigned
multiple types. Here we develop the notion of polymorphic types and study them in the context
of the toy language HOFLEPT: HOFL with Explicit Polymorphic Types. In this section, we
informally introduce the explicitly typed HOFLEPT language via a series of examples. In the
next section, we formalize the typing rules for HOFLEPT.

As noted in the context of HOFLEMT, monomorphic types can be constraining. Consider a map
function written in HOFLEPT. To write such a function, we have to fix the element type of the
input list and of the output list. For example, we might say that map maps an integer list to an
integer list.

(bindrec ((map (-> ((-> (int) int) (listof int)) (listof int))
 (abs ((f (-> (int) int)) (lst (listof int)))
 body of map)))
 body of bindrec)

But sometimes we want to use mapping in the context of other types. For example,
if we want to map a list of integers to a list of booleans we need to define a second mapping
function

(bindrec ((map-int-bool (-> ((-> (int) bool) (listof int)) (listof bool))
 (abs ((f (-> (int) bool)) (lst (listof int)))
 body of map)))
 body of bindrec)

and if we want one that maps boolean lists to boolean lists we need to define a third:

(bindrec ((map-bool-bool (-> ((-> (bool) bool) (listof bool)) (listof bool))
 (abs ((f (-> (int) bool)) (lst (listof bool)))
 body of map)))
 body of bindrec)

In all three cases, the code labeled body of map is exactly the same. So we essentially have
several different copies of a mapping function that differ only in their type annotations. In
general, it is bad software engineering practice to make multiple copies of an abstraction.
Copying is a tedious process that can introduce bugs. More important, the existence of multiple
copies makes it more difficult to change the implementation of the abstraction, since any such
change must be made consistently across multiple copies. In practice, such changes are often
either made to only some of the copies, or they are simply not made at all.

Software engineering principles suggest an alternative approach: develop some sort of template
that captures the commonalities between the different versions of map and an associated
mechanism for instantiating the template. We will explore one such approach here, although
there are others.

We introduce a new type of the form (forall (I1 ... In) T) that serves as a template for
types that have a similar form. For example, all of the mapping types above can be captured by
the following forall type:

2

map : (forall (A B) (-> ((-> (A) B) (listof A)) (listof B)))

Here, the A and B are formal type parameters that stand in the place of actual types that will be
supplied later. The formal type parameters of a forall type serve the same role as the formal
parameters of an abs, the only difference being that abs-bound names stand for values whereas
forall-bound names stand for types. Foralls can be nested just like abss, and the type
variables they introduce obey the same scoping conventions as those for abs-bound variables.

An expression that has a forall type is said to designate a polymorphic value. The value is
polymorphic in the sense that it can have different types in different contexts. In a language with
polymorphic values, it is unnecessary to make multiple copies of the map function with different
types. Instead, there is a mechanism for specifying how a single polymorphic map function
should be instantiated with particular types.

Let's assume for the moment that there's some way to define a map function with the above
forall type (we'll see how to do this later). Then we need some way to supply actual types for
the formal type parameters in the forall. This is accomplished by a polymorphic projection
special form, which has the form (papp E T1 ... Tn). Intuitively, papp is a declaration that an
expression E with forall type should in this particular case have its formal type parameters
instantiated with the actual types T1 ... Tn. For example, here are the types of some papp
expressions involving map:

(papp map int int) : (-> ((-> (int) int) (listof int)) (listof int))
(papp map int bool) : (-> ((-> (int) bool) (listof int)) (listof bool))
(papp map bool int) : (-> ((-> (bool) int) (listof bool)) (listof int))
(papp map bool bool) : (-> ((-> (bool) bool) (listof bool)) (listof bool))

Once we have projected the polymorphic map value onto particular types, we can use it as a
regular function value. E.g.:

((papp map int int) (abs ((x int)) x)
 (prepend 2 (prepend -3 (prepend 5 (empty int))))
=> (list 4 9 25)

((papp map int bool) (abs ((x int)) (> x 0))
 (prepend 2 (prepend -3 (prepend 5 (empty int))))
=> (list true false true)

((papp map int bool) (abs ((b bool)) (if b 1 0))
 (prepend true (prepend false (empty bool)))
=> (list 1 0)

((papp map bool bool) (abs ((b bool)) (not b))
 (prepend true (prepend false (empty bool)))
=> (list false true)

It is an error to attempt to use map as a function without first projecting it. For example,

(map (abs ((b bool)) (not b)) (prepend #t (empty bool)))

is not well typed because the operator should have an arrow type, while map has a forall type.

As another example, consider the app5 function in HOFL:

(bind app5 (abs (f) (f 5))
 body of bind)

3

In dynamically typed HOFL, the function f supplied to app5 must accept an integer, but it can
return any type of value. In HOFLEMT, app5 can return only a single type of value. In a
polymorphic version of HOFL, we can define a version of app5 that has the following type:

app5 : (forall (T) (-> ((-> (int) T)) T))

Below are some sample uses of the polymorphic app5 function in the explicitly typed HOFLEPT
language (formally described later). (We shall assume that make-sub is the function used in the
previous section with type (-> (int) (-> (int) int))).)

((papp app5 int) (abs ((x int)) (* x x))) => 25

((papp app5 bool) (abs ((x int)) (> x 0))) => true

((papp apply int) (make-sub 3)) => 2

(((papp app5 (-> (int) int)) make-sub) 3) -> -2

Although we shall not do so in HOFLEPT, the built-in list operations could naturally be
characterized with forall types:

prepend : (forall (T) (-> (T (listof T)) (listof T)))
head : (forall (T) (-> ((listof T)) T))
tail : (forall (T) (-> ((listof T)) (listof T)))
empty? : (forall (T) (-> ((listof T)) bool))
empty : (forall (T) (-> () (listof T)))

The only thing we are missing is a way to create polymorphic values, i.e., values of forall
type. We introduce a new expression construct (pabs (I1 ... In) E) whose only purpose is
to convert the value of E into a polymorphic value. The pabs introduce formal type parameters
I1 ... In that may be referenced within the body expression E. For example, here is the
definition of app5:

(bind app5 (pabs (T)
 (abs ((f (-> (int) T)))
 (f 5)))
 body of bind)

The type of app5 in the above expression would be:

(forall (T) (-> ((-> (int) T)) T))

Note how the parameter T introduced by pabs can be used within the type expression for f.
The names introduced by pabs are in a different namespace from those introduced by pabs:
pabs-bound names designate types whereas abs-bound names designate values. The two
namespaces do not interfere with each other. For example, consider the following test function:

(bind test (abs ((t int))
 (pabs (t)
 (abs ((x t)) t)))
 body of bind)

In the expression (abs ((x t)) t), the first t refers to the pabs-bound variable while the
second t refers the the abs-bound variable.

4

Now we're ready to see the definition of the polymorphic map function in HOFLEPT:

(bindrec ((map (forall (A B) (-> ((-> (A) B) (listof A)) (listof B)))
 (pabs (A B)
 (abs ((f (-> (A) B))
 (lst (listof A)))
 (if (empty? lst)
 (empty B)
 (prepend (f (head lst))
 ((papp map A B) f (tail lst))))))))
 body of bindrec)

The plethora of type annotations make the definition rather difficult to read, but once the
polymorphic map function is defined, we can use papp to instantiate map to whatever type we
desire.

4.2 Formal Description of HOFLEPT

The formal details of the polymorphic features of the HOFLEPT language are summarized in
Figure 3. HOFLEPT has the same type grammar as HOFLEMT except that there is one new type
construct (forall). It has the same expression grammar as HOFLEMT except that there are two
new expression constructs (pabs and papp). It has the same typing rules as HOFLEMT except
that there are two new rules, (pabs) and (papp), which indicate the interplay between the new
constructs. The pabs expression is the only form that can produce values of forall type, while
the papp expression is the only form that can consume values of forall type. In this respect,
pabs, papp and forall share a similar relationship to abs, application, and -> types: abs is the
only construct creating values of -> type, and application is the only construct that consumes
values of -> type.

New type syntax:
T → (forall (I1 ... In) T)

New expression syntax:
E → (pabs (I1 ... In) E)

E → (papp E T1 ... Tn)

New type rules:

(pabs)

J1,...,Jnare not free in A
A|−E:T

A|−(pabs (J1 ... Jn) E):(forall (J1 ... Jn) T)

 (papp)

A|−E:(forall (J1 ... J n) T)

A|−(papp E T1 ... Tn):T[T1,...,Tn/J1,...,Jn]

Figure 3: Summary of the extensions to HOFLEMT that yield HOFLEPT

Two features of the typing rules deserve explanation:

1. In the (papp) rule, the notation T[T1,...,Tn/ J1,...,Jn] is pronounced "the result of
simultaneously substituting T1. for J1, ... , and Tn for Jn in T. " The simultaneous
substitution process is very similar to that which we studied for the substitution model, except
that the substitution is being performed on a type abstract syntax tree rather than an expression
abstract syntax tree.

5

2. In the (pabs) rule, the condition "J1 ... Jn are not free in A" is a subtle technical detail. It
turns out that it is safe to abstract over the variables J1 ... Jn in T with a forall only if the
type variables J1 ... Jn do not appear as free variables in the type bindings in the type
environment A. To see why the restriction is necessary, consider the following (contrived)
example:

(bindrec ((polytest (forall (t) (-> (t) (forall (t) t)))
 (pabs (t)
 (abs ((x t))
 (pabs (t) x)))))
 body of bindrec)

In the forall type given to polytest, the type t of x, which should reference the outer t,
has been captured by the inner t. The restriction in the (pabs) rule outlaws this sort of name
capture.

As a simple illustration of the power of polymorphism, we revisit an example from above that
required two copies of the apply-to-5 function in a monomorphic system. In the polymorphic
system, it requires only one copy of the apply-to-5 function. Here is the HOFLEPT expression;
the type derivation appears below:

(bindpar ((app5 (pabs (A) (abs ((f (-> (int) A))) (f 5))))
 (make-sub (abs ((n int)) (abs ((x int)) (- x n)))))
 ((papp app5 int)
 (make-sub (((papp app5 (-> (int) int)) make-sub) 3)))

The type derivation uses the following abbreviations:

TIA = (-> (int) A)
TII = (-> (int) int)
Tapp5 = (forall (A) (-> (TIA) A))
A1 = {app5: Tapp5, make-sub: (-> (int) TII)}

 + (var) {f:TIA} |- f : TIA
 + (int) {f:TIA} |- 5 : int
 + (app) {f:TIA} |- (f 5) : A
 + (abs) {} |- (abs ((f TIA)) (f 5)) : (-> (TIA) A)
+ (pabs) {} |- (pabs (A) (abs ((f TIA)) (f 5))) : Tapp5
| + (var) {n:int,x:int} |- x : int
| + (var) {n:int,x:int} |- n : int
| + (sub) {n:int,x:int} |- (- x n) : int
| + (abs) {n:int} |- (abs ((x int)) (- x n)) : TII
+ (abs) {} |- (abs ((n int)) (abs ((x int)) (- x n))) : (-> (int) TII)
| + (var) A1 |- app5 : Tapp5
| + (papp) A1 |- (papp app5 int): (-> (TII) int)
| | + (var) A1 |- make-sub : (-> (int) TII)
| | | + (var) A1 |- app5: Tapp5
| | | + (papp) A1 |- (papp app5 (-> (int) int)): (-> ((-> (int) TII)) TII)
| | | + (var) A1 |- make-sub: (-> (int) TII)
| | | + (papp) A1 |- ((papp app5 (-> (int) int)) make-sub): TII
| | | + (int) A1 |- 3: int
| | + (app) A1 |- (((papp app5 (-> (int) int)) make-sub) 3) : int
| + (app) A1 |- (make-sub (((papp app5 (-> (int) int)) make-sub) 3)) : TII
+ (app) A1 |- ((papp app5 int)
 (make-sub (((papp app5 (-> (int) int)) make-sub) 3))) : int
(bindpar) {} |- (bindpar ((app5 (pabs (A)
 (abs ((f (-> (int) A))) (f 5))
 (make-sub (abs ((n int))
 (abs ((x int))
 (- x n)))))
 ((papp app5 int)
 (make-sub (((papp app5 (-> (int) int))
 make-sub)
 3))) : int

