CS251 Programming Languages Handout # 30
Prof. Lyn Turbak Sunday, April 8
Wellesley College

Problem Set 6
Due: Wednesday, April 18, 2001

This is the final version of Problem Set 6.

Reading:

e Handouts 25 (Intro to ML slides), 27 (Standard ML of New Jersey), 28 (Intro to Types), 29
(Type Rules)

e Paulson’s ML for the Working Programmer (MLWP), Chapters 2, 3, 4, 5.1-5.11, 9.

Submission:

e Problems 1 and 2 are pencil-and-paper problems that only need to appear in your hardcopy
submission.

e For Problems 3 and 4 your softcopy submission should include a copy of your entire ps6
directory.

e Your hardcopy submission for Problem 3 should be the files “/cs251/ps6/prob3x.hem, where
x ranges over a, b, and c.

e Your hardcopy submission for Problem 4 should be the files ~/cs251/ps6/hoflad/Eval.sml
and “/cs251/ps6/hoflad/Parser. sml.



Problem 1 [20]: ML Types
Figures 1-2 contain twenty higher-order ML functions. For each function, write down the type
that would be inferred for it in SML. For example, consider the following SML length function:

fun length [] =0
| length (_::xs) = 1 + (length xs)

The ML type of this function is:

val length : ’a list -> int

Note: you can check your answers by typing them into the ML interpreter. But please write down
the answers first before you check them — otherwise you will not learn anything!

fun id x = x
fun compose f g x = (£ (g x))

fun repeated n f =
if (n = 0) then id else compose f (repeated (n - 1) f)

fun uncurry f (a,b) = (f a b)
fun curry f a b = f(a,b)

fun churchPair x y £f =f xy
fun generate seed next done =

if (done seed) then []
else seed :: (generate (next seed) next done)

fun map £ [] = []
| map £ (x::xs) = (£ x) :: (map f xs)

fun filter pred [1 = []
| filter pred (x::xs) =
if (pred x) then x::(filter pred xs)
else (filter pred xs)

fun product fs xs =
map (fn f => map (fn x => (f x)) xs) fs

Figure 1: A sampler of higher-order functions in ML, part 2.



fun

fun

fun

fun

fun

fun

fun

fun

fun

fun

zip (00, ) 0
zip (_, [D) 0
zip (x::xs, y::ys) = (x,y)::(zip(xs,ys))

unzip [1 = ([1, [1)
unzip ((x,y)::xys) =
let val (xs,ys) = unzip xys
in (x::xs, y::ys)
end

foldr binop init [] = init
foldr binop init (x::xs) =
binop(x, foldr binop init xs)

foldr2 ternop init xs ys =
foldr (fn ((x,y), ans) => ternop(x,y,ans)) init (zip(xs,ys))

flatten 1st = foldr op@ [] 1st

forall pred [] = true
forall pred (x::xs) =
pred(x) andalso (forall pred xs)

exists pred [] = false
| exists pred (x::xs) = (pred x) orelse (exists pred xs)

some pred [] = NONE
some pred (x::xs) = if (pred x) then SOME x else some pred xs

oneListOpToTwolListOp f =
let fun twoListOp binop xs ys = f binop (zip(xs,ys))
in twolistOp
end

some2 pred = oneListOpToTwolListOp some pred

Figure 2: A sampler of higher-order functions in ML, part 2.




Problem 2 [20]: Type Derivations
Consider the following HOFL expression:

(((abs (a b)
(abs (f)
(f b a)))
1 true)
(abs (x y)
Gf x y 0)))

a. [5] Translate the above expression into an explicitly typed HOFLEMT expression.

b. [15] Give a typing derivation that proves that the explicitly typed HOFLEMT expression
from Part (a) is well-typed in an empty type environment.

As explained in Handout #29, a typing derivation is an upside-down tree in which every node
is a type judgement of the form A+ F : T, where A is a type environment, F is an expression,
and T is a type. Each node of the tree is the conclusion of the instantiation of one of the typing
rules from from figure 1 of Handout #29; and the children of a node are the hypotheses of the
rule instantiation.

Because the traditional tree-shaped (horizontal format) derivation would be very wide, you should
use the vertical format for type derivations explained in Handout #29. You may abbreviate ex-
pressions and types to make your derivation more readable as long as you give explicit definitions
for each abbreviation. Make sure to label each rule by its name.



Problem 3 [20]: Explicit Types

For each of the HOFL programs in figure 3 annotate the program with type information so
that it becomes a well-typed HOFLEMT program. In cases where a single function is used at
more than one type, you will need to make separate copies of the function for each type at which
it is used.

You can find the programs in figure 3 in the files “/cs251/ps6/problem-3x.hfl and in the
files ~/cs251/ps6/problem-3x.hem, where x ranges over a, b, and c. (The .hfl extension is for
HOFL programs and .hem is for HOFLEMT programs.) You should annotate the .hem version
of each file so that it is a well-typed HOFLEMT program.

To test your solutions, follow the directions for running SML in Appendix A. When you running
SML connected to ~/cs251/ps6, first evaluate

use ("loadProb3.sml");
(you only need to do this once per session) and then evaluate
testProb3();

You are additionally encouraged to experiment with the HOFLEMT type checker on additional
files of your own choosing. To do this, evaluate

use ("loadHoflemtTypeCheck.sml") ;
and then evaluate
TypeCheck.checkFile filename;

where filename is the name of a file containing the HOFLEMT program you wish to type check.
Make sure the filename is relative to the current directory; e.g. "foo.hfl" must be in the cur-
rent directory, "test/bar.hfl" must be in the subdirectory test of the current directory, and
"../baz.hfl" must be in the parent directory of the current directory.



a. [5] (program (a)

(bindrec ((sigma
(abs (lo hi f)
(if (> 1o hi)
0
(+ (f 1o0) (sigma (+ 1o 1) hi £))))))
(sigma 1 a (abs (x) (* x x)))))

b. [5] (program (b)
(bindrec ((generate
(abs (seed next done?)
(if (done? seed)
(empty)
(prepend seed
(generate (next seed) next done?)))))x
(foldr
(abs (binop init xs)
(if (empty? xs)
init
(binop (head xs)
(foldr binop init (tail xs))))))
)
(bind 1lst (generate b (abs (x) (- x 1)) (abs (y) (=y 0)))
(if (foldr1l (abs (x y) (bor (> x 5) y)) false 1st)
(foldr2 (abs (x y) (+ x y)) 0 1lst)
(foldr2 (abs (x y) (x x y)) 1 1st)))))
c. [10]

(program (c)
(bindpar ((inc (abs (x) (+ x 1)))
(compose (abs (f g)
(abs (x) (f (g x)))))
(thrice (abs (f)
(abs (x) (£ (£ (£ x)))N))
(bind nat (abs (g) ((g inc) c))
(+ (nat (abs (h) (compose (thrice h) (thrice h))))
(+ (nat (compose thrice thrice))
(nat (thrice thrice)))))))

Figure 3: Annotate these HOFL programs to make them well-typed HOFLEMT programs.




Problem 4 [40]: Tuples and Variants

In this problem you will extend the SML implementation of HOFL with two new data struc-
tures: tuples and variants. We will call the resulting language HOFLAD (for HOFL And Data).
This will give you some experience programming in SML and will also expose you to some issues
concerning data structures.

Tuples

An n-tuple is a value with n component values. Tuples are also known as positional products
because they combine components that are referenced by their positions within the tuple. Tuples
are closely related to records, also known as a named products, in which component values are
indexed by names rather than positions. Most programming languages have some sort of tuple
and/or record data structure. Examples of record facilities include C’s struct, CLU’s record and
struct, Common Lisp’s defstruct, and and Pascal’s record. SML and Haskell support both
tuples and records. A Java class instance can even be viewed as a kind of record.

We introduce tuples into the HOFLAD language via the following two new kinds of expressions:

(tuple E; ... E,)
Creates a tuple value with n component values, where the ith component value (indices start
at 1) is the value of the expression Ej;.

(match-tuple (I ... I,) Ewp Evody)

Evaluates Ey,, to the value Vi,,, which should be a tuple value with n component values;
otherwise, match-tuple signals an error. It returns the value of Ejoq, in an environment
where the names I; ... I, are bound, in order, to the n component values of Vi,,, and the
meanings of all other names are determined by the lexical context in which the match-tuple
expression appears. Note that all the I ... I, should be distinct.

For example, consider the following HOFLAD abstraction:

(abs (amount entry)
(match-tuple (name student? tuition) entry
(if student?
(tuple name student? (+ tuition amount))
entry)))

This abstraction denotes a function that takes two arguments (1) an integer named amount
and (2) a tuple named entry with three component values: a string, a boolean, and an integer.
If the boolean is true, the function returns a similar tuple where the integer component has been
incremented by amount; otherwise the function returns the original tuple.

As another example, consider the HOFL program in figure 4, which defines and uses zip and
unzip as well as some other functions:

Variants

A variant data structure is a value that consists of an identifying tag and a single component
value. Variants are supported by many typed programming languages; they are used to model
situations in which the calculation performed on a value depends on the run-time type of the value.
Variants are often combined with records into a single data structure that has a tag and multiple



(program (n)
(bindrec ((down-from (abs (x)
(if (= x 0)
(empty)
(prepend x (down-from (- x 1))))))
(map (abs (f lst)
(if (empty? 1st)
1st
(prepend (f (head 1lst))
(map £ (tail 1st))))))
(zip (abs (duple-of-lists)
(match-tuple (L1 L2) duple-of-lists
(if (scor (empty? L1) (empty? L2))
(empty)
(prepend (tuple (head L1) (head L2))
(zip (tuple (tail L1) (tail L2))))))))
(unzip
(abs (list-of-duples)
(if (empty? list-of-duples)
(tuple (empty) (empty))
(match-tuple (t11 t12) (unzip (tail list-of-duples))
(match-tuple (hdl hd2) (head list-of-duples)
(tuple (prepend hdil tl1l1)
(prepend hd2 t12)))))))
)
(bind ints (down-from n)
(bind bools (map (abs (x) (= 0 (mod x 2))) ints)
(unzip (map (abs (tup)
(match-tuple (a b) tup
(if b (tuple a (* a a)) (tuple (- 0 a) a))))
(zip ints bools)))))))

Figure 4: A program illustrating tuples in the context of zip and unzip.




component values. Examples of this include Pascal’s variant records, C’s union (which must be
combined with the struct facility in order to create tags), SML and Haskell’s sum-of-products
datatypes, and Java’s objects (where the class of an object is its variant tag and the instance
variables are the record components). It is rarer to see pure variants; the oneof and variant
constructs of CLU are an example. Tagged data is common in dynamically typed languages like
Scheme; see Sections 2.4 and 2.5 of SICP for a discussion.

Here we will consider pure variants and will make the single component of a variant a tuple
when we want a variant with multiple components. We will introduce variants into HOFLAD via
the following new kinds of expressions.

(variant tag E)
Creates a variant value whose tag is tag and whose component value is the value of E.

(tagcase Egisc (tagr It Fiody,) --- (tagn In Epody,))

Evaluates the discriminant expression FEgis. to the value Vs, which should be a variant
value; otherwise tagcase signals an error. If the tag of Vyis is the same as the tag tag; in the
ith tagcase clause, the tagcase returns the value of Epoqy, in a context where I; is bound
to the component value of Vjisc and the meanings of all other names are determined by the
lexical context in which the tagcase expression appears. If the tag of Vgisc does not match
any tag;, then an error is signalled. Note that all the tag; should be distinct.

As an example of variants, consider a simple system for manipulating geometric figures like
squares, rectangles, and triangles. Each kind of figure is characterized by different information:

e 3 square has a side length;
e a rectangle has a width and height;

e a triangle has three side lengths (alternatively, it could be represented by combinations of
side lengths and angles).

Here is an example of a HOFLAD expression manipulating figures:

(bind perim
(abs (fig)
(tagcase fig
(sqr side (* 4 side))
(rect width*height
(match-tuple (width height) width¥height
(* 2 (+ width height))))
(tri sides
(match-tuple (sl s2 s3) sides
(+ s1 (+ s2 s3))))
)
(prepend (perim (variant rect (tuple 2 3)))
(prepend (perim (variant tri (tuple 4 1 6)))
(prepend (perim (variant sqr 5))

(empty)))))



The perim function uses a tagcase to discriminate on its figure argument and perform a perimeter
calculation that depends on the kind of figure.

As another example, here is a function that scales each dimension of a figure by a given scaling
factor sf.

(abs (sf fig)
(tagcase fig
(sqr side (variant sqr (* sf side)))
(rect widthxheight
(match-tuple (width height) width¥height
(variant rect (tuple (* sf width) (* sf height)))))
(tri sides
(match-tuple (sl s2 s3) sides
(variant tri (tuple (* sf s1) (* sf s2) (* sf s3)))))
)

Your Task

In the following parts, you will be extending the SML evaluator of HOFL that we studied in
class to the HOFLAD language that supports tuples and variants. The abstract syntax, parser,
and pretty-printers of HOFL have already been extended to support the tuple, match-tuple,
variant, and tagcase constructs of HOFLAD. See Appendix B for a summary of HOFLAD.

a. [10]: Tuples

Modify the eval function in “/cs251/ps6/hoflad/Eval.sml to handled the the tuple and
match-tuple constructs. See the notes in Appendix B for details concerning the evaluator and
environments. To test your solution, first evaluate

use("loadProb4.sml") ;

and then evaluate

testProbdal();

You will need to reevaluate both of these expressions any time you make a change to Eval.sml.
Note that you are very likely to encounter numerous SML type checking errors when evaluating
first expression; you must fix these before you proceed. Be aware that it will typically take many
attempts to fix all the type errors!

b. [15]: Variants

Modify the HOFL evaluator in ~/cs251/ps6/hoflad/Eval.sml to evaluate the tuple and
match-tuple constructs. You can test these as in Part (a), except that you should evaluate
testProb4b() as your second expression.

10



c. [15]: Sum-of-products Data

As seen in the variant examples above, the proposed variant notation is rather clumsy. Typically,
a variant will have a tuple as a component, and the tuple and match-tuple constructs for
manipulating these are cumbersome. As noted above, many languages combine the notion of
variants and tuples into a single sum-of-product data type. Here will will do this by adding
the constructs data and datacase, whose syntax and meaning are introduced by the following
examples:

(bind perim
(abs (fig)
(datacase fig
(sqr (side) (* 4 side))
(rect (width height)
(* 2 (+ width height)))
(tri (sl s2 s3)
(+ s1 (+ s2 s3)))
))
(prepend (perim (data rect 2 3))
(prepend (perim (data tri 4 1 6))
(prepend (perim (data sqr 5))
(empty)))))

(abs (sf fig)
(datacase fig
(sqr (side) (data sqr (* sf side)))
(rect (width height)
(data rect (* sf width) (* sf height)))
(tri (sl s2 83)
(data tri (* sf sl1) (x sf s2) (* sf s3)))
)

Here is a more formal specification of data and datacase:

(data tag E; ... Ey)
Creates a sum-of-products variant value whose tag is tag and whose component is a tuple
whose values are the value of E; ... E,.
(datacase Edisc (ta‘gl (I(l,l) I(l,kl)) Ebodyl) (ta‘gn (I(n,l) s I(n,kn)) Ebodyn))
Evaluates the discriminant expression Eg;s. to the value Vg, which should be a variant
value; otherwise datacase signals an error. If the tag of Vs is the same as the tag tag; in
the ith datacase clause, the datacase returns the value of Eyoqy, in a context where I 1)
. I are bound to the components of the tuple that is the component of the variant
value Vjisc, and the meanings of all other names are determined by the lexical context in
which the datacase expression appears. If the tag of Vg does not match any tag;, or if
the component of Vg is not a tuple, or if the number of names Iy ... Ijy;) does not
match the number of components in the tuple within Vs, then an error is signalled. Note
that all the tag; should be distinct, and for any i, all the Ijj 1) ... Iy, should be distinct.

11



It would be possible to add data and datacase to HOFLAD by extending the abstract syntax

type Exp. But a much easier way to achieve this result is to desugar data and datacase into appro-

priate variant and tuple commands. In this problem, you are to implement an appropriate desug-

aring for data and datacase by extending the desugaring section of ~/cs251/ps6/hoflad/Parser.
Before attempting this problem, you should (1) study the notes on HOFLAD parsing in Ap-

pendix B.3; (2) should study the parsers for tuple, match-tuple, variant, and tagcase in

~/cs251/ps6/hoflad/Parser. ; and (3) should study the desugarings for bind, bindseq, scand,

scor, and funrec in “/cs251/ps6/hoflad/Parser.

As part of your desugaring for datacase, you will need to introduce a name for the tuple value
that is the component of a variant. Rather than using some sort of machinery for generating
fresh names, you should instead choose an arbitrary name that begins with the character #;
because # is treated specially by the HOFLAD parser, such a name could not have been in the
original HOFLAD program, and so cannot accidentally capture any variables from the original
program. (You should convince yourself that one occurrence of the name you choose also cannot
accidentally capture another occurence of the same name!)

To test your solution, first evaluate

use("loadProb4.sml") ;

and then evaluate

testProbdc();

A Using SML
Here are the steps you need to follow to use SML:

1. In a shell in the ~/cs251 directory, perform a cvs update -d to grab all relevant files.

2. Configure your ~/.emacs file to interface properly with SML by adding the code in Figure 5.
You need not type in the code; you can find it in “/cs251/sml/emacs.txt. You only need
to update your ~/.emacs file once, not every time you want to run SML.

Once you have added the above lines to your ~/.emacs file, exit Emacs and relaunch it so
that your changes will take effect. You will need to relaunch Emacs before going on to step
3.

3. Start SMLNJ within Emacs by typing M-x sml ENTER.
4. Go to the SMLNJ interpreter buffer via C-x b *sml* ENTER.

5. In Emacs, change the default directory used by sml by typing M-x sml-cd ENTER dir, where
dir is the name of the directory you wish to be the default directory for finding SML files.
For this problem set, you dir to be ~/cs251/ps6.

12



(setq load-path
(append ’ ("/usr/share/emacs/20.3/1lisp/sml-mode-3.3"
"/usr/share/emacs/site-lisp/sml-mode-3.3")
load-path))

(require ’sml-site)
(add-hook ’sml-load-hook ’(lambda () (require ’sml-font)))

(setq auto-mode-alist
(append auto-mode-alist

7 (
("\.1itx$" . scheme-mode) ;; INTEX
("\.bdx$" . scheme-mode) ;; BINDEX
("\.ibx$" . scheme-mode) ;; IBEX
("\.ff1$" . scheme-mode) ;; FOFL
("\.fbs$" . scheme-mode) ;; FOBS
("\.hf1l$" . scheme-mode) ;; HOFL
("\.hem$" . scheme-mode) ;; HOFLEMT
("\.him$" . scheme-mode) ;; HOFLIMT
("\.hep$" . scheme-mode) ;; HOFLEPT
("\.hip$" . scheme-mode) ;; HOFLIPT
("\.hfd$" . scheme-mode) ;; HOFLAD
("\.hfd$" . scheme-mode) ;; HOFLAD
)

(put ’program ’scheme-indent-hook 1)
(put ’abs ’scheme-indent-hook 1)

(put ’bind ’scheme-indent-hook 2)
(put ’bindpar ’scheme-indent-hook 1)
(put ’bindseq ’scheme-indent-hook 1)
(put ’bindrec ’scheme-indent-hook 1)
(put ’funrec ’scheme-indent-hook 1)
(put ’prepend ’scheme-indent-hook 1)
(put ’tagcase ’scheme-indent-hook 1)
(put ’datacase ’scheme-indent-hook 1)
(put ’match-tuple ’scheme-indent-hook 2)

Figure 5: Code to add to your .emacs file for SML.

13




6. Compile and load the subsystem you are interested in running. The ps6 directory several
"load” files for compiling and loading the various subsystems you might want to run in this
assignment. You load one of these load files by using SML’s use command. Here’s how you
load and compile the specific subsystems for this assignment:

e For testing problem 3: use("loadProb3.sml");

e For testing problem 4: use("loadProb4.sml");

e For experimenting with the HOFL evaluator: use ("loadHof1Eval.sml");

e For experimenting with the HOFLEMT type checker: use ("loadHoflemtTypeCheck.sml") ;

Executing the above expressions will cause many lines of text to appear on the screen. Al-
though some of the lines seem to indicate some sort of error, you can ignore these. Here’s an
example of something you can safely ignore:

[checking ../sml/hoflemt/CM/x86-unix/Pretty.cm.stable ... not usablel

You know that everything has compiled OK if the lines of text generated after use ends with
the following:

val it = () : unit

7. Run the desired SML function:

e For testing problem 3: testProb3();
e For testing problem 4: testProb4x(); (where x ranges over a, b, and c¢)

e For experimenting with the HOFL evaluator: Eval.runFile filename args, where file-
name is a string naming the file in which the HOFL program resides and args is an
SML list of integer arguments for the program. Make sure the filename is relative to
the current directory; e.g. "foo.hf1l" must be in the current directory, "test/bar.hf1"
must be in the subdirectory test of the current directory, and "../baz.hf1" must be
in the parent directory of the current directory.

e For experimenting with the HOFLEMT type checker: TypeCheck.checkFile filename,
where filename is a string naming the file in which the HOFLEMT program resides.

In the last two cases, you can reduce the amount of typing by ”opening” SML structures.
E.g., if you execute

open TypeCheck;

this makes all the components of the TypeCheck structure available without having to prefix
them with "TypeCheck.". For example, after executing the above line, you can then execute
checkFile filename.

14



Handy Tidbits:

e In the SML intepreter, typing M-p cycles backwards through previous expressions typed at
the interpreter, and typing M-n cycles forwards. Use these often to avoid unnecessary typing!

e If you see printed entities in angle brackets, such as <Sexpr>, or ellipses (...), then your
print depth may be too low. You can reset it to a number n as follows:

Compiler.Control.Print.printDepth := n

A good value for n is 1000.

B HOFLAD

B.1 Abstract Syntax

The abstract syntax, parser, and pretty-printers of HOFL have been extended to support the tuple,
match-tuple, variant, and tagcase constructs of HOFLAD. In particular, the Exp datatype of
HOFL has been extended to be the following:

and Exp =
Lit of Literal
VarRef of Id

|

| Abs of Id list * Exp (* formals, body *)

| FunApp of Exp * Exp list (* rator, rands )

| PrimApp of Primitive.Primop * Exp list (* rator, rands *)

| If of Exp * Exp * Exp (* test, then, else *)

| BindRec of Id list * Exp list * Exp (* names, defns, body *)
(* new in HOFLAD *)

| Tuple of Exp list (* tuple components *)

| MatchTuple of Id list * Exp * Exp (* names, tuple, body *)
| Variant of Tag * Exp (* tag, component *)

| TagCase of Exp * (Tag * Id * Exp) list (* discriminant, clauses *)

The first seven constructors have been inherited from HOFL; the last four constructors are new in
HOFLAD.

The HOFLAD syntax uses the types Id and Tag, which are from the Ident and Tag structures,
respectively. The signatures for these structures are almost identical, and are given in figures 6-7.

B.2 Ewvaluation

The datatype Val of HOFL values has been extended in HOFLAD to support tuple and variant
values; see figure 8. The signature for HOFLAD evaluation appears in figure 9 and the signature
for environments appears in figure 10; these are the same as in HOFL, As in HOFL, the EvalValue
type is the type of values stored in the environment of the evaluator. The RecVal constructor of
EvalValue is used to implement the “knot-tying” aspect of bindrec. Environment bindings not
introduced by bindrec need to be tagged with the NonRecVal constructor.

15



signature IDENT = sig
type Id (* abstract type of identifiers x)
val toString : Id -> string (* returns string for given identifier *)
val fromString : string -> Id (* returns identifier for given string *)
val compare : Id * Id -> order (* compare two identifiers *)

val equal : Id * Id -> bool (* test equality of two identifiers *)
structure Env : ENV (* environment whose keys are identifiers *)
sharing type Env.key = Id

end

Figure 6: Signature for HOFLAD identifiers.

signature TAG = sig
type Tag (* abstract type of tags *)
val toString : Tag -> string (* returns string for given tag *)
val fromString : string -> Tag (* returns tag for given string *)
val compare : Tag * Tag -> order (* compare two tags *)

val equal : Tag * Tag -> bool (* test equality of two tags *)
structure Env : ENV (* environment whose keys are tags *)
sharing type Env.key = Tag

end

Figure 7: Signature for HOFLAD tags.

16




signature VALUE = sig

datatype Val =
UnitVal
| IntVal of int
| BoolVal of bool
| SymVal of string
| StringVal of string
| ListVal of Val list
| ClosureVal of Ident.Id list * AST.Exp * EvalValue Ident.Env.env
(* new in HOFLAD *)
| TupleVal of Val list
| VariantVal of Tag.Tag * Val

(* It would be nicer to have EvalValue hidden within Eval,
but ML’s types and restrictions on non-recursive modules
require us to put it here. An alternative would be to
define IdentEnv in a way that it did not require us
to specify the type of the values bound in the environment. *)
and EvalValue =
NonRecVal of Val
| RecVal of Val option ref (* use SML’s mutable reference cells
to "tie the knot" of recursion *)

val equal : (Val * Val) -> bool
(* test value equality *)

val toString : Val -> string
(* return a string representation of a value *)

end

Figure 8: Signature for HOFLAD values.

17




signature EVAL = sig

val run : AST.Program -> int list -> Value.Val
(* Returns the result of running the given program on the given list
of arguments *)

val eval : AST.Exp -> Value.EvalValue Ident.Env.env -> Value.Val
(* Returns the result of evaluating the given expression in the
given environment )

val runString’ : string -> int list -> Value.Val
(* Returns the result of running the program that is the result of
parsing the given string on the given argument list. *)

val runString : string -> int list -> Value.Val

(* Like runString’, but runs the program in the context of a standard
error handler. This is the version that should be called from
top-level. *)

val runFile’ : string -> int list -> Value.Val
(* Returns the result of running the program that is the contents of
the file with the given name on the given argument list. *)

val runFile : string -> int list -> Value.Val

(* Like runString’, but runs the program in the context of a standard
error handler. This is the version that should be called from
top-level. x)

val withStandardHandler : (exn -> ’a) -> (unit -> ’a) -> ’a
(* Wraps the thunk (second argument) in a standard exception handler
for TypeCheckError. The first argument allows reraising the exception
or throwing it away (when ’a is unit) *)

end

Figure 9: Signature for HOFLAD evaluator.

18




signature STRING_ENV = sig
type key = string

type ’b env
(* Type of env that maps string keys to values of type ’b *)

val empty : ’b env
(* empty denotes an empty env *)

val bind : (string * ’b * ’b env) -> ’b env
(* bind(key,value,tbl) returns a new env that includes the
binding key->value in addition to all bindings of tbl.
Any existing binding for key in tbl is shadowed by key->value. *)

val extend : (string list * ’b list * ’b env) -> ’b env

(* extend(keys,values,tbl) returns a new env that includes
corresponding bindings between keys and values in addition to
all bindings of tbl. Any existing binding for keys in tbl
are shadowed by the new bindings. *)

val lookup : (string * ’b env) -> ’b option
(* lookup(key,tbl) returns SOME(value) if tbl contains the binding
key->value. If there is no binding for key, lookup returns NONE. *)

val unbind : (string * ’b env) -> ’b env
(* unbind(key,tbl) returns a new env that includes all
bindings of tbl except for a binding for key. *)

val remove : (string list * ’b env) -> ’b env
(* unbind(keys,tbl) returns a new env that includes all
bindings of tbl except for bindings for keys. *)

val bindingsToEnv : (string * ’b) list -> ’b env
(* bindingsToEnv(keyValuePairs) returns a env whose bindings consist
of all the bindings specified by the list of pairs keyValuePairs. *)

val keys : ’b env -> string list
(* keys(tbl) returns a list of all keys for bindings in tbl.
Each key is mentioned only once. *)

val values : ’b env -> ’b list

(* values(tbl) returns a list of all values for bindings in tbl.
The values are in the same order as the keys returned by
keys(tbl). Because the same value may be bound to more than
one key, the result may contain duplicates. *)

end

Figure 10: Signature for HOFLAD evaluator.

19




B.3 Parsing

A parser is a function that translates a character-based representation of a program into an abstract
syntax tree. The HOFLAD parser has a two phase structure:

1. In the first phase, the HOFLAD parser translates a character-based representation of a
HOFLAD program into a tree for the symbolic expression datatype Sexpr. The Sexpr
datatype models the tree structure of Scheme’s parenthesized s-expressions:

datatype Sexpr =
Intx of int

| Boolx of bool

| Charx of char

| Realx of real

| Symx of string

| Stringx of string

| Listx of Sexpr list

There is one constructor for each kind of leaf (integer, boolean, character, real, symbol, and
string) and a constructor for lists of s-expressions (which are denoted by paired parentheses
in Scheme). Each constructor name ends with an x to emphasize that it is a constructor for
s-eXpressions. For example, the HOFLAD program

(program (a b)
(if (< a (*x 2 b)) "foo" "bar"))

would be parsed as the following Sexpr tree:

Listx [Symx("program"),
Listx [Symx("a"), Symx("b")],
Listx [Symx("if"),
Listx [Symx("<"),
Symx ("a"),
Listx [Symx("*"), Intx(2), Symx("b")]
:I,
Stringx("foo"),
Stringx("bar")
]
]

2. In the second phase, the HOFLAD parser translates the Sexpr tree into a HOFLAD abstract
syntax tree. The HOFLAD AST for the above sample program is:

Prog([Ident.fromString("a"), Ident.fromString("b")],
If (PrimApp (LT,
VarRef (Ident.fromString("a")),
PrimApp (Mul,
Lit(IntLit(2)),
VarRef (Ident.fromString("b")))),
Lit(StringLit("foo")),
Lit(StringLit("bar"))))

20



Using a two-phase parser allows the Sexpr parser to be shared with other languages. In fact, HOFL
and HOFLEMT use the very same Sexpr parser as hofl.

Expression parsing is accomplished via the toExp function in the file “/cs251/ps6/hoflad/Parser.
For instance, here are the clauses responsible for parsing an Sexpr into an HOFLAD abs or if
expression:

(* parse abstraction *)
| toExp (Listx([Symx "abs", Listx(formalsx), bodyx])) =

Abs(map (fn (Symx(fml)) => Ident.fromString(fml)

| s => parseErr ("toExp: improper abs formal",s))
formalsx,
toExp bodyx)

| toExp (x as (Listx((Symx "abs") :: _))) =

parseErr ("toExp: Ill-formed abstraction", x)

(* parse conditional *)

| toExp (Listx[(Symx "if"), x1, x2, x3])
If (toExp(x1), toExp(x2), toExp(x3))

| toExp (x as (Listx((Symx "if") :: _)))
parseErr ("toExp: Ill-formed if", x)

The second clause of each pair of clauses treats as an error any s-expression beginning with the
keyword (i.e., abs or if) that does not have the expected structure.

The toExp function also performs desugaring. For example, the desugaring of scand is imple-
mented by the following clauses:

(* desugar scand *)
| toExp (Listx([Symx("scand"),x1,x2])) =
If (toExp x1, toExp x2, Lit(BoolLit(false)))
| toExp (x as (Listx((Symx("scand")) :: _))) =
parseErr ("toExp: Ill-formed scand ", x)

21



Problem Set Header Page
Please make this the first page of your hardcopy submission.

CS251 Problem Set 6
Due Wednesday, April 18

Names of Team Members:
Date & Time Submitted:

Collaborators (anyone you or your team collaborated with on the problem
set):

In the Time column, please estimate the time you or your team spent on the parts of this problem
set. Team members should be working closely together, so it will be assumed that the time reported
is the time for each team member. Please try to be as accurate as possible; this information will
help me design future problem sets. I will fill out the Score column when grading you problem set.

Part Time Score

General Reading

Problem 1 [20]

Problem 2 [20]

Problem 3 [20]

Problem 4 [40]

Total

22



