
1

CS251 Programming Languages Handout #27
Prof. Lyn Turbak April 4, 2001
Wellesley College

STANDARD ML OF NEW JERSEY

The version of the ML programming language that we will be using in CS301 this semester is
Standard ML of New Jersey (also know as SMLNJ or just SML). This handout contains notes on
how to run SMLNJ on the Linux workstations.

In the SMLNJ programming environment, you will use Emacs to create program files and will
load these files into an interactive SML top-level interpreter that executes in a special Emacs
buffer. Type inference is performed on all SML programs and you cannot test your programs
until they pass the type checker. Understanding error messages from the type checker and using
them to pinpoint type errors in your program are important skills that you will need to hone.
Collections of ML modules are best compiled using a configuration manager that serves the
purposes of “makefile” or “projects” in many C and Java development environments. You will
need to learn the rudiments of configuration management to compile your programs.

There are two ways to run SMLNJ on the Linux workstations: within a shell window and within
Emacs. These approaches are described below in Sections 1 and 2. It is recommended that you
use the Emacs interface, since it simplifies many interactions. Nevertheless, you should still read
Section 1 as many of the notes still apply to the Emacs interface. The SMLNJ configuration
manager (CM) is described in Section 3.

This handout only scratches the surface of SMLNJ. For more detailed documentation, browse
the official SMLNJ web page:

http://cm.bell-labs.com/cm/cs/what/smlnj/index.html

1. Running SML in a Shell Window.

1.1 Launching the SML interpreter

The simplest way to run SML on the Linux workstations is within a Linux shell window. Within
such a window, execute sml. This will print a herald on the screen and eventually
he `-‘ prompt of SML.

[cs301@paxi ~]$ sml
Standard ML of New Jersey, Version 110.0.6, October 31, 1999 [CM; autoload
enabled]
-

You can now evaluate expressions by typing them in followed by a semi-colon and a line return.
The semi-colon tells the interpreter that you are done with the expression. This allows you to
have expressions with multiple lines; SML will show a `=’ at the beginning of every line of a
multiple line expression. For example, here is the transcript of a session in which two single line
expressions and one multiple line expressions are evaluated:

2

1. 1 + 2;
val it = 3 : int
- val lst = map (fn x => x * 2) [4,7,3];
val lst = [8,14,6] : int list
- let val a = 1 + 2
= val b = 4 * a
= in (a,b)
= end;
val it = (3,12) : int * int

If you forget the semi-colon at the end of an expression, SML will think you are continuing the
expression onto the next line. In this case, you can just type a semi-colon followed by a line
return to indicate that you are done. For example:

- 2 + 3
= ;
val it = 5 : int

The SML interpreter expects that the unit of evaluation will be a declaration, typically one of the
form val name = exp , where exp is an expression. If you just enter an expression E, the SML
interpreter treats it as a declaration of the form val it = E.

1.2 Loading Files

It is tedious to type all expressions directly at the SML interpreter. It is especially frustrating to
type in a long definition only to notice that you made an error near the beginning and you have to
type it in all over again. In order to reduce your frustration level, it is wise to use a text editor
(e.g., Emacs) to type in all but the simplest SML definitions. This way, it is easy to correct bugs
and to save your definitions between different sessions with the SML interpreter. (Note: the file
extension that you should use for SML files is “.sml”. Using this extension will enable various
SML features in Emacs. See Section 2.2 for details.)

If filename is the name of a file containing SML expressions and definitions, evaluating

use("filename")

will evaluate all of the expressions in the file, one by one, as if you had typed them in by hand.
The use function can be used within a file to load other files.

The filename given to use may be either an absolute pathname (e.g.
/usr/users/gdome/private/ml/test.sml) or a pathname relative to the current working
directory. By default, the current working directory for the SML interpreter is the current
working directory of the shell in which it was invoked, and by default this is your Nike home
directory (e.g. /usr/users/gdome). So rather than evaluating

use("/usr/users/gdome/private/ml/test.sml")

you could instead evaluate

use("private/ml/test.sml")

It is typical to load many files (or the same file many times) from the same directory. For this
reason, it is useful to be able to change the current working directory within the SML interpreter.
To do this, evaluate

Posix.FileSys.chdir("dirname")

3

where dirname is the name of the directory which you want to become the new current working
directory. (This name can either be an absolute pathname, or relative to the current working
directory.) For example:

Posix.FileSys.chdir("private/ml")

It’s easy to lose track of what the current working directory is. The Posix.FileSys.getcwd()
command can be used to tell you what the current working directory is (as an absolute
pathname). For example:

- Posix.FileSys.getcwd();
val it = "/usr/users/cs301/private/ml" : string

1.3 Exiting SML

To terminate your session with the SML interpreter, type C-d (i.e., control D). (It is common in
Unix systems for C-d to represent the “end of input”.)

2. Running SML within Emacs

You could do all of your SML programming in CS301 using just the techniques outlined in
Section 1 above. However, you will find yourself constantly swapping attention between the
Emacs editor (where you write your code) and the SML interpreter (where you evaluate your
code). In particular, whenever you make a change to your Emacs file, you will have to save the
file and reload it into the SML interpreter.

To reduce the overhead of swapping between Emacs and SML, you can run SML within Emacs.
The following subsections outline the key aspects of running SML within Emacs.

2.1 Configuring Your .emacs File

In order to run SML within Emacs, you must tell Emacs about the whereabouts of the SML
libraries and must tell it to load these libraries. You can do this by adding the following lines to
your ~/.emacs file (which is loaded every time you start Emacs):

;; Emacs initialization for SML mode
(setq load-path
 (append '("/usr/share/emacs/20.3/lisp/sml-mode-3.3"
 "/usr/share/emacs/site-lisp/sml-mode-3.3")
 load-path))

(require 'sml-site)
(add-hook 'sml-load-hook '(lambda () (require 'sml-font)))

You only need to perform the above step once. Once your ~/.emacs file is configured as above,
then you should have access to the features of SML mode automatically thereafter.

2.2 SML Mode

An Emacs buffer can be in various modes. Each mode tells the buffer how keystrokes in that
buffer should be interpreted. The most useful mode for editing SML code is SML mode. You can
tell a buffer to enter SML mode by typing M-x sml-mode. . (Notational convention: M-x,
pronounced "Meta x", is entered by typing the “Meta” key and “x” key at the same time. On PC
keyboards, the key labeled “Alt” is usually treated as the “Meta” key. On keyboards without a
true “Meta” key, you can instead press the ESCape key followed by pressing the "x" key.) You

4

can tell that a buffer is in SML mode by the appearance of the word "SML" in the status line at
the bottom of Emacs.

Whenever you edit a file that ends in .sml, Emacs will automatically enter SML mode for you.
For this reason, it is wise to use the .sml extension for all of your SML files.

SML mode helps you write SML code because it understands the formatting conventions for
SML code. Like many Emacs modes, it helps you match parentheses by flashing the matching
open parenthesis whenever you type a close parenthesis. Addtionally, SML mode helps you put
your code in pretty-printed format. Typing the TAB key will indent the code on that line
according to the SML indentation conventions. You should get into the habit of hitting TAB after
every return so that you start typing the next line at the appropriate indentation level. You can
format an entire expression by typing ESC C-q when the cursor is at the first character of the
expression. Keeping your SML expressions indented properly is important for reading and
debugging code. Indenting the code will often highlight that the structure of the expression has a
bug.

SML mode also understands what SML keywords are, and will color keywords, strings, and
comments different from the rest of the text to highlight them.

2.3 Launching SML in Emacs

To start an SML session within Emacs, execute the Emacs command M-x sml. This will create
a buffer named *sml* that will be the location of the SML interpreter. The *sml* buffer for
SML is similar to the *scheme* buffer in Scheme.

2.4 Interacting with the *sml* buffer

The simplest way to interact with the *sml* buffer is to visit the buffer and enter expressions at
the prompt. But there are a number of M-x commands that simplify interactions. For instance,
M-x sml-cd will prompt for a directory name and change the current working directory to that
directory; this is much more convenient than using Posix.FileSys.chdir. And a number of
M-x commands will send text from another buffer in SML mode to the *sml* buffer. These are
helpful when creating small programs, but for larger programs you probably want to use the
configuration manager (see Section 3):

M-x command Description
sml-send-buffer Sends the contents of the entire buffer to the *sml* buffer

as if you had typed it directly into the *sml* buffer.
sml-send-function Sends the text of the current declaration to the *sml* buffer

as if you had typed it directly into the *sml* buffer.
sml-send-function-and-go Like sml-send-function except that it also displays

the *sml* buffer and moves the cursor there.
sml-send-region Sends the text of the current region to the *sml* buffer

as if you had typed it directly into the *sml* buffer.
sml-send-region-and-go Like sml-send-region except that it also displays

the *sml* buffer and moves the cursor there.

2.5 Exiting SML in Emacs

You can exit SML in Emacs by killing the *sml* buffer (using C-x C-k).

5

3. The SML Configuration Manager

3.1 Dependency Management

Recall that SML is more strict about order of bindings than Scheme or Java. That is, the only
way you can define something before you use is to collect function definitions into a recursive
scope by using the and keyword to glue together the recursive functions. (In contrast, fun starts a
new scope.) This means that when you employ the use command to load files, you have to make
sure that you load them in the correct order so that each name gets defined before it is used. If
you don’t do this, then it’s easy to have some functions referring to and old definition rather than
the new one.

For example, suppose we have interactively defined the following two functions:

- fun foo(x) = 2*x;
val foo = fn : int -> int

- fun bar(y) = foo(y + 1);
val foo = fn : int -> int

Next, suppose we undertake the following sequence of actions:

1. We put the bar function in a file bar.sml and the foo function in a file foo.sml.
2. We create a file both.sml that loads both files via the following code:

use("bar.sml")
use("foo.sml")

3. We edit foo.sml so that the definition of the foo function is now:

fun foo(x) = 10*x;

4. We go to the SML interpreter and evaluate:

use("both.sml");

If now we test the two functions we get somewhat surprising results:

- bar 5;
val it = 12 : int

- foo 6;
val it = 60 : int

But if bar(y) is defined to be foo(y + 1), how can this be? Since "bar.sml" was loaded
before "foo.sml", it refers to the old definition of foo (the one that doubled its input). Only
after bar is defined is the new version of foo defined (the one that multiplies its input by 10).

This example is rather contrived, but even in programs of modest size, managing the
dependencies between multiple files by hand can be non-trivial. Additionally, in very large
programs (ones that contain hundreds of files), it is desirable when making a change to one file
to process (i.e., type check and compile) only those files that depend on it, not all the files.
Again, this comes down to managing dependencies between files.

3.2 The SMLNJ Configuration Manager

Many program development environments (such as Symantec Café and Metrowerks Code
Warrior for Java) support a notion of a project that is a collection of files in a program. The user

6

specifies which files are in the project and the development environment is responsible for
tracking the dependencies between the files. When one rebuilds a project in Symantec Café after
editing a single source file, only those other files that depend on it are recompiled. Other files not
depending on the edited file do not have to be reprocessed. In Linux-based programming
environments, such dependency information is usually expressed in a “makefile”.

SMLNJ supports similar notions in its configuration manager. You must specify to the
configuration manager which files are in the program, and it will automatically track the
dependencies between them.

The way you specify the files in a program are to list them in a configuration file, which should
have a “.cm” extension and whose contents should have the following syntax:

Group is
 filename_1
 .
 .
 .
 filename_n

where filename_i is one of the files in the program. The order of the files in the .cm file is
immaterial; the configuration manager will deduce the dependencies between them regardles of
the order.

For example, for the (contrived) example above, we could make a file both.cm with the
following contents:

Group is
 bar.sml
 foo.sml

In addition to referring to .sml files within a .cm file, you can also refer to other .cm files. This
effectively adds all the files (transitively) mentioned in the .cm file to the list of files to be
checked for dependencies. For example, suppose we create a file baz.sml that uses the foo and
bar functions from above. We can make a configuration file baz.cm whose contents are:

Group is
 both.cm
 baz.sml

We could later reference baz.cm in yet another configuration file for a program that used any or
all of the functions foo, bar, and baz.

It is OK for the same file to be referenced by multiple paths through a configuration file. For
instance, the following configuration file causes no trouble even though foo.sml is referenced
directly and indirectly (both through both.cm and baz.cm):

Group is
 foo.sml
 both.cm
 baz.cm

Neither configuration manager (nor the underlying SMLNJ language) can handle mutual
dependencies in declarations across file boundaries. For example, if you have mutually recursive
functions f and g, you must define these in a single file – in fact, within a single mutually
recursive declaration (i.e., fun f … and g …). If you attempt to split the two declarations
across two files, the configuration manager will complain about cyclic dependencies. If you get
such an error, you will need to rearrange the contents of your files to remove the cyclic

7

dependencies. That is, you must guarantee that the dependencies form a DAG (directed acyclic
graph).

It is good hygiene to explicitly document the dependencies of every .sml file with an associated
.cm file. That is, for every .sml file you should have a .cm file that explicitly lists the other files
it depends on. An advantage of this is that it simplifies the creation of all the .cm files. Suppose
that file A.sml exports structure A. If we have a file A.cm, then the configuration file for any
other file using structure A can just refer to A.cm rather than all the individual files on which A
depends.

3.3 Invoking the Configuration Manager in a Shell

To launch a version of SMLNJ supporting configuration management directly from a shell, you
need to invoke sml-cm rather than sml. In the resulting read-eval-print loop, you can invoke the
configuration manager (CM) on a .cm file via CM.make’. For example:

CM.make’("both.cm");

This causes the configuration manager to compile all of the files in the dependency DAG
denoted by both.cm and to load all the exported declarations of these files into the interpreter in
the order specified by the dependencies. This will avoid the sort of ordering bug demonstrated in
Section 3.1

Actually, the configuration manager is smarter than this. It will only compile files in the
dependency DAG if the dependencies say it has to. For instance, if you have a dependency DAG
with hundreds of files that you have already compiled via CM. If you only edit one of these files
and invoke CM again, CM will only recompile those files that depend on declarations in the
edited file.

Typically, invoking CM.make’ will cause lots of error messages to be printed as the SMLNJ front
end checker finds syntax and type bugs in your program. Each error message lists a file and a
range of line numbers narrowing down where the error is. You have to fix all such errors before
you can run your program. (In addition to errors there are sometimes “warnings” – you can
usually ignore these, but you should read what they say anyway.)

3.4 Invoking the Configuration Manager In Emacs

To invoke the version of SMLNJ with CM in Emacs, first type C-u M-x sml. In the Emacs
mini-buffer at the bottom of the screen, you will be prompted for “ML command:”.
Enter sml-cm followed by Return. You will then be prompted for “Any args:”; just type Return
for this. This will create a new sml-cm process and a buffer named *sml-cm* through which
you can communicate with that process.

Now you can go to the *sml-cm* buffer and start evaluating SML expressions. You can invoke
the configuration manager via CM.make’, as explained in Section 3.3.

3.5 CM Documentation

For more detailed information about the SMLNJ configuration manager, consult the CM user
manual:

http://cm.bell-labs.com/cm/cs/what/smlnj/doc/CM/index.html

