CS251 Programming L anguages Handout #29
Prof. Lyn Turbak April 6, 2001
Welledley College

TYPE CHECKING
3.1 Well-Typedness

A HOFLEMT expression E is said to be well-typed if it is possible to prove that it has atype T
using a set of typing rules. It turns out that HOFLEMT satisfies atype soundness theorem:

for any well-typed HOFLEMT expression E that has atype T, the run-type value
of E isguaranteed to be amember of the set of values denoted by T.

The type soundness theorem means that it is impossible to encounter atype error when
evaluating a well-typed expression at run-time. The type soundness theorem is often summed up
by the motto "Well-typed programs do not go wrong". This motto is somewhat deceptive --
well-typed programs can encounter errors at run-time, but those errors cannot be type errors.
Other errorsthat can still be encountered are errors that depend on particular values (e.g. divide-
by-zero, attempt to take the head of an empty list, accessing an array at an out-of-bounds index)
aswell aslogical errorsin the program (it gives the wrong answer).

We usethe notation E: T toindicate that E is awell-typed expression with type T. For example:

() : unit

true : bool

5 int

"foo" : string

(symbol c¢s251) : sym

(prepend 42 (prepend —-17 (enpty int))) : (listof int)

(abs ((aint) (bint)) (div (+ab) 2)) : (-> (int int) bool)

Type environments are environments that associate value variable names with types. We will
write type environments as sets of bindings of theform E: T. For example, the type environment
{a:int, b:bool,f:(-> (int) int)} associatesthe namea with thetypei nt, the nameb
with the type bool , and the namef withthetype (-> (int) int).If Aisatypeenvironment, |
isanidentifier, and T is atype, we use the notation A(l) to denote the type bound to | in type
environment A, and A+{11: T1,...,In: Tn} to stand for the environment A extended with
bindings between 11...In and T1...Tn, respectively.

Just as expressions can be evaluated relative to a value environment, expressions can be typed
relative to atype environment. A type judgement of theform A |- E : T ispronounced "Given
the type environment A, E hastype T", or, more succinctly, "A provesthat E hastype T.

3.2 Proving Expressions Well-Typed

The well-typedness of expressions can be formalized in terms of a set of typing rules A typing
rule has the form

Hypothesis;;...; Hypothesis,
Conclusion

(rulename)

where each of the hypotheses and conclusions is a typing judgement. Such aruleis pronounced
asfollows: "If the hypotheses Hypothesis; ... Hypothesis, are al true, then the conclusion
Conclusion istrue." The name rulename isjust a handy way to refer to a particular rule.

Thetyping rulesfor HOFLEMT appear in Figure 2. These rules use the following metavariable
conventions:

A ranges over type environments
N ranges over numeric literals

E ranges over expressions

| ranges over identifiers

T ranges over types

The typing rulesin Figure 2 can be used to prove that a given HOFLEMT expression is well-
typed. A proof that expression E iswell-typed with respect to atype environment A is atree of
type judgements where:

Theroot of thetreeisA |- E: T for sometype T;

Each judgement J appearing in the tree isjustified by instantiating one of the typing rules
such that J is the conclusion of the instantiated rule and the children judgements of J are
the hypotheses of the instantiated rule.

Such atree of judgements whose root is the judgement Jis said to be atype derivation (or
typing) for J.

For example, consider the expression
(bind app5 (abs ((f (-> (int) bool)))
f 5)

(app5 (abs ((x int))
(>x0)))

Suppose that we want to show that this expression is well-typed with respect to the empty
environment. Because the typing derivation will be arather wide tree, we will introduce the
following abbreviations to make it narrower:

Tg=(-> (int) bool)

Tigg =(-> (T,;z) bool)

Eus = (abs ((f Tp)) (f 5))
Eps=(abs ((x int)) (> x 0))
Eyina = (bi nd_app5 Eq (app5 Eug))
A ={f:Tg}

A, ={app5: T g }

A, ={app5: T g, Xii nt }

Below isatyping derivation for the expression that proves that it has type bool . Each horizontal
line islabeled with the name of the instantiated rule. Note that the leaves of the typing derivation
are judgements involving literals or variables; these have no hypotheses. Also note that the
“shape” of the derivation is an “upside down” abstract syntax tree for the expression at the root.
That is, ajudgement for an expression E follows from the judgements of its direct
subexpressions.

(var) ; (int)

) Asl-x:int A3 |-0: int
(var) Ai]-T:Tis : (ind Ay|-5: int;_ . (e @ Az |- (> x0)) :bool
9 (app) A1 |-(f5) : bool (app)(var) Aol - o005 Tes | Y A, | (abs((xinD) & X 0): T
{3 -(@bs((f Tig)) (f5)): Tigp: A, |- (app5 (abs ((xint)) (> x 0)):bool

(bind)

{}1- (bind 8pp5 Egs (aPPS Eqps)):boO0I

(int) ———— (Other literal rules are similar)
Al -N:int

var) AN

Al -E;:bool ; Al -E,:T; Al-E;:T

() Al-(if E E, E)T
A+{ T, .., 1T H-E:T

(abs)

Al -(abs ((1,T) ... (1, T)) B) @ (-> (T.--T)) T)

Al'Eo:('> (Tl"' Tn) T)
(Al-E:T,; ... ; Al-E:T,
PP TG E - BT

Al-E;:T,; --.; Al-E T,
_ A+{1:T, .-, 1:T}-E:T
(bi ndpar) -
Al «(bi ndpar ((1, E)) -.. (1, E)) E):T

The bi nd construct is treated like bi ndpar with asingle binding.

Arecl_El:Tl; --- Al_En: Tn
(bi ndr ec) Areod "B T
Al -(bindrec ((I,T,E) ---(1,T,E)) E:XT

where Arec=A + {I,:T,,...,.| . T,]

Al -E;rint; Al -E,iint
Al -(+ E,E)):int

(add)
There are analogous rules for the other primitive applications. To allow list operations to be
polymorphic, we need special rulesfor list primitives (shown below).

Al -E;:T; Al-E,:(listof T)
Al -(prepend E, E): T

(pr epend)

Al -E:(listof T)
Al -(head E): T
Al -E:(listof T)
| -(tail E):(listof T)

(head)

(tail) A

emty) N empty T)(1istof T

Al -E:(listof T)
| -(enpty? E): bool

ty?
(errpy)A

Figure 1: Typing rulesfor HOFLEMT
3

As shown above, type derivations can be drawn astrees in which all hypotheses for arule are on
the same line above the horizontal bar and the conclusion of aruleis below the horizontal bar.
We shall call thisthe horizontal for mat for atype derivation.

Using the horizontal format, it is very easy to run out of horizontal space when drawing atype
derivation. Below, we illustrate an alternative vertical format for displaying the above type
derivation that makes much better use of horizontal space:

+ (var) A |- f @ T
+ (int) A/ |- 5: int
+ (app) A |- (f 5) : boo
(abs) {} [- (abs ((f Tig)) (f 5)): Ties
+ (var) A |- app5 @ Tigs
| + (var) Aj|- x : int
| + (int) Agl- O0: int
| + (gt) As|l- (> x 0) : bool
+ (abs) A, |- (abs ((x int)) (> x 0)) : Tg
(app) A |- (app5 E,g) : bool
bind) {} |- (bind app5 E,4(app5 E,g)) : bool

In this alternative representation, each conclusion of aruleis labeled with the name of the rule
used to derive it, and the hypotheses of the rule are those judgements on the lines labelled “ +”
directly above the leftmost character of the rule name. Vertical lines are used to connect the
hypotheses of the samerule.

=+
I
I
I
I
I
=+
(

Vertical format makes it easier to draw type derivations for more complex expressions using
fewer abbreviations without running out of space. For example, Figure 2 shows atype derivation
for the following expression:

(bindpar ((app5_1 (abs ((f (-> (int) int))) (f 5))
(app5_2 (abs ((f (-> (int) (-> (int) int)))) (f 5))
(make-sub (abs ((n int)) (abs ((x int)) (- x n)))))
(app5_1 (rmake-sub ((app5_2 make-sub) 3)))

The type derivation uses the following abbreviations:

I”) int),
(-> (int) T,)) T,),
(int) T,))}

Note that the above derivation contains two separate copies of the app5 function: one that
assumes the argument f hastype (- > (i nt) int) and the other that assumes that the argument f
hastype (-> (int) (-> (int) int)). Two separate copies of thisfunction are needed in
HOFLEMT because it isamonomor phic language: every expression has exactly one type.
Since the function is applied at two different argument types, it is necessary to have one copy of
the function per argument type.

Examples of real-life monomorphic languages include C, Pascal, and Fortran. As suggested by
the above example, in monomorphic languages it may be necessary to create many copies of the
same function that differ only in their type. For example, in monomorphic languages, it is
necessary to write separate sorting routines for arrays of integers and arrays of floating point
numbers because these two arrays have different types! Even worse, in Pascal, the size of the
array is part of the array type, so one must write a different sorting function to sort arrays of 10
integers and arrays of 11 integers!

+ (var) {f:T,} |- f : T,
+ (int) {f:T,} |- 5: int
+ (app) {f:T,} |- (f 5) : int

+ (abs) {} |- (abs ((f T,) (f 5)) ¢ (-> (T,) int)

| + (var) {f:(-> (int) T))} |- f : (-> (int) T,)

| + (int) {f:(->(int) T,)} |- 5: int

| + (app) {f:(-> (int) T,)} |- (f 5) : T, ,

+ (abs) {} [- (abs ((f (-> (int) T,))) (f 5)) ¢ (-> ((-> (int) Ty)) T)
| + (var) {n:int,x:int} |- x : int

| + (var) {n:int,x:int} |- n: int

| + (sub) {n:int,x:int} |- (- x n) : int

|

+

(abs) {n:int} |- (abs ((x int)) (- x n)) : T,
abs) {} |- (abs ((nint)) (abs ((x int)) (- xn))) : (-> (int) T,)
(var) A |- app5_1: (-> (T,) int)
+ (var) A |- make-sub : (-> (int) T,))
| + (var) A|- app5_2: (-> ((-> (int) T,)) T,)
| + (var) A |- make-sub: (-> (int) T,))
| + (app) A |- (app5 nmeke-sub): T,
| + (int) A|- 3: int
| + (app) A |- ((app5 make-sub) 3) : int
+ (app) A |- (make-sub ((app5 nmake-sub) 3)) : T,
+ (app) A |- (app5 (make-sub ((app5 make-sub) 3))) : int
(bindpar) {} |- (bindpar ((app5_1 (abs ((f T,)) (f 5))
(app5_2 (abs ((f (-> (int) T,))) (f 5))
(make-sub (abs ((n int))
(abs ((x int))
(- x)))) |
(app5_1 (make-sub ((app5_2 make-sub) 3))) : int

Figure 2: Exampletype derivation using the vertical format

Above we only considered showing that HOFLEMT expressions are well-typed. It isalso
possible to show that HOFLEMT programs are well-typed. This can be done by showing that the
body of the program is well-typed with respect to a type environment where each program
parameter is bound to thei nt type.

3.3 Type Checking

It is possible to check the well-typedness of aHOFLEMT expression or program via an
automatic type checker. A type checker isvery much like an evaluator, except that rather than
finding the type of an expression relative to a value environment, it determines the type of an
expression relative to a type environment.

Figures 3 and 4 present an SML implementation of atype checker for HOFLEMT. The core of
the type checker isthe checkExp function defined in Figure 3, whose SML typeis:

val checkExp : AST.Exp -> Type ldent.Env.env -> Type

The checkExp function encodes al the typing rules from Figure 1 except for the rules that
handled primitives. It calcul ates the type of an expression from the types of its subexpressions. If
the subexpression types do not match the typing rules, checkExp raises a TypeCheckEr r or
exception indicating that the expression is not well typed.

fun checkExp (Lit(UnitLit)) env = UnitTy
| checkExp (Lit(IntLit(_))) env = IntTy
| checkExp (Lit(BoolLit(_))) env = Bool Ty
| checkExp (Lit(StringLit(_))) env = StringTy
| checkExp (Lit(SynLit(_))) env = Symly

| checkExp (VarRef(nane)) env =
(case TEnv. | ookup(nane, env) of
NONE => rai se TypeCheckError
("Unbound variable: " ~ (ldent.toString(nane)))
| SOMVE(ty) => ty)
| checkExp (exp as |f(test,thenExp, el seExp)) env =
let val testTy checkExp test env
val thenTy checkExp thenExp env
val el seTy checkExp el seExp env
in if not(Type.equal (testTy, Bool Ty)) then
rai se TypeCheckError("if: non-bool ean test expression")
el se if not(Type. equal (thenTy, el seTy)) then
rai se TypeCheckError("if: branch types don't match:\n"
A "Then type: " " (Type.toString(thenTy))
N "\nEl se type: " ™ (Type.toString(elseTy)))

el se
t henTy
end

| checkExp (Abs(fornals,types, body)) env =
ArrowTy(types, checkExp body (TEnv. extend(formals,types,env)))

| checkExp (FunApp(rator, rands)) env =
typeApply (checkExp rator env) (checkExpLi st rands env)

| checkExp (PrinmEnpty(ty)) env = ListTy(ty) (* special primin HOFLEMI *)
| checkExp (exp as (PrimApp(prinmop,rands))) env =
| et val PrinmopEnv. PDesc(_, prinCheck,) = PrinopEnv. | ookup(prinop)
in prinCheck (checkExpList rands env)
handl e Pri nopEnv. Pri nTypeCheckError(nsg) =>
rai se TypeCheckError(nsg)
end

| checkExp(Bi ndPar (nanes, def ns, body)) env =
checkExp body (TEnv. extend(nanes, checkExpLi st defns env, env))

| checkExp (Bi ndRec(nanes,tys, defns, body)) env =
I et val recEnv = TEnv. extend(nanes,tys, env)
val defnTys = checkExpLi st defns recEnv
in case ListOps.sone3 (fn(nane,ty, defnTy) =>
not (Type.equal (ty,defnTy)))
nanes tys defnTys of
NONE => checkExp body recEnv
| SOVE(name,ty, defnTy) =>
rai se TypeCheckError
("bindrec: binding type doesn't match definition type:\n"
N "binding nane: " ~ (ldent.toString nane)
A "\'nbinding type: " ~ (Type.toString ty)
A "\ ndefinition type: " ~ (Type.toString defnTy))
end

and checkExpLi st exps env = map (fn exp => checkExp exp env) exps

Figure 3: definitions of type checking functions checkExp and checkExpLi st .

6

signature TYPE CHECK = sig

exception TypeCheckError of string
(* Exception raised when type checking error encountered *)

val checkProg : AST.Program-> Type
(* Returns the type of a well-typed program Raises TypeCheckError
if the programis not well-typed. *)

val checkExp : AST.Exp -> Type ldent.Env.env -> Type
(* Returns the type of a well-typed expression relative to the
gi ven type environnment. Raises TypeCheckError if the expression
is not well-typed relative to the type environnent *)
end

structure TypeCheck : TYPE CHECK = struct
| ocal open AST Type in
exception TypeCheckError of string
structure TEnv = ldent.Env (* abbreviation *)

fun checkProg(Prog(fornals, body)) =
checkExp body (TEnv. extend(fornals,
List.map (fn _ => IntTy) fornals,
TEnv. enpty))

and checkExp ... (* definition given in Figure 3 *)
and checkExpList ... (* definition given in Figure 3 *)

and typeApply (ratorTy as (ArrowTy(formal Tys,resultTy))) actual Tys =
if not (List.length(formal Tys) = List.length(actual Tys)) then
rai se TypeCheckError
("funapp: nmismatch between nunber of formals ("
AN (Int.toString (List.length(fornal Tys)))
A ") and nunber of actuals ("
A (Int.toString (List.length(actual Tys)))
A my
el se (case ListQOps.sonme2 (fn(fty,aty) => not(Type.equal (fty,aty)))
formal Tys
act ual Tys of
NONE => result Ty
| SOVE(fty,aty) =>
rai se TypeCheckError
("funapp: formal type doesn't match actual type.\n"
N "Expected: " N (Type.toString fty)
A "\'nActual: " ™ (Type.toString aty))

)
| typeApply ratorTy _ =
rai se TypeCheckError
("funapp: attenpt to apply non function --\n"
N "Rator type: " ™ (Type.toString ratorTy))
end (* local *)
end (* struct *)

Figure4: SML definition of HOFLEMT type checker.

The type checking of primitive applicationsis specified in the PrimopEnv structure (not shown
in the figures). This module has the following signature:

signature PRIMOP_ENV = sig

exception PrinmlypeCheckError of string
exception PrinkEval Error of string

dat at ype PrinDesc =

PDesc of Primtive.Prinop (* nane of primtive *)
* (Type. Ty list -> Type. Ty) (* type checker *)
* (Value.Val list -> Value.Val) (* nmeaning of prinop *)

val lookup : Primtive.Prinop -> PrinDesc

end

The Pri nDesc datatype is used to encode the type checking rules and evaluation rules of
primitive operators. Figure 5 shows afew representative examples of the primitive descriptors
for HOFLEMT. Thet ypeM snat ch function (not shown) raises a PrimTypeErrorException with
an appropriate explanation of the mismatch.

The type of aprogram isfound by the checkPr og function in Figure 4, whose SML typeis:
val checkProg : AST. Program -> Type
The checkPr og function returns the type of the body of a program under the assumption that all

the arguments of the program are integers. Like checkExp, it raises aTypeCheckEr r or
exception if the program is not well-typed.

(* Primtive descriptor for + *)
PDesc(Add,
fn [IntTy, IntTy] => IntTy
| tys => typeM smatch(Add, [IntTy,IntTy], tys),

fn[IntVal (il), IntVal(i2)] =>IntVal (il + i2)
)

(* Primtive descriptor for < *)

PDesc(LT,

fn [IntTy, I ntTy] => Bool Ty
| tys => typeM smatch(LT, [IntTy,IntTy], tys),
fn[Intval (il), IntVal(i2)] => BoolVal (il < i2)
)
(* Primtive descriptor for prepend *)
PDesc(Pr epend,
fn[tyl, ListTy(ty2)] =>
i f Type.equal (tyl,ty2) then
ListTy(ty2)
el se
rai se PrimlypeCheckError
("prepend: type of prepended el emrent does not\n"
"mat ch conponent type of list\n"
"Prepended el enent type: " ~ (Type.toString tyl)
"\'nLi st conmponent type: " ~ (Type.toString ty2)
"\'n")
s => rai se PrinTypeCheckError
("prepend: wong argument types "

N (typelListToString(tys))),
fn [x,ListVal (xs)] => ListVal (x::xs)
)

(* Primitive descriptor for head *)
PDesc(Head,
fn [ListTy(ty)] =>ty
| tys => raise PrinilypeCheckError
("head: wrong argunent types "
N (typelListToString(tys))),
fn [ListVal ([])] => raise PrinEval Error
("attenpt to take head of enpty list")
| [ListVal(x::xs)] => X

< > > > >

|t

Figure 5: Sample primitive descriptorsfrom Pri nopEnv.

