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TYPE CHECKING

3.1 Well-Typedness

A HOFLEMT expression E is said to be well-typed  if it is possible to prove that it has a type T
using a set of typing rules. It turns out that HOFLEMT satisfies a type soundness theorem:

for any well-typed HOFLEMT expression E that has a type T, the run-type value
of E is guaranteed to be a member of the set of values denoted by T.

The type soundness theorem means that it is  impossible to encounter a type error when
evaluating a well-typed expression at run-time. The type soundness theorem is often summed up
by the motto "Well-typed programs do not go wrong".  This motto is somewhat deceptive --
well-typed programs can encounter errors at run-time, but those errors cannot be type errors.
Other errors that can still be encountered are errors that depend on particular values (e.g. divide-
by-zero, attempt to take the head of an empty list, accessing an array at an out-of-bounds index)
as well as logical errors in the program (it gives the wrong answer).

We use the notation  E:T  to indicate that E is a well-typed expression with type T. For example:

() : unit
true : bool
5 : int
"foo" : string
(symbol cs251) : sym
(prepend 42 (prepend –17 (empty int))) : (listof int)
(abs ((a int) (b int)) (div (+ a b) 2)) : (-> (int int) bool)

Type environments  are environments that associate value variable names with types.  We will
write type environments as sets of bindings of the form E:T.  For example, the type environment
{a:int, b:bool,f:(-> (int) int)} associates the name a with the type int, the name b
with the type bool, and the name f with the type (-> (int) int). If A is a type environment, I
is an identifier, and T is a type, we use the notation A(I) to denote the type bound to I in type
environment A, and A+{I1 : T1,… , In : Tn}  to stand for the environment A extended with
bindings between I1…In and T1…Tn, respectively.

Just as expressions can be evaluated relative to a value environment, expressions can be typed
relative to a type environment. A type judgement of the form A |- E : T is pronounced "Given
the type environment A, E has type T", or, more succinctly, "A proves that E has type T.

3.2 Proving Expressions Well-Typed

The well-typedness of expressions can be formalized in terms of a set of typing rules.  A typing
rule has the form

(rulename) 
Hypothesis1;...; Hypothesisn

Conclusion

where each of the hypotheses and conclusions is a typing judgement. Such a rule is pronounced
as follows: "If the hypotheses Hypothesis1 ... Hypothesisn are all true, then the conclusion
Conclusion is true." The name rulename  is just a handy way to refer to a particular rule.
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The typing rules for HOFLEMT appear in Figure 2. These rules use the following metavariable
conventions:

• A ranges over type environments
• N ranges over numeric literals
• E ranges over expressions
• I ranges over identifiers
• T ranges over types

The typing rules in Figure 2 can be used to prove that a given HOFLEMT expression is well-
typed. A proof that  expression E is well-typed with respect to a type environment A is a tree of
type judgements where:

• The root of the tree is A |- E : T for some type T;
• Each judgement J appearing in the tree is justified by instantiating one of the typing rules

such that J is the conclusion of the instantiated rule and the children judgements of J are
the hypotheses of the instantiated rule.

Such a tree of judgements whose root is the judgement J is said to be a type derivation (or
typing)  for J.

For example, consider the expression

(bind app5 (abs ((f (-> (int) bool)))
             (f 5))
  (app5 (abs ((x int))
          (> x 0)))

Suppose that we want to show that this expression is well-typed with respect to the empty
environment. Because the typing derivation will be a rather wide tree, we will introduce the
following abbreviations to make it narrower:

TIB = (-> (int) bool)
TIBB = (-> (TIB) bool)
Eabsf = (abs ((f TIB)) (f 5))
Eabsx = (abs ((x int)) (> x 0))
Ebind = (bind app5 Eabsf (app5 Eabsx))
A1 = {f: T IB }
A2 = {app5: T IBB }
A3 = {app5: T IBB, x:int}

Below is a typing derivation for the expression that proves that it has type bool. Each horizontal
line is labeled with the name of the instantiated rule. Note that the leaves of the typing derivation
are judgements involving literals or variables; these have no hypotheses. Also note that the
“shape” of the derivation is an “upside down” abstract syntax tree for the expression at the root.
That is, a judgement for an expression E follows from the judgements of its direct
subexpressions.

(bind)
(abs)

(app)
(var)

A1 | − f :T IB
; (int)

A1 | −5 : int
;

A1 | −(f 5) : bool
;

{}| −(abs ((f TIB )) (f 5)): TIBB;
 (app)

(var)
A2 | −app5: TIBB

;  (abs)

(gt)
(var)

A3 | -x: int
; (int)

A3 | -0: int

A3 |- (>  x 0)) :bool
A2 | -(abs ((x int)) (>  x 0)): TIB

A2 | −(app5 (abs ((x int)) (>  x 0)):bool

{}| − (bind app5  E absf   (app5 E absx )):bool
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 (int)  
    A|−N:int

    (Other literal rules are similar)

(var)  
    A|−I:A(I)

 (if)  
    

A|−E1:bool; A|−E2:T; A|−E3:T

A|−(if E1 E2 E3):T

 (abs) 
    

A+{I 1:T1 , ..., In:Tn}|−E:T

A|−(abs ((I1 T1) ... (In Tn)) E) : (− >  (T1...Tn) T)

 (app) 
    

A | −E1:T1; ... ; A|−En:Tn
A|−E0:(− >  (T1 ... Tn) T)

A|-(E0 E1 ... En):T

 (bindpar) 
    

A +{I1:T1, ..., In:Tn}|−E:T
A|−E1:T1; ...; A|−En:Tn

A|−(bindpar ((I1 E1) ... (I1 En)) E):T
The bind construct is treated like bindpar with a single binding.

 (bindrec) 
    

Arec|−E:T
Arec|−E1:T1; ...; A|−En:Tn

A|−(bindrec ((I1 T1 E1) ... (In Tn En)) E):T
where Arec = A + {I1:T1,…,,In:Tn]

 (add) 
    

A|−E1:int; A|−E2:int
A|−(+ E1 E2):int

There are analogous rules for the other primitive applications. To allow list operations to be
polymorphic, we need special rules for list primitives (shown below).

(prepend) 
    

A|−E1:T; A|−E2:(listof T)
A|−(prepend E1 E2):T

(head) 
    

A|−E:(listof T)
A|−(head E):T

(tail) 
    

A|−E:(listof T)
A|−(tail E):(listof T)

 (empty) 
    A|−(empty T):(listof T)

(empty?) 
    

A|−E:(listof T)
A|−(empty? E):bool

Figure 1: Typing rules for HOFLEMT
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As shown above,  type derivations can be drawn as trees in which all hypotheses for a rule are on
the same line above the horizontal bar and the conclusion of a rule is below the horizontal bar.
We shall call this the horizontal format for a type derivation.

Using the horizontal format, it is very easy to run out of horizontal space when drawing a type
derivation. Below, we illustrate an alternative vertical format for displaying the above type
derivation that makes much better use of horizontal space:

    + (var) A1 |- f : TIB
    + (int) A1 |- 5 : int
  + (app) A1 |- (f 5) : bool
+ (abs) {} |- (abs ((f TIB)) (f 5)): TIBB
| + (var) A2 |- app5 : TIBB
| |   + (var) A3 |- x : int
| |   + (int) A3 |- 0 : int
| | + (gt) A3 |- (> x 0) : bool
| + (abs) A2 |- (abs ((x int)) (> x 0)) : TIB
+  (app) A2 |- (app5 Eabsx) : bool
(bind) {} |- (bind app5 Eabsf (app5 Eabsx)) : bool

In this alternative representation, each conclusion of a rule is labeled with the name of the rule
used to derive it, and the hypotheses of the rule are those judgements on the lines labelled “+”
directly above the leftmost character of the rule name. Vertical lines are used to connect the
hypotheses of the same rule.

Vertical format makes it easier to draw type derivations for more complex expressions using
fewer abbreviations without running out of space. For example, Figure 2 shows a type derivation
for the following expression:

(bindpar ((app5_1 (abs ((f (-> (int) int))) (f 5))
          (app5_2 (abs ((f (-> (int) (-> (int) int)))) (f 5))
          (make-sub (abs ((n int)) (abs ((x int)) (- x n)))))
  (app5_1 (make-sub ((app5_2 make-sub) 3)))

The type derivation uses the following abbreviations:

TII  = (-> (int) int)
A1 = {app5_1: (-> (TII) int),
     app5_2: (-> ((-> (int) TII)) TII),
     make-sub: (-> (int) TII)}

Note that the above derivation contains two separate copies of the app5 function: one that
assumes the argument f has type (-> (int) int) and the other that assumes that the argument f
has type (-> (int) (-> (int) int)). Two separate copies of this function are needed in
HOFLEMT because it is a monomorphic language: every expression has exactly one type.
Since the function is applied at two different argument types, it is necessary to have one copy of
the function per argument type.

Examples of real-life monomorphic languages include C, Pascal, and Fortran. As suggested by
the above example, in monomorphic languages it may be necessary to create many copies of the
same function that differ only in their type. For example, in monomorphic languages, it is
necessary to write separate sorting routines for arrays of integers and arrays of floating point
numbers because these two arrays have different types!  Even worse, in Pascal, the size of the
array is part of the array type, so one must write a different sorting function to sort arrays of 10
integers and arrays of 11 integers!
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    + (var) {f:TII} |- f : TII
    + (int) {f:TII} |- 5 : int
  + (app) {f:TII} |- (f 5) : int
+ (abs) {} |- (abs ((f TII) (f 5)) : (-> (TII) int)
|   + (var) {f:(-> (int) TII)} |- f : (-> (int) TII)
|   + (int) {f:(-> (int) TII)} |- 5 : int
| + (app) {f:(-> (int) TII)} |- (f 5) : TII
+ (abs) {} |- (abs ((f (-> (int) TII))) (f 5)) : (-> ((-> (int) TII)) TII)
|     + (var) {n:int,x:int} |- x : int
|     + (var) {n:int,x:int} |- n : int
|   + (sub) {n:int,x:int} |- (- x n) : int
| + (abs) {n:int} |- (abs ((x int)) (- x n)) : TII
+ (abs) {} |- (abs ((n int)) (abs ((x int)) (- x n))) : (-> (int) TII)
| + (var) A1 |- app5_1 : (-> (TII) int)
| | + (var) A1 |- make-sub : (-> (int) TII)
| | |   + (var) A1 |- app5_2: (-> ((-> (int) TII)) TII)
| | |   + (var) A1 |- make-sub: (-> (int) TII)
| | | + (app) A1 |- (app5 make-sub): TII
| | | + (int) A1 |- 3: int
| | + (app) A1 |- ((app5 make-sub) 3) : int
| + (app) A1 |- (make-sub ((app5 make-sub) 3)) : TII
+ (app) A1 |- (app5 (make-sub ((app5 make-sub) 3))) : int
(bindpar) {} |- (bindpar ((app5_1 (abs ((f TII)) (f 5))
                          (app5_2 (abs ((f (-> (int) TII))) (f 5))
                          (make-sub (abs ((n int))
                                      (abs ((x int))
                                        (- x n)))))
                  (app5_1 (make-sub ((app5_2 make-sub) 3))) : int

Figure 2: Example type derivation using the vertical format

Above we only considered showing that HOFLEMT expressions are well-typed. It is also
possible to show that HOFLEMT programs are well-typed. This can be done by showing that the
body of the program is well-typed with respect to a type environment where each program
parameter is bound to the int type.

3.3 Type Checking

It is possible to check the well-typedness of a HOFLEMT expression or program via an
automatic type checker. A type checker is very much like an evaluator, except that rather than
finding the type of an expression relative to a value environment, it determines the type of an
expression relative to a type environment.

Figures 3 and 4 present an SML implementation of a type checker for HOFLEMT. The core of
the type checker is the checkExp function defined in Figure 3, whose SML type is:

val checkExp : AST.Exp -> Type Ident.Env.env -> Type

The checkExp function encodes all the typing rules from Figure 1 except for the rules that
handled primitives. It calculates the type of an expression from the types of its subexpressions. If
the subexpression types do not match the typing rules, checkExp raises a TypeCheckError
exception indicating that the expression is not well typed.
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    fun checkExp (Lit(UnitLit)) env = UnitTy
      | checkExp (Lit(IntLit(_))) env = IntTy
      | checkExp (Lit(BoolLit(_))) env = BoolTy
      | checkExp (Lit(StringLit(_))) env = StringTy
      | checkExp (Lit(SymLit(_))) env = SymTy

      | checkExp (VarRef(name)) env =
  (case TEnv.lookup(name, env) of
     NONE => raise TypeCheckError

                           ("Unbound variable: " ^ (Ident.toString(name)))
   | SOME(ty) => ty)

      | checkExp (exp as If(test,thenExp,elseExp)) env =
  let val testTy = checkExp test env
      val thenTy = checkExp thenExp env
      val elseTy = checkExp elseExp env
   in if not(Type.equal(testTy,BoolTy)) then

         raise TypeCheckError("if: non-boolean test expression")
      else if not(Type.equal(thenTy,elseTy)) then

raise TypeCheckError("if: branch types don't match:\n"
      ^ "Then type: " ^ (Type.toString(thenTy))
      ^ "\nElse type: " ^ (Type.toString(elseTy)))

      else
 thenTy

  end

      | checkExp (Abs(formals,types,body)) env =
          ArrowTy(types, checkExp body (TEnv.extend(formals,types,env)))

      | checkExp (FunApp(rator, rands)) env =
  typeApply (checkExp rator env) (checkExpList rands env)

      | checkExp (PrimEmpty(ty)) env = ListTy(ty) (* special prim in HOFLEMT *)
      | checkExp (exp as (PrimApp(primop,rands))) env =
          let val PrimopEnv.PDesc(_,primCheck,_) = PrimopEnv.lookup(primop)
           in primCheck (checkExpList rands env)
              handle PrimopEnv.PrimTypeCheckError(msg) =>
                       raise TypeCheckError(msg)

    end

      | checkExp(BindPar(names,defns,body)) env =
  checkExp body (TEnv.extend(names, checkExpList defns env, env))

      | checkExp (BindRec(names,tys,defns,body)) env =
  let val recEnv = TEnv.extend(names,tys,env)
      val defnTys = checkExpList defns recEnv
   in case ListOps.some3 (fn(name,ty,defnTy) =>

                                    not (Type.equal(ty,defnTy)))
                                names tys defnTys of
                NONE => checkExp body recEnv
              | SOME(name,ty,defnTy) =>

raise TypeCheckError
      ("bindrec: binding type doesn't match definition type:\n"
       ^ "binding name: " ^ (Ident.toString name)
       ^ "\nbinding type: " ^ (Type.toString ty)
       ^ "\ndefinition type: " ^ (Type.toString defnTy))

  end

    and checkExpList exps env = map (fn exp => checkExp exp env) exps

Figure 3: definitions of type checking functions checkExp and checkExpList.
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signature TYPE_CHECK = sig

  exception TypeCheckError of string
    (* Exception raised when type checking error encountered *)

  val checkProg : AST.Program -> Type
    (* Returns the type of a well-typed program. Raises TypeCheckError
       if the program is not well-typed. *)

  val checkExp : AST.Exp -> Type Ident.Env.env -> Type
    (* Returns the type of a well-typed expression relative to the
       given type environment. Raises TypeCheckError if the expression
       is not well-typed relative to the type environment *)
end

structure TypeCheck : TYPE_CHECK = struct

  local open AST Type in

    exception TypeCheckError of string

    structure TEnv = Ident.Env (* abbreviation *)

    fun checkProg(Prog(formals,body)) =
          checkExp body (TEnv.extend(formals,
                                     List.map (fn _ => IntTy) formals,

     TEnv.empty))

    and checkExp ... (* definition given in Figure 3 *)

    and checkExpList ... (* definition given in Figure 3 *)

    and typeApply (ratorTy as (ArrowTy(formalTys,resultTy))) actualTys =
  if not (List.length(formalTys) = List.length(actualTys)) then
    raise TypeCheckError

("funapp: mismatch between number of formals ("
 ^ (Int.toString (List.length(formalTys)))
 ^ ") and number of actuals ("
 ^ (Int.toString (List.length(actualTys)))
 ^ ")")

          else (case ListOps.some2 (fn(fty,aty) => not(Type.equal(fty,aty)))
                           formalTys

    actualTys of
          NONE => resultTy

                | SOME(fty,aty) =>
                    raise TypeCheckError

      ("funapp: formal type doesn't match actual type.\n"
       ^ "Expected: " ^ (Type.toString fty)
       ^ "\nActual: " ^ (Type.toString aty))

                )
      | typeApply ratorTy _ =
          raise TypeCheckError
                ("funapp: attempt to apply non function --\n"

 ^ "Rator type: " ^ (Type.toString ratorTy))
 end (* local *)
end (* struct *)

Figure 4: SML definition of HOFLEMT type checker.
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The type checking of primitive applications is specified in the PrimopEnv structure (not shown
in the figures).  This module has the following signature:

signature PRIMOP_ENV = sig

    exception PrimTypeCheckError of string
    exception PrimEvalError of string

    datatype PrimDesc =
      PDesc of   Primitive.Primop              (* name of primitive *)
               * (Type.Ty list -> Type.Ty)     (* type checker *)
               * (Value.Val list -> Value.Val) (* meaning of primop *)

    val lookup : Primitive.Primop -> PrimDesc

end

The PrimDesc datatype is used to encode the type checking rules and evaluation rules of
primitive operators.  Figure 5 shows a few representative examples of the primitive descriptors
for HOFLEMT. The typeMismatch function (not shown) raises a PrimTypeErrorException with
an appropriate explanation of the mismatch.

The type of a program is found by the checkProg function in Figure 4, whose SML type is:

val checkProg : AST.Program -> Type

The checkProg function returns the type of the body of a program under the assumption that all
the arguments of the program are integers.  Like checkExp, it raises a TypeCheckError
exception if the program is not well-typed.
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  (* Primitive descriptor for + *)
        PDesc(Add,

  fn [IntTy,IntTy] => IntTy
                 | tys => typeMismatch(Add, [IntTy,IntTy], tys),

  fn [IntVal(i1), IntVal(i2)] => IntVal(i1 + i2)
              )

  (* Primitive descriptor for < *)
  PDesc(LT,

  fn [IntTy,IntTy] => BoolTy
                 | tys => typeMismatch(LT, [IntTy,IntTy], tys),

  fn [IntVal(i1), IntVal(i2)] => BoolVal(i1 < i2)
              )

  (* Primitive descriptor for prepend *)
        PDesc(Prepend,

  fn [ty1,ListTy(ty2)] =>
                   if Type.equal(ty1,ty2) then
                     ListTy(ty2)
                   else

     raise PrimTypeCheckError
 ("prepend: type of prepended element does not\n"
  ^ "match component type of list\n"
  ^ "Prepended element type: " ^ (Type.toString ty1)
  ^ "\nList component type: " ^ (Type.toString ty2)
  ^ "\n")

                 | tys => raise PrimTypeCheckError
           ("prepend: wrong argument types "

    ^ (typeListToString(tys))),
        fn [x,ListVal(xs)] => ListVal(x::xs)

              )

  (* Primitive descriptor for head *)
  PDesc(Head,

  fn [ListTy(ty)] => ty
               | tys => raise PrimTypeCheckError

           ("head: wrong argument types "
    ^ (typeListToString(tys))),

        fn [ListVal([])] => raise PrimEvalError
                     ("attempt to take head of empty list")

               | [ListVal(x::xs)] => x
              )

Figure 5: Sample primitive descriptors from PrimopEnv.


