Control

Handout #41
CS251 Lecture 37
April 30, 2002



What is Control?

* Inprogram execution, control refersto “where’ the computation currently is.

e Control is characterized by two components:

(1) the expression (or statement) currently being evaluated.
e CS111: thered control dot.
o (CS240: the program counter.
o CS251: theargument to subst - eval inthe substitution model

(2) The continuation = all the pending operations that need to be performed when
the value of the expression currently being evaluated is returned.

» CS111: the pending execution frames in the Java Execution Mode.
o (CS240: the stack of procedure call activation frames.
o CS251: the surrounding expressionsin the Scheme substitution model

We will call the pair of (1) and (2) acontrol point.

« All computation is an iteration through control points.



Control Point Example 1

Expression Continuation
(/ (+ (653 (-73)) 2 top
(+ (* 65 (- 73)) (I (vl) (top (/ vl 2)))
(* 6 5) (I (v2) (top (/ (+v2 (- 73)) 2)))
(- 7 3) (I (v3) (top (/ (+ 30 v3) 2)))
(+ 30 4) (I (vl) (top (/ vl 2)))
(/ 34 2) t op
® 17
Notes:

 Continuations are modeled as single-argument functions.
* t op designates the top-level continuation

» The above assumes | eft-to-right evaluation of arguments
(MIT Scheme evaluates them right-to-left.)




Control Point Example 2: Recursive Factorial

(define (fact-rec n)
(if (= n 0

1

(* n (fact-rec (- n 1)))))

Expression
(fact-rec 3)
(fact-rec 2)
(fact-rec 1)
(fact-rec 0)
(* 11)

(* 21)
(* 3 2)
® 6

t op
(I
(I
(I
(I
(I
t op

Continuation

(vl) (top (* 3 vl)))

(v2) (top (* 3 (* 2v2))))

(v3) (top (* 3 (* 2 (* 1v3)))))
(v2) (top (* 3 (* 2v2))))

(vl) (top (* 3 vl)))

Note the stack-like nature of continuations.




Control Point Example 3: Iterative Factorial

(define (fact-iter n) (fact-tail n 1))

(define (fact-tail num ans)
(i1f (= num 0)
ans
(fact-tail (- num1) (* numans))))

Expression Continuation
(fact-iter 3) top
(fact-tail 3 1) t op
(fact-tail 2 3) top
(fact-tail 1 6) top
(fact-tail 0 6) t op
® 6

Note: A function call istail recursive if it does not alter continuation



Control Aspects of Familiar Constructs

Evaluating nested subexpressions requires choosing an order and
remembering what to do next.

— Argument evaluation order is left-to-right in most language.

— Evauation order unspecified in Scheme (right-to-left in MIT Scheme).

Sequencing of statements in imperative language.
Conditionals allow branches in control flow.
L oops/tail recursion specify iterations.

Function/procedure call and return:

— In many execution models (e.g., C, Pascal, Java), calling a procedure pushes an
activation frame on the call stack and returning from a procedure pops the
activation from from the call stack.

— In properly tail-recursive languages (e.g. Scheme, most ML implementations)
stack is pushed by subexpression evaluation and procedure calls act like “gotos
that pass arguments’ (see Guy Steele’s, “ Debunking the Expensive Procedure
Call Myth or Lambda: The Ultimate Goto.”)



Altering the Normal Flow of Control

Sometimes want to “break out” from the normal flow of control in a program:

Want to immediately stop execution of the program, due to request from user
(typing Control-C) or due to finding an error. E.g. Scheme'serr or ; hal t
opcode in assembly language.

Discover an answer “early” and want to return it immediately without
processing all pending computations. E.g. encountering a zero when finding
the product of alist or array.

Encounter an unusual situation that may need to be handled differently in
different contexts. E.g., division by zero, out-of-bounds array access,
unbound variables in environment [ookup.

Altering the normal flow of control can be very convenient and efficient, but
can also lead to “ spaghetti code’. Dijkstra’ s“ Goto Considered Harmful”
and the structured programming movement of the 1970s advocated control
constructs with one control input and one control outpui.



Non-local Exits; Return

In C, C++, and Java, return can force “early” exit of afunction/method.

Example (Java): calculating array product. Want to return early if encounter a
zero. Also suppose that encountering any negative number should cause the
result to be -1.

public static int arrayProd (int[] a) {
I nt prod = 1;
for (int 1 =0; I < a.length; i++) {
I f (a[i] == 0)
return 0; // Non-local exit from loop
else if (a[i] < 0) then
return -1; // Non-local exit from loop
el se
prod = a[i] * prod;
}

return prod,;



Non-local Exits: Break
Java has labeled br eak statements for breaking out of aloop.

public static int sumArrayProds (int[][] a) {
I nt sum = O;

outer:for (int i =0; i < a.length; i++) {
Int prod = 1;
inner:for (int j =0; i < a[i].length; j++) {

it (afi][]] <0)
break outer; // Return current sum on negative num

else if (a[i][]] == 0) {
prod = 0; break inner;
// Alternatively: continue outer;

el se
prod = a[i][j] * prod;}

sum = sum + prod;}
return suni}

o Javaslabeled conti nue statement jumps to end of specified loop.
o C’'sunlabeled br eak and cont i nue that work on innermost enclosing loop.



Non-Local Exits: Goto
In Pascal, can only express non-local exits viagot o:

function product (outer Ist: intlist): integer;
| abel 17; {labels are denoted by numbers 0 to 9999}
function inner (lIst: intlist): integer;

begi n
If Ist = nil then
I nner =1
else if Ist™”. head = 0 then
begi n
product := 0; {Sets return value of function}
goto 17; {Control jumps to label 17}
end;
el se
i nner :=|st”. head * inner(lst™. tail)
end;
begi n
product := inner (outer _|st);
17:

end;



Non-Local Exits: Label and Jump

We will study non-local exitsin Scheme by extending it with the following label
and jump constructs:

(1 abel 1 E)

Evaluates E in alexical environment in which the name | isbound to afirst-class
control point that represents the continuation of the entire| abel expression.

(junp E1 E2)
Returns the value of E2 to the control point that is the value of E1.
j unp signals an error if E1 is not a control point.



(+

(+

(+

Label and Jump: Simple Examples

1 (label exit

1 (label exit

1 (Il abel exit
(* 2 (- 3

1 (label exitl
(* 2 (labe
(-

(2 (- 3(/41))))

(* 2 (- 3(/ 4 (junmp exit 5))))))

(/4 (Junp exit (+ 5 (Junp exit 6))))))))

| exit2
3 (/ 4 (+ (junp exit2 5)
(jump exitl 6))))))))



Label and Jump: List Product

(define product
(l anbda (outer-1Ilist)
(I abel return
(letrec ((inner (lanbda (Ist)
(if (null? |st)

1

(if (= (car Ist) 0)
(junp return 0)
(* (car Ist)

(inner (cdr Ist))))))))

(inner outer-list)))))



Label and Jump: List Product Alternative

(defi ne product
(l anbda (outer-1Ilist)
(I abel return
(foldr (lanbda (x ans)
(if (= x 0)
(junmp return 0)
(* x ans)))
1
outer-list))))



Control Points Introduced by | abel are First-Class

(define fact
(1 anbda (n)
(let ((loop ‘later) ; don’t care about initial value
(ans 1))
(begin
(Il abel top (set! |loop (lanbda () (junp top ‘ignore))))
(if (=n 0
ans
(begin
(set! ans (* n ans))
(set! n (- n 1))
(l'oop)))))))



First-class Control Points can do Strange and Wondrous Things!

(let ((g (lanbda (x) x)))
(letrec ((fact (lanbda (n)

(if (= n 0)
(Il abel base
(begin
(set! g (lanbda (y)
(begin
(set! g (lanbda (z) z))
(Junp base y))))
1))
(* n(fact (- n1)))))))
(+ (g 10)
(+ (fact 3) ; Cont. = (lanmbda (v) (+ 10 (+ v (+ .)))
(+ (g 10)

(+ (fact 4) ;cont. = (abs (v) (+ 10 (+ 60 (+ 10 (+ v .)))))

(9 10)))))))



Scheme'scal |l -wth-current-conti nuati on

Off-the-shelf Scheme does not support | abel andj unp. But it does support
cal | -wi t h-current -conti nuati on, which can be used to
Implement most advanced control constructs.

(call-with-current-continuati on Eproc) behaveslike:
(let ((I'proc Eproc)) ;; Assume Iproc fresh

(1 abel here
(I proc (lanbda (val) (junp here val)))))



Exampleof cal | -w t h-current-conti nuati on

(defi ne product
(l anbda (outer-1Ilist)
(call-wth-current-continuation
(1 anbda (return)
(letrec
((inner (lanbda (Ist)
(cond ((null? Ist) 1)
((= 0 (car Ist)) (return 0))
(else (* (car Ist)
(inner (cdr Ist))))
))))

(inner outer-list))))))



Continuation Passing Style (CPS)

The constructs we have seen so far rely on implicit continuations. It is possible
to model non-local control flow by passing explicit continuations in astyle
known as continuation-passing style.

For example, hereisa CPS version of recursive factorial:

(define fact-rec-cps
(lanbda (n k) ; k is the explicit continuation
(if (= n 0
(k 1)
(fact-rec-cps (- n 1)

(lambda (v) (k (* nv)))))))
(fact-rec-cps 3 (lanbda (v) Vv))

(fact-rec-cps 4 (lanbda (v) (+ 1 (* 2 v))))



CPS version of pr oduct

(defi ne product
(l anbda (outer-1Ilist)
(letrec ((inner
(lanbda (lIst k) ; kis the explicit cont.
(if (null? |st)

(k 1)

(if (= (car Ist) 0)
O ; return O directly,

; thus punting continuation
(i nner (cdr |st)
(1 anbda (v)

(k (* (car Ist) v)))))))))
(inner outer-list (lanbda (v) v)))))



Exception Handling

Want to be able to “signal” exceptional situations and handle them differently in
different contexts.

Many languages provide exception systems;
e Java’ st hrowandtry/ catch
e ML’srai se and handl e

« Common Lisp’st hr owand cat ch



Raise, trap, and handle

We will study exception handling in aversion of Scheme extended with the
following constructs:

e (raise T E)
Evaluate E to value V and raise exception with tag T and value V.

 (trap T E handler E _body)
First evaluate E_handler to aone-argument handler functionV_handler.

Then evaluate E_body to valueV_body. If no exception is encountered,
return V_body. If an exception israised withtag T and valueV_val, the
call to raise returns with the value of (V_handler V_val) evaluated at
the point of ther ai se.

« (handle T E _handler E_body)
First evaluate E_handler to aone-argument handler functionV_handler.

Then evaluate E_body to valueV_body. If no exception is encountered,
return V_body. If an exception israised withtag T and valueV_val, the
call to handle returns with the value of (V_handler V_val) evaluated at
the point of the handl e.



Exception Handling Examples

(define test
(1 anbda ()
(let ((raiser (lanmbda (x)
(if (< x 0)
(rai se negative X)
(if (even? Xx)
(rai se even Xx)

x)))))
(+ (raiser 1) (+ (raiser -3) (raiser 4))))))

What is the value of the following, where handler_1 and handler_2 range over
{t r ap, handl e} ? First assume |eft-to-right argument evaluation, then right-to-left.

(handler_1 negative (lanbda (v) (- v))
(handler_2 even (lanmbda (v) (* v v))

(test)))

(handler_1 even (lanmbda (v) (* v v))
(handler_2 negative (lanbda (v) (- Vv))

(test)))



