
CS251 Programming Languages Handout # 18

Prof. Lyn Turbak February 26, 2002

Wellesley College

IBEX

IBEX is a language that extends BINDEX with two new primitive datatypes (booleans and
symbols) and some constructs controlled by booleans. We study IBEX for two reasons:

1. To show how multiple primitive datatypes are handled by the interpreter. In particular, the
IBEX interpreter performs dynamic type checking to guarantee that operators are called
only on the right types of operands.

2. To show that a language implementation can be significantly simplified by decomposing it
into three parts:

(a) a kernel,

(b) synactic sugar, and

(c) a standard library.

We have already discussed how the Scheme language has this structure. In the context of
IBEX, we see the implications of this structure for the interpreter.

1 The IBEX Language

IBEX is a language that extends BINDEX with booleans, symbols, and some boolean-controlled
constructs.

1.1 Booleans

Whereas all values in INTEX and BINDEX are integers, IBEX also includes the two values true
and false. These values are called booleans in honor of George Boole, the nineteenth century
mathematician who invented boolean algebra.
The two boolean values can be written directly as literals, but can also be returned as the result

of applying relational operators to integers (<=, <, >, >=, = !=) and logical operators to booleans
(not, band, bor, bool=). The = operator tests two integers for equality, while != tests two integers
for inequality. The bool= operator tests two booleans for equality. The band operator returns
the logical conjunction (“and”) of two boolean operands, while bor returns the logical disjunction
(“or”) of two boolean operands. For example:

ibex> (< 3 4)

true

ibex> (= 3 4)

false

ibex> (!= 3 4)

true

1

ibex> (not (= 3 4))

true

ibex> (band (< 3 4) (>= 5 5))

true

ibex> (band (< 3 4) (> 5 5))

false

ibex> (bor (< 3 4) (> 5 5))

true

ibex> (bor (> 3 4) (> 5 5))

false

ibex> (bool= false false)

true

ibex> (bool= true false)

false

If an IBEX operator is supplied with the wrong number or wrong types of operands, a dynamic

type checking error is reported.

ibex> (< 5)

Error! < expects 2 arguments, but was given 1.

ibex> (= 5 6 7)

Error! = expects 2 arguments, but was given 3.

ibex> (+ 1 true)

Error! + expects two integers, but was given an integer and a boolean.

ibex> (band true 3)

Error! band expects two booleans, but was given a boolean and an integer.

ibex> (= true false)

Error! = expects two integers, but was given two booleans.

ibex> (bool= 7 8)

Error! bool= expects two booleans, but was given two booleans.

2

1.2 Symbols

IBEX supports a Scheme-like symbol datatype. A symbolic literal, written (symbol symbolname),
denotes the name symbolname. So symbol is a kind of “quotation mark”, similar to quote in
Scheme, that distinguishes symbols (such as (symbol x)) from variable references (such as x).
The only operation on symbols is equality, which is tested via the operator sym=. For example:

ibex> (sym= (symbol foo) (symbol foo))

true

ibex> (sym= (symbol foo) (symbol bar))

false

1.3 Boolean-Controlled Constructs

The key purpose of booleans is to direct the flow of control in a program with a branching control
structure.
The fundamental control construct in IBEX is a conditional construct with the same syntax as

Scheme’s if construct: (if Etest Ethen Eelse). Unlike Scheme, which treats any non-false value
as true in the context of an if, IBEX requires that the test expression evaluate to a boolean. A
non-boolean test expression is an error in IBEX.

ibex> (if (< 1 2) (+ 3 4) (* 5 6))

7

ibex> (if (> 1 2) (+ 3 4) (* 5 6))

30

ibex> (if (- 1 2) (+ 3 4) (* 5 6))

Error! Non-boolean test in an if expression.

scheme> (if (- 1 2) (+ 3 4) (* 5 6))

7

ibex> (if (< 1 2) (+ 3 4) (div 5 0))

7

ibex> (if (> 1 2) (+ 3 4 5) (* 5 6))

7

The last two test expressions highlight the fact that exactly one of Ethen and Eelse is evaluated.
The expression in the branch not taken is never evaluated, and so the fact that such branches might
contain an error is never detected.
Evaluating only one of the two branches is more than a matter of efficiency. In languages with

recursion, it is essential to the correctness of recursive definitions. For example, consider a Scheme
definition of factorial:

3

(define fact

(lambda (n)

(if (= n 0)

1

(* n (fact (- n 1))))))

If both branches of the if were evaluated, then an application of fact, such as (fact 3), would
never terminate! This is why if must be a “special form” in call-by-value languages and not just
an application of a primitive operator; in applications of primitive operators in a call-by-value
language, all operand expressions must be evaluated.

IBEX also has a multi-clause conditional construct with the same syntax as Scheme’s cond
construct:

(program (x y)

(cond ((< x y) (symbol less))

((= x y) (symbol equal))

(else (symbol greater))))

The only difference in meaning between the IBEX cond and the Scheme cond is the same as that
for if: each test expression evaluated in the IBEX cond must be a boolean.
Like many languages, IBEX provides “short-circuit” logical conjunction and disjunction con-

structs, respectively scand (cf. Scheme’s and, Java/C’s &&) and scor (cf. Scheme’s or, Java/C’s
||):

(scand Erand1 Erand2)

(scor Erand1 Erand2)

These are similar to the binary operators band and bor, except that Erand2 is never evaluated if the
result is determined by the value of Erand1 . For instance, in scand, Erand1 is first evaluated to the
value Vrand1 . If Vrand1 is true, then Erand2 is evaluated, and its value (which must be a boolean)
is returned as the value of the scand expression. But if Vrand1 is false, then false is immediately
returned as the value of the scand and Erand2 is never evaluated. Similarly, in scor, if Vrand1 is
true, a value of true is returned for the scor expression without Erand2 being evaluated; otherwise
the value of Erand2 (which must be a boolean) is returned. In contrast, both operand expressions
of band and bor are always evaluated.

ibex> (band (= 1 2) (> 3 4 5))

Error! > expects 2 arguments, but was given 3.

ibex> (scand (= 1 2) (> 3 4 5))

false

ibex> (bor (< 1 2) (+ 3 4))

Error! bor expects two boolean arguments,

but was given a boolean and an integer.

ibex> (scor (< 1 2) (+ 3 4))

true

4

In many cases scand/scor behave indistinguishably from the boolean operators band/bor,
which evaluate both of their operands. To see the difference, it is necessary to consider cases where
not evaluating E2 makes a difference. In IBEX, such a situation occurs when evaluating E2 would
otherwise give an error. For instance, consider the following IBEX program:

(program (x)

(if (scor (= x 0)

(> (div 100 x) 7))

(+ x 1)

(* x 2)))

This program returns 1 when applied to 0. But if the scor were changed to bor, the program
would encounter a divide-by-zero error when applied to 0 because the div application would be
evaluated even though (= x 0) is true.
This example is somewhat contrived, but real applications of short-circuit operators abound in

practice. For example, consider the higher-order forall? Scheme function we studied earlier this
semester:

(define forall?

(lambda (pred lst)

(if (null? lst)

#t

(and (pred (car lst))

(forall? pred (cdr lst))))))

In Scheme, and is the short-circuit conjunction operator. It is important to use a short-circuit
operator in forall? because it causes the recursion to stop as soon as an element is found for
which the predicate is false. If and were not a short-circuit operator, then forall? of a very long
list would explore the whole list even in the case where the very first element is found to be false.
As another example, consider the following Java insertion_sort method:

public void insertion_sort (int[] A) {
for (int i = A.length - 1; i >= 0; i--) {

int x = A[i];

int j = i-1;

// Insertion loop

while ((j >= 0) && (A[j] > x)) {
A[j+1] = A[j];

}
A[j+1] = x;

}
}

The use of the short-circuit && operator in the test of the while loop is essential. In the case
where j is -1, the test ((j >= 0) && (A[j] > x)) is false. But if both operands of the && were
evaluated, the evaluation of A[-1] would raise an array out-of-bounds exception.

5

2 The IBEX Kernel

The IBEX kernel language has only five kinds of expressions:

1. literals (which include boolean and symbolic literals as well as integers),

2. variable references,

3. single-variable local variable declarations (i.e., bind),

4. primitive applications (can have any number of operands of any type), and

5. conditional expressions (i.e., if).

We shall see that these five expression types are sufficient for representing all IBEX expressions.
The abstract syntax for the IBEX kernel can be found in Figs. 9–10 in Appendix A.
The complete environment model evaluator for IBEX is shown in figref 1. The complete

substitution model evaluator for IBEX is shown in figref 2.

3 Desugaring

Syntactic sugar causes cancer of the semicolon.

— Alan Perlis

It is hard work to add a new construct to a language like BINDEX or IBEX. For each construct,
we have to extend a number of functions in the implementations of these languages:

• The free-vars function needs a new clause that specifies how to find the free variables of
the construct.

• The rename function needs a new clause that specifies how to rename a free variable within
the construct.

• The subst function needs a new clause that specifies how to substitute expressions for free
variables within the construct.

• The subst-eval function needs a new clause that specifies how to evaluate the construct in
the substitution model.

• The env-eval function needs a new clause that specifies how to evaluate the construct relative
to an environment in the environment model.

So, all in all, five functions need to be updated whenever we add a new construct. And this is only
for call-by-value evaluation. If there are other dimensions (such as call-by-name vs. call-by-value
evaluation, or, as we’ll soon see, lexical vs. dynamic scope), even more functions may need to be
updated.
In some cases the functions are straightforward but tedious to extend. In other cases (especially

constructs involving variable declarations), the clauses for the new construct can be rather tricky.
In any of these cases, the work involved is an impediment to experimenting with new language
constructs. This is sad, because ideally interpreters should encourage designing and tinkering with
programming language constructs.

6

;; Invoke a program on any number of integer arguments

(define env-run

(lambda (pgm ints)

(env-eval (desugar (program-body pgm))

(env-make (program-formals pgm) ints))))

;; Evaluate EXP relative to the environment ENV.

;; The environment ENV is a collection of delayed substitutions.

(define env-eval

(lambda (exp env)

(cond

((literal? exp)

(literal-value exp))

((varref? exp)

(let ((probe (env-lookup (varref-name exp) env)))

(if (unbound? probe)

(throw ’unbound-variable (varref-name exp))

probe)))

((bind? exp)

(env-eval (bind-body exp)

(env-bind (bind-name exp)

(env-eval (bind-defn exp) env)

env)))

;; ---

;; New in IBEX

;; PRIMAPP generalizes BINAPP

((primapp? exp)

(primapply (primapp-rator exp)

(map (lambda (rand) (env-eval rand env))

(primapp-rands exp))))

((if? exp)

(let ((test (env-eval (if-test exp) env)))

(if (not (mini-boolean? test))

(throw ’if:non-boolean-test test)

(if (mini-bool-to-scheme-bool test)

(env-eval (if-then exp) env)

(env-eval (if-else exp) env)))))

;; ---

(else (throw ’env-eval:unknown-expression exp))

)))

Figure 1: The environment model evaluator for the IBEX kernel.

7

;; Invoke a program on any number of input values

(define subst-run

(lambda (pgm vals)

(literal-value

(subst-eval (subst* (map make-literal vals)

(program-formals pgm)

(desugar (program-body pgm)))))))

;; SUBST-EVAL takes an expression and returns another expression

;; (e.g., an integer literal node, *not* an integer) that is the

;; result of evaluting the expression.

(define subst-eval

(lambda (exp)

(cond

((literal? exp) exp)

((varref? exp)

(throw ’unbound-variable (varref-name exp)))

((bind? exp)

(subst-eval

(subst1 (subst-eval (bind-defn exp))

(bind-name exp)

(bind-body exp))))

;; ---

;; New in IBEX

;; PRIMAPP generalizes BINAPP

((primapp? exp)

(make-literal

(primapply (primapp-rator exp)

(map (compose literal-value subst-eval)

(primapp-rands exp)))))

((if? exp)

(let ((test (literal-value (subst-eval (if-test exp)))))

(if (not (mini-boolean? test))

(throw ’if:non-boolean-test test)

(if (mini-bool-to-scheme-bool test)

(subst-eval (if-then exp))

(subst-eval (if-else exp))))))

;; ---

(else (error ’subst-eval:unknown-expression exp))

)))

Figure 2: The substitution model evaluator for the IBEX kernel.

8

Fortunately, for many language constructs there is a way to have our cake and eat it too! Rather
than extending lots of functions with a new clause for the construct, we can instead write a single
clause that transforms the new construct into a pattern of existing constructs that has the same
meaning. When this is possible, we say that the new construct is syntactic sugar for the existing
constructs, suggesting that it makes the language more palatable without changing its fundamental
structure. The process of remove syntactic sugar by rewriting a construct into other constructs of
the language is known is desugaring. After a construct has been desugared, it will not appear in
any expressions, and thus must not be explicitly handled by functions like free-vars, rename, etc.
We will study desugaring via several examples, starting with simple ones and working our way

up to more complex ones.

3.1 Simple Desugaring Rules

Let’s begin by considering IBEX’s scand and scor constructs. We could extend IBEX with scand
and scor by extending free-vars, rename, etc. However, observe that scand and scor are really
just particular patterns for using if:

(scand E1 E2) ; (if E1 (if E2 true false) false)

(scor E1 E2) ; (if E1 true (if E2 true false))

These notations are called desugaring rules. Here, the arrow ;, which can be pronounced
as “rewrites to” or “desugars to”, specifies a rule for rewriting the IBEX expression to the left
of the arrow to the IBEX expression to the right of the arrow without changing its meaning.
The E1 and E2 are meta-variables1 that stand for any IBEX expressions. Whatever IBEX

expressions are matched by E1 and E2 on the left-hand side of the rule are substituted in for E1

and E2 on the right-hand side of the rule. For instance, the scor desugaring rule specifies that the
IBEX expression (scor (= x 0) (> (div 100 x) 7)) can be rewritten to the IBEX expression
(if (= x 0) true (> (div 100 x) 7)).
As another example of a desugaring rule, consider bindseq2, a specialized version of the bindseq

construct that requires exactly two bindings. It has the form:

(bindseq2 ((I1 E1) (I2 E2)) Ebody)

The bindseq2 construct can be rewritten into two occurrences of the bind construct via the fol-
lowing desugaring rule:

(bindseq2 ((I1 E1) (I2 E2)) Ebody) ; (bind I1 E1 (bind I2 E2 Ebody))

It turns out that many programming language constructs can be expressed as synactic sugar
for other other constructs. For instance, C and Java’s for loop

for (init; test; update) {
body

}

1These are called meta-variables because they are variables of the meta-language that is used to talk about IBEX

expressions. A meta-variable can be bound to any IBEX expression, including a reference to an IBEX (non-meta-
)variable. In general, the prefix meta- indicates something at a higher level, usually one that “reifies” entities at
the next level down. For instance, “meta-humor” is humor that is about humor itself. The notion of “meta” is
crucial not only in computer science and mathematics, but also in artistic fields, where it is an important ingredient
of postmodernism.

9

can be understood as just syntactic sugar for the while loop

init;

while (test) do {
body;

update;

}.

Other looping constructs, like C/Java’s do/while and Pascal’s repeat/until can likewise be viewed
as desugarings. As another example, the C array subscripting expression a[i] is actually just
syntactic sugar for *(a + i), an expression that dereferences the memory cell at offset i from the
base of the array pointer a.2

3.2 Implementing Simple Desugaring Rules

If constructs like scand, scor, and bindseq2 could be automatically removed by rewriting them
according to their desugaring rules, then the resulting program could be executed in a regular
IBEX interpreter without any need to extend each of the numerous functions implementing the
interpreter. In this section, we present one approach for desugaring IBEX programs. The approach
is based on a pair of Scheme functions with the following specifications:

(desugar-program pgm)

Returns the IBEX program that results from pgm by removing all syntactic sugar constructs
according to their desugaring rules.

(desugar exp)

Returns the IBEX expression that results from exp by removing all syntactic sugar constructs
according to their desugaring rules.

In this approach, only the desugar function needs to be extended when new syntactic sugar con-
structs are added to IBEX.
Figure 3 presents an implementation of desugar-program and desugar. The desugar function

performs a case analysis on the node type of the expression. There are two categories of node types:
(1) kernel nodes – those core node types that are not syntactic sugar; and (2) sugar nodes –
those node types that can be desugared into kernel nodes.
For the kernel nodes, desugar simply makes a copy of each kernel node after recursively desug-

aring the components of the node. This means that if the given expression did not contain any
syntactic sugar at all, desugar would just return a copy of the expression. For sugar nodes, desugar
constructs new expressions according to the desugaring rules. The new expressions are formed by
using kernel nodes to glue together the results of recursively desugaring the subexpressions of the
sugar nodes. A simple inductive argument shows that desugar removes all sugar nodes. The
inductive argument depends critically on the following facts: (1) the result of desugar is formed
using only the constructors for kernel nodes3 (2) all subexpressions are recursively desugared.

2An interesting consequence of this desugaring is that the commutativity of addition implies a[i] = *(a + i) =
*(i + a) = i[a]. So in fact you can swap the arrays and subscripts in a C program without changing its meaning!
Isn’t C a fun language?

3It is also possible to use constructors for sugar nodes, as long as the result of every such constructor is itself
desugared via desugar. Of course, to avoid an infinite regress, it is imperative to assure in such cases that the new
sugar nodes are somehow “smaller” than the original ones. See the bindseq and cond desugarings in the next section
for an example of this.

10

(define desugar-program

(lambda (pgm)

(make-program (program-formals pgm)

(desugar (program-body pgm)))))

(define desugar

(lambda (exp)

(cond

;; --

;; KERNEL EXPRESSIONS

((literal? exp) exp)

((varref? exp) exp)

((primapp? exp)

(make-primapp (primapp-rator exp)

(map desugar (primapp-rands exp))))

((bind? exp)

(make-bind (bind-name exp)

(desugar (bind-defn exp))

(desugar (bind-body exp))))

((if? exp)

(make-if (desugar (if-test exp))

(desugar (if-then exp))

(desugar (if-else exp))))

;; --

;; SYNTACTIC SUGAR

((scand? exp)

(make-if (desugar (scand-rand1 exp))

(make-if (desugar (scand-rand2 exp))

(scheme-bool-to-mini-bool #t)

(scheme-bool-to-mini-bool #f))

(scheme-bool-to-mini-bool #f)))

((scor? exp)

(make-if (desugar (scor-rand1 exp))

(scheme-bool-to-mini-bool #t)

(make-if (desugar (scor-rand2 exp))

(scheme-bool-to-mini-bool #t)

(scheme-bool-to-mini-bool #f))))

((bindseq2? exp)

(make-bind (bindseq2-name1 exp)

(bindseq2-defn1 exp)

(make-bind (bindseq2-name2 exp)

(bindseq2-defn2 exp)

(bindseq2-body exp))))

;; --

(else (error "DESUGAR: unrecognized expression -- " exp))

)))

Figure 3: IBEX desugaring functions. A new syntactic sugar construct can be added to IBEX by
adding a clause to desugar.

11

In Figure 3, programs and expressions are pulled apart and put together using Scheme functions
for manipulating the abstract syntax of IBEX. The operations on kernel syntax summarized in
Appendix A. We do not present formal specifications for the operations on sugar syntax, but hope
that they are clear from context.
Note that all desugaring does is to decompose each tree rooted at a sugar node into its subtrees

and reassemble the (desugared) subtrees to form a tree that does not use any sugar nodes. In
particular, desugaring does not perform any evaluation. Rather, it constructs expression trees that
can be evaluated (or otherwise manipulated) at a later time. This means that the only Scheme
functions that should be called in desugar are (1) the IBEX abstract syntax functions; (2) various
list functions (for manipulating lists of operands, clauses, etc.); (3) user-defined auxiliary functions
helpful for the desugaring; and (4) a small number of renaming and substitution functions (to be
discussed later).
Evaluation occurs at some time after desugaring. For instance, consider the entry point to the

environment model evaluator for IBEX:

(define env-run

(lambda (pgm ints)

(env-eval (desugar (program-body pgm))

(env-make (program-params pgm) ints))))

When given a program, env-eval first uses desugar to remove syntactic sugar from the program
body, and only then does it use env-eval to evaluate the desugared body.
Thus, when evaluating IBEX programs, there are really two distinct times: desugaring time,

when the program body is desugared and evaluation time, when the desugared body is evaluated.
During desugaring time, IBEX expressions are transformed to other IBEX expressions, but no
evaluation is performed.4 During evaluation time, the desugared IBEX expression is evaluated.

3.3 More Complex Desugarings

The desugarings considered thus far are atypically simple. More commonly, desugarings involve
more complex manipulations of expressions. Here we consider desugaring two less trivial constructs.

3.3.1 bindseq

The general bindseq expression allows naming any number of values using the form:

(bindseq ((I1 E1)
...

(In En))

Ebody)

Desugaring rules for constructs with arbitrary numbers of subforms are often expressed recursively.
Here are a pair of rules that specify the desugaring of bindseq:

(bindseq () Ebody) ; Ebody

(bindseq ((I E) ...) Ebody) ; (bind I E (bindseq (...) Ebody))

4It is possible to imagine desugarers that perform some evaluation in addition to rearranging the subexpressions
of an expression. However, for simplicity, we will assume that no evaluation takes place during desugaring time.

12

The first rule says that that a bindseq with an empty binding list is equivalent to its body. The
second rule says that a bindseq with n bindings can be rewritten into a bind whose body is a
bindseq with n− 1 bindings. Here the ellipses notation “. . .”should be viewed as a kind of meta-
variable that matches the “rest of the bindings” on the left-hand side of the rule, and means the
same set of bindings on the right-hand side of the rule. Because the rule decreases the number of
bindings in the bindseq with each rewriting step, it specifies the well-defined unwinding of a given
bindseq into a finite number of nested bind expressions.
How can the desugaring rules for bindseq be expressed as a clause in desugar? There are two

basic approaches:

1. Smaller-sugar-node approach: The most straightforward approach is to directly encode the
recursive desugaring from the rules in the desugar clause by explicitly constructing a bindseq
clause with a smaller number of bindings and calling desugar on it:

((bindseq? exp)

(let ((names (bindseq-names exp))

(defns (bindseq-defns exp))

(body (bindseq-body exp)))

(if (null? names)

(desugar body)

(make-bind (car names)

(desugar (car defns))

(desugar (make-bindseq (cdr names)

(cdr defns)

body))))))

Note that the result of make-bindseq must itself be desugared. If it weren’t, then desugaring
wouldn’t satisfy its contract to remove all sugar nodes.

2. All-at-once approach: Another approach is to have the clause for bindseq create the nested
bind expressions all at once without constructing smaller bindseq expressions. There are
many ways to do this. A particularly concise way is to use the higher-order foldr2 function:

((bindseq? exp)

(foldr2 make-bind

(desugar (bindseq-body exp))

(bindseq-names exp)

(map desugar (bindseq-defns exp))))

An alternative is to use an auxiliary recursive function to perform the unwinding of bindseq
into nested binds:

((bindseq? exp)

(desugar-bindseq (bindseq-names exp)

(bindseq-defns exp)

(bindseq-body exp)))

Here, desugar-bindseq is an auxiliary function defined as follows:

13

(define desugar-bindseq

(lambda (names defns body)

(if (null names)

(desugar body)

(make-bind (car names)

(desugar (car defns))

(desugar-bindseq (cdr names)

(cdr defns)

body)))))

Is one approach better than the other? In the case of bindseq, not really. The smaller-sugar-node
approach may be easier to understand because it corresponds more directly to the desugaring rules.
However, in this case the all-at-once approach (at least the foldr version) has the advantage of
being more concise.

3.3.2 cond

As a second example of a non-trivial desugaring, we consider extending IBEX with a Scheme-like
cond construct with the following syntax:

(cond (Etest1 Ebody1
)

...

(Etestn Ebodyn
)

(else Edefault))

The meaning of cond is specified by the following desugaring rules:

(cond (else Edefault)) ; Edefault

(cond (Etest Ebody) ...) ; (if Etest Ebody (cond ...))

For example, the leftmost expression below desugars to the rightmost one:

(cond ((> b 0) b)

((< a b) (* a b))

((scand (= a b)

(< b c))

(+ b c))

(else (bindseq ((d (+ a b))

(e (* c d)))

(+ d e))))

(if (> b 0)

b

(if (< a b)

(* a b)

(if (if (= a b)

(if (< b c)

true

false)

false)

(+ b c)

(bind d (+ a b)

(bind e (* c d)

(+ d e))))))

14

To implement the cond desugaring, we can again either use the smaller-sugar-node approach or the
all-at-once approach:

1. Smaller-sugar-node approach:

((cond? exp)

(let ((clauses (cond-clauses exp))

(default (cond-default exp)))

(if (null? (cond-clauses exp))

(desugar default)

(make-if (desugar (cond-clause-test (first clauses)))

(desugar (cond-clause-body (first clauses)))

(desugar (make-cond (cdr clauses) default))))))

2. All-at-once approach:

((cond? exp)

(foldr (lambda (clause ifs)

(make-if (desugar (cond-clause-test clause))

(desugar (cond-clause-body clause))

ifs))

(desugar (cond-default exp))

(cond-clauses exp)))

3.4 Naming Subtleties

Perhaps the trickiest aspect of desugaring is dealing with naming issues. There are two naming
issues that are particularly common:

• Using source language names to avoid recomputing expressions.

• Avoiding accidental name capture.

We will explore these issues in the context of two constructs: choose and bindpar.

3.4.1 choose

Consider the following construct that we might wish to add to IBEX:

(choose Eint Epos Ezero Eneg)

Evaluates Eint to the value Vint , which should be an integer. If Vint is positive, returns the
value of Epos ; if Vint is zero, returns the value of Ezero ; and if Vint is negative, returns the
value of Eneg . In each case, exactly one of Epos , Ezero , and Eneg is evaluated.

It is easy to add choose to IBEX as syntactic sugar. A straightforward desugaring would be:

;; First desugaring

(if (> Eint 0)

Epos

(if (= Eint 0)

Ezero

Eneg))

15

A drawback of this desugaring is that if the value of Eint is not positive, the expression Eint will
be evaluated twice. This is undesirable, since Eint might be expensive to compute.
To avoid recomputation, we can use a binding construct in the source language to name the

result of Eint so that it is only computed once. In our case, the source language is IBEX, and the
appropriate binding construct is bind. Here is a stab at this approach:

;; Second desugaring

(bind x Eint

(if (> x 0)

Epos

(if (= x 0)

Ezero

Eneg)))

We have use the fixed IBEX variable name x to name the result of evaluating Eint . We emphasize
that the desugarer is not evaluating Eint – it doesn’t evaluate any IBEX expressions. Rather, it is
inserting an IBEX bind expression so that when the desugared expression is finally evaluated, the
result of evaluated Eint will be named x. Keeping straight the difference between desugaring time
and evaluation time can be tricky, but it is very important.
A problem with the second desugaring is that the name x might accidentally capture a free

variable named x and change the meaning of the program. For example, consider the following
program:

(program (x)

(choose (- x 10) (* x x) (* x 2) (+ x 1)))

If we desugar the program via the second desugaring, we obtain:

(program (x)

(bind x (- x 10)

(if (> x 0)

(* x x)

(if (= x 0)

(* x 2)

(+ x 1)))))

But this is incorrect! The name x introduced by the bind has “captured” the free variable x in the
three branch expressions, thereby changing the meaning of the program. For example, the program
should return 15× 15 = 225 when run on 15, but the desugared program will return 5× 5 = 25.
There is no fixed name for the bind variable that we can choose that will avoid this name

capturing problem. Instead, we must choose a fresh name that does not conflict with any of the
free variable names appearing in the subexpressions. In a desugaring rule, this is usually expressed
by a side condition indicated which variables are fresh. So a correct desugaring for choose is:

;; Correct desugaring

(bind I Eint ; where I is fresh

(if (> I 0)

Epos

(if (= I 0)

Ezero

Eneg)))

16

How do we implement “freshness”? The renaming module provides a handy function for this
purpose:

(name-not-in name names)

Returns the first “subscripted” version of name that is not an element of name list names.
For example, (name-not-in ’a ’(b c d)) returns a 1 and (name-not-in ’a ’(a 2 a 4

a 1)) returns a 3. If name is already subscripted, the existing subscript is removed before
computing the new one. For instance (name-not-in ’a 7 ’(a 2 a 4 a 1)) returns a 3.

Using name-not-in, we can express the desugaring for choose as the following desugar clause:

((choose? exp)

(let ((dint (desugar (choose-int exp)))

(dpos (desugar (choose-pos exp)))

(dzero (desugar (choose-zero exp)))

(dneg (desugar (choose-pos exp))))

(let ((new-name (name-not-in ’x (free-vars-list (list dpos dzero dneg)))))

(make-bind new-name

dint

(make-if (make-primapp ’>

(list (make-varref new-name)

(make-literal 0)))

dpos

(make-if (make-primapp ’=

(list (make-varref new-name)

(make-literal 0)))

dzero

dneg))))))

There are several things to notice about this clause:

• name-not-in is used to pick a name that is guaranteed not to conflict with any free variables
in the three branch subexpressions. In the counter-example above, it would choose x 1, which
would not conflict with the free variable x.

• The free variables are calculated relative to the desugared subexpressions, not relative to the
undesugared ones. This is important. The free-vars function is written a case dispatch on
the kernel node types of IBEX, and it will not behave correctly if it is called on expressions
that contain any sugar nodes.

• Because the newly chosen name will be used twice in the desugaring, it is helpful to use
Scheme’s let binding construct to name it (so it doesn’t have to be calculated twice at
desugaring time).

• The make-bind invocation constructs the IBEX bind construct that will later name the result
of evaluating Eint at evaluation time. Similarly make-if and make-primapp construct IBEX

nodes that will later be evaluated at evaluation time. No part of the choose expression is

evaluated at desugaring time!

17

Students new to desugaring often confuse the Scheme expression that is constructing the IBEX

expression with the resulting IBEX expression. So they might use if instead of make-if, or >
instead of (make-primapp ’> . . .). But these are wrong because they would imply that part of
the IBEX expressions is being evaluated at desugaring time, which is not true. Furthermore, they
would often introduce type errors; you can’t apply Scheme’s > to two IBEX expressions, only to
two numbers!

3.4.2 bindpar

As a final example of a desugaring involving renaming, we consider IBEX desugaring of bindpar
into bind. A single bindpar with multiple bindings can be desugared into a sequence of nested
bind constructs as long as care is taken to appropriately rename the variables declared by the bind
in order to avoid accidental name capture. For example, consider the following IBEX program:

(program (x)

(bind a (+ x 1)

(bindpar ((a (* x a))

(b (+ x a)))

(bindpar ((a (- a b))

(b (* a a)))

(+ a b)))))

This should desugar to:

(program (x)

(bind a (+ x 1)

(bind a_1 (* x a)

(bind b (+ x a)

(bind a_2 (- a_1 b)

(bind b (* a_1 a_1)

(+ a_2 b)))))))

Note that if all occurrences of a_1 and a_2 were replaced by a, the desugaring would effectively
give the bindpar construct the same semantics as bindseq, which would clearly be wrong. Any
time a definition expression references a free variable whose name happens to be bound in an earlier
binding of the same bindpar, it is necessary to α-rename the bound variable of the earlier binding
to avoid capture of the free variable.
The details of how this renaming is accomplished in the IBEX desugarer is show in figure 4. The

clause for desugaring bindpar uses a pair of helper functions, triple and untriple, that combine
and decompose three-element lists of values. For instance, (triple 1 (+ 2 3) (* 4 5)) returns
the three-element list (1 5 20). If we give this triple the name tpl, then evaluating the expression
(untriple tpl (lambda (a b c) (* (+ a b) c))) returns 120. Using a lambda abstraction in
this fashion to deconstruct a list into named components is a common Scheme idiom.
The bindpar desugaring works from the bottom up, first recursively desugaring the definition

and body expressions of the bindpar. Using foldr2, it calculates for each binding in the bindpar
(bottom up, from last to first) a triple of:

• A list of the (possibly renamed) bound variables of the current and subsequent bindings;

18

(define desugar

(lambda (exp)

(cond
...

((bindpar? exp)

(let ((names (bindpar-names exp))

(desugared-defns (map desugar (bindpar-defns exp)))

(desugared-body (desugar (bindpar-body exp))))

(untriple (foldr2

;; This FOLDR returns a triple (3-element list) containing:

;; (1) A list of potentially renamed names.

;; (2) A set of the free variables the defns.

;; (3) A body expression renamed consistently with any

;; renamings in (1).

(lambda (name defn trip)

(untriple trip

(lambda (new-names defn-fvs new-body)

(if (set-member? name defn-fvs)

;; Case where necessary to rename bound variable

(let ((new-name (name-not-in

name

set-union defn-fvs

(free-vars new-body)))))

(triple (cons new-name new-names)

(set-union (free-vars defn) defn-fvs)

(rename1 name new-name new-body)))

;; Case where bound variable may stay unchanged

(triple (cons name new-names)

(set-union (free-vars defn) defn-fvs)

new-body)))))

(triple ’() ;; new names

(set-empty) ;; FVs of defns

desugared-body) ;; new body

names

desugared-defns)

(lambda (new-names defn-fvs new-body)

(foldr2 make-bind new-body new-names desugared-defns)))))
...

)))

(define triple

(lambda (a b c)

(list a b c)))

(define untriple

(lambda (trip deconstructor)

(deconstructor (first trip)

(second trip)

(third trip))))

Figure 4: The IBEX desugaring of bindpar into bind.

19

• The free variables appearing in the definition of the current binding and the definitions of
subsequent bindings in the bindpar;

• A version of the bindpar body that reflects any renamings of the bound variable of the current
binding.

In a final foldr2, it constructs a nested sequence of binds from (1) the final renamed body, (2)
the list of (possibly renamed) bound variables, and (3) the desugared definitions.
Let’s study how this approach is used to desugar the bindpars in the sample program from

above:

(program (x)

(bind a (+ x 1)

(bindpar ((a (* x a))

(b (+ x a)))

(bindpar ((a (- a b))

(b (* a a)))

(+ a b)))))

To desugar the outer bindpar, we first desugar its two definitions, (* x a) and (+ x a), which
trivially desugar to themselves. We also desugar the body, which is itself a bindpar. The body of
the inner bindpar and all of its definitions trivially desugar to themselves. The following diagram
shows the triples calculated by the first foldr2 in the bindpar clause of the IBEX desugar

function:

Bound var FVs Renamed

names body

(bindpar ((a (- a b)) (a_1, b) a, b (+ a_1 b)

^ ^ ^

| | |

(b (* a a))) (b) a (+ a b)

^ ^ ^

| | |

(+ a b)) () (+ a b)

So the desugaring of the inner bindpar is:

(bindpar ((a_1 (- a b))

(b (* a a)))

(+ a_1 b))

Note that the occurrences of a in (* a a) are not renamed to a_1 because they refer to the a

declared by the outer bindpar, not the inner one. Indeed, the bound variable a declared by the
inner bindpar had to be renamed to avoid capturing the two references to a in (* a a).
Having desugared the body and definitions of the outer bindpar, we are ready to apply foldr2

to accumulate a triple, as shown below:

20

Bound var FVs Renamed

names body

(bindpar ((a (* x a)) (a_1, b) x, a (bindpar ((a_2 (- a_1 b))

(b (* a_1 a_1)))

(+ a_2 b))

^ ^ ^

| | |

(b (+ x a))) (b) x, a (bindpar ((a_1 (- a b))

^ ^ (b (* a a)))

| | (+ a_1 b))

| | ^

| | |

(bindpar ((a_1 (- a b)) () (bindpar ((a_1 (- a b))

(b (* a a))) (b (* a a)))

(+ a_1 b)) (+ a_1 b))

Because a appears free in the definition (+ x a), it is necesary to rename the a declared by the
outer binding. The name-not-in function returns a_1 as a name that does not conflict with any
free variables. Note that the a_1 declared by the bind in the body of the outer bindpar is not a
free variable, and so poses no problem yet. In the process of renaming free occurrences of a to a_1,
however, it is necessary to rename the existing a_1 to a new named (name-not-in chooses a_2) to
avoid variable capture in the definition (* a_1 a_1).

4 The IBEX Standard Library

Primitive applications in the IBEX interpreter are handled by the code in Figs. 5–7.

A IBEX Kernel Abstract Syntax

The abstract syntax for IBEX programs and kernel expressions nodes is manipulated by the Scheme
functions in Figures 8–10.

21

(define make-pdesc

(lambda (name arg-types result-type scheme-function)

(list name arg-types result-type scheme-function)))

(define pdesc-name first)

(define pdesc-arg-types second)

(define pdesc-result-type third)

(define pdesc-function fourth)

(define pdesc-num-args (lambda (descriptor) (length (second descriptor))))

;; Handy abstractions:

(define make-binary-arithop

(lambda (name scheme-fcn)

(make-pdesc name ’(int int) ’int scheme-fcn)))

(define make-binary-relop

(lambda (name scheme-fcn)

(make-pdesc name

’(int int)

’bool

(lambda (n1 n2)

(scheme-bool-to-mini-bool (scheme-fcn n1 n2))))))

(define make-unary-logop

(lambda (name scheme-fcn)

(make-pdesc name

’(bool)

’bool

(lambda (mini-bool)

(scheme-bool-to-mini-bool

(scheme-fcn

(mini-bool-to-scheme-bool mini-bool)))))))

(define make-binary-logop

(lambda (name scheme-fcn)

(make-pdesc name

’(bool bool)

’bool

(lambda (mini-bool1 mini-bool2)

(scheme-bool-to-mini-bool

(scheme-fcn

(mini-bool-to-scheme-bool mini-bool1)

(mini-bool-to-scheme-bool mini-bool2)))))))

Figure 5: The pdesc primop descriptor ADT and associated functions.

22

(define make-binding

(lambda (name value)

(list name value)))

(define primop-env

(bindings->env

(list

;; BINDEX primops

(make-binding ’+ (make-binary-arithop ’+ +))

(make-binding ’- (make-binary-arithop ’- -))

(make-binding ’* (make-binary-arithop ’* *))

(make-binding ’div (make-binary-arithop

’div

(lambda (a b)

(if (= b 0)

(throw ’division-by-zero (list ’div a b))

(quotient a b)))))

(make-binding ’mod (make-binary-arithop

’mod

(lambda (a b)

(if (= b 0)

(throw ’division-by-zero (list ’mod a b))

(remainder a b)))))

;; IBEX primops

(make-binding ’< (make-binary-relop ’< <))

(make-binding ’<= (make-binary-relop ’<= <=))

(make-binding ’= (make-binary-relop ’= =))

(make-binding ’!= (make-binary-relop ’!= (lambda (a b) (not (= a b)))))

(make-binding ’>= (make-binary-relop ’>= >=))

(make-binding ’> (make-binary-relop ’> >))

(make-binding ’not (make-unary-logop ’not not))

(make-binding ’band (make-binary-logop ’band (lambda (a b) (and a b))))

(make-binding ’bor (make-binary-logop ’bor (lambda (a b) (or a b))))

(make-binding ’bool= (make-binary-logop ’bor (lambda (a b) (eqv? a b))))

(make-binding ’sym= (make-pdesc ’sym=

’(sym sym)

’bool

(lambda (mini-sym1 mini-sym2)

(scheme-bool-to-mini-bool

(eq? (mini-sym-to-scheme-sym mini-sym1)

(mini-sym-to-scheme-sym mini-sym2))))))

)))

(define primop-name?

(lambda (name)

(not (unbound? (env-lookup name primop-env)))))

Figure 6: The primitive operator environment.

23

(define primapply

(lambda (primop-name args)

(let ((pdesc (env-lookup primop-name primop-env)))

(if (unbound? pdesc)

(throw ’unknown-primop primop-name)

(if (not (= (length args) (pdesc-num-args pdesc)))

(throw ’primapply:wrong-num-args

(list ’expected (pdesc-num-args pdesc)

’got (length args)

’in (make-primapp primop-name args)))

(let ((type-mismatch (some2 type-error? (pdesc-arg-types pdesc) args)))

(if (none? type-mismatch)

(apply (pdesc-function pdesc) args)

(throw ’primapply:wrong-arg-type

(list ’expected (first type-mismatch)

’got (second type-mismatch)

’in (make-primapp primop-name args)))))

)))))

(define type-of

(lambda (val)

(cond ((mini-integer? val) ’int)

((mini-boolean? val) ’bool)

((mini-symbol? val) ’sym)

(else (throw ’type-of-unknown-value val))

)))

(define type-error?

(lambda (type val)

(not (eq? type (type-of val)))))

Figure 7: The primapply function.

(make-program formals body)

Assume that formals is a Scheme list of symbols and body is an IBEX expression. Returns an IBEX

program node whose formal parameters are formals and whose body is body.

(program-formals pgm)

Returns the Scheme list of symbols that is formal parameter list of the given IBEX program pgm.

(program-body pgm)

Returns the IBEXexpression that is the body of the IBEX program pgm.

Figure 8: Functions for manipulating IBEX programs

24

Literals

(make-literal value)

Assume that value is a Scheme datum representing an IBEX literal value. Returns an IBEX literal
node containing the value value.

(literal-value literal-node)

Returns the Scheme datum that is the value of literal-node.

(varref? node)

Returns $t if node is a literal node, and #f otherwise.

Variable References

(make-varref name)

Assume that name is a Scheme symbol. Returns an IBEX variable reference node that references
the variable named name.

(varref-name varref-node)

Returns the Scheme symbol that is the name of varref-node.

(varref? node)

Returns $t if node is a variable reference node, and #f otherwise.

Figure 9: Functions for manipulating IBEX expressions, Part 1.

25

Primitive Applications

(make-primapp rator rands)

Assume that rator is a Scheme symbol and that rands is a Scheme list of IBEX expressions. Returns
an IBEX primitive application node whose operator is rator and whose operand list is rands.

(primapp-rator primapp-node)

Returns the Scheme symbol that is the operator of primapp-node.

(primapp-rands primapp-node)

Returns the Scheme list of IBEX expressions that is the operand list of bind-node.

(primapp? node)

Returns $t if node is a primitive application node, and #f otherwise.

Local Bindings

(make-bind name defn body)

Returns an IBEX local binding node whose declared variable name is name, whose definition ex-
pression is defn, and whose body is body.

(bind-name bind-node)

Returns the declared name of bind-node.

(bind-defn bind-node)

Returns the definition expression of bind-node.

(bind-body bind-node)

Returns the body expression of bind-node.

(bind? node)

Returns $t if node is a local binding node, and #f otherwise.

Conditionals

(make-if test then else)

Returns an IBEX conditional node whose test is test, whose then expression is then, and whose else
expression is else.

(if-test if-node)

Returns the test expression of if-node.

(if-then if-node)

Returns the then expression of if-node.

(if-else if-node)

Returns the else expression of if-node.

(if? node)

Returns $t if node is a conditional node, and #f otherwise.

Figure 10: Functions for manipulating IBEX expressions, Part 2.

26

