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1 BINDEX

Studying the INTEX language is able to give us insight into the fundamental programming pro-
cesses like evaluation and substitution. But INTEX is missing many important features of real
programming languages. Our goal is to explore various programming language dimensions by in-
crementally extending INTEX with simple versions of various features, and then to explore the
design space associated with such features.
The first feature we shall explore is the ability to name the results of intermediate computations.

As an example of this, consider a new language, BINDEX that is a version of INTEX extended
with a local binding construct of the form (bind Iname Edefn Ebody). Intuitively, a bind expression
is evaluated as follows:

1. The definition expression Edefn is evaluated to a value Vdefn .

2. The body expression Ebody is evaluated in such a way that references to Iname denote Vdefn .

3. The value of Ebody is returned as the value of the bind expression.

Here is a simple example of a BINDEX program using bind to calculate the value a2+b2

a2−b2
.

(program (a b)

(bind a_sq (* a a)

(bind b_sq (* b b)

(bind numer (+ a_sq b_sq)

(bind denom (- a_sq b_sq)

(div numer denom))))))

Constructs like bind in BINDEX, let in Scheme, and type varname = exp; in Java are
known as local binding expressions or local variable declarations. They introduce names
for the result of definition expressions that can be used in some part of the program (in the case of
bind, the body of the bind expression). Local binding constructs are used for three main purposes
in a program:

1. Naming the result of evaluating a definition expression can avoid recalculating the value of
that expression. This can avoid the expense of calculating an expression more than once. For
instance, in the above example, naming the result of (* a a) means that the multiplication
needs to be performed only once; it would need to be performed twice if the result were not
named. In the case of a simple expression like (* a a), it is not clear that any time is saved
by avoiding recalculation. However, for expensive calculations, the time saved by avoiding
recalculation can be considerable. In the context of recursion, naming the result of a recursive
call can often change the asymptotic complexity of an algorithm.

2. In programs where values can have a time-varying state (think Java objects), it is essential
to name values so that the same value can be referenced more than once. Since it is stateless,
this is not important in BINDEX, but it will be important for later extensions to BINDEX

that support stateful values.
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3. Even when a result is not used more than once, naming the result of an intermediate expression
can make a program easier to read. For instance, in the above example, numer and denom

do not make the calculation any more efficient, but some programmers might find the code
more readable than without the names. Such naming can be especially handy for breaking
down deeply nested expressions into more manageable subexpressions.

2 General Naming Issues

Before we study how the bind construct is evaluated in the environment model and the substitu-
tion model, we first consider some general concepts and issues related to naming in programming
languages and mathematics.

2.1 Declarations and Scope

Programming languages and mathematical languages almost always have constructs that introduce
names for the kinds of entities that are manipulated by the language. Such constructs are known
as declarations or binding constructs. Figure 1 shows some examples of declarations from
programming and mathematics with which you are probably familiar.
Every declaration construct has a binding occurrence that introduces the declared name,

and reference occurrences that refer to declared name. For example, in the Scheme abstraction
(lambda (x) (* x x)), the first x is the binding occurrence, and the second and third xs are
reference occurrences. Typically, the binding occurrence and reference occurrences have the same
syntax; they are distinguished by their positions within the declaration construct. So in lambda, for
instance, the parenthesized list of names following the lambda keyword are the binding occurrences,
and the uses of these names in the body are reference occurrences.
Once declared, a name can usually only be used within a restricted part of the program. The

region of a program in which it is possible to reference a declared name is called the scope of the
declared name. In many (but as we shall see later in the course, not all) languages, the scope of
declared names can be shown via nested boxes called lexical contours. For example, draw the
lexical contours for the following BINDEX program:

(program (x y)

(* (bind a (* x y)

(+ a y))

(bind b (bind c (* 2 y)

(+ 3 c))

(div b x))))
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Language Construct Example

Scheme (lambda (I1...In) Ebody) (lambda (a b)

(lambda (c)

(* b (+ a c))))

Scheme (let ((I1 E1) . . . (In En)) Ebody) (let ((x (+ 2 3))

(y (* 6 7)))

(let ((z (quotient y x)))

(* x (+ y z))))

Scheme (define I1 Ebody) (define a (+ 2 3))

(define square

(lambda (x) (* x x)))

(define a-squared (square a))

Java T return−type Ivarname = Edefn; int x = 2 + 3;

int y = 6 * 7;

int z = y / x;

INTEX (program (I1...In) Ebody) (program (a b)

(div (+ a b) 2))

BINDEX (bind Iname Edefn Ebody) (bind x (+ 2 3)

(bind y (* 6 7)

(bind z (div y x)

(* x (+ y z)))))

Math
∑Ehi

Ivar=Elo
Ebody ,

∏Ehi

Ivar=Elo
Ebody

∑10
i=1

(

∏i
j=1(i+ j)

)

Logic ∀Ivar .Ebody , ∃Ivar .Ebody ∀x.∃y.(x+ 1) = y)

Calculus
∫ Ehi

Elo
Ebody dIvar

∫ 1

0
x · (

∫ x

0
y dy) dx

Figure 1: Examples of declarations in programming and mathematics.
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Each contour shows the region of the program in which the names declared by the declaration in
the contour can be used.
It is possible to replace all names in a program with arrows that point from the reference

occurrences of a variable to its binding occurrence. Do this for the above expression:

2.2 Free Variables

In a given program phrase, a reference occurrence of a name for which there is no binding occurrence
is called a free variable; otherwise it is said to be a bound variable. For instance:

• in the BINDEX expression (+ a b), a and b are free variables.

• in the BINDEX expression

(bind b (* 2 3)

(+ a b))

a is a free variable, but b is bound.

• in the BINDEX expression

(bind a (+ 1 7)

(bind b (* 2 3)

(+ a b))

both a and b are bound.

Note that some occurrences of a name in an expression can be free while other occurrence of
the same name may be bound:

(bind a (- a b)

(bind b (* a b)

(+ a b))

The free variables of a program phrase is the set of all variable names that occur free in that
phrase. The following code shows how to calculate free variables in BINDEX:

4



(define free-vars-program

(lambda (pgm)

(set-difference (free-vars (program-body pgm))

(list->set (program-formals pgm)))))

;; Return the free vars of a BINDEX expression

(define free-vars

(lambda (exp)

(cond ((literal? exp)

(set-empty))

((varref? exp)

(set-singleton (varref-name exp)))

((binapp? exp)

(set-union (free-vars (binapp-rand1 exp))

(free-vars (binapp-rand2 exp))))

((bind? exp)

(set-union (free-vars (bind-defn exp))

(set-difference (free-vars (bind-body exp))

(set-singleton (bind-name exp)))))

(else (error "FREE-VARS: unrecognized expression -- " exp))

)))

2.3 α-Renaming

In a statically scoped language, it is always possible to consistently rename binding occurrences
and their corresponding reference occurrences in such a way that each binding occurrence has a
unique name. For instance, the program

(program (x y)

(* (bind a (* x y)

(+ a y))

(bind b (bind c (* 2 y)

(+ 3 c))

(div b x))))

can be consistently renamed to:

(program (x y)

(+ (bind x (* x y)

(+ a y))

(bind y (bind x (* 2 y)

(+ 3 x))

(div y x))))

Consistent renaming that maintains program meaning is known as α-renaming. Alpha-
renaming refers to any process of consistent renaming, not just renamings that make all binding oc-
currences unique. In the programming language literature, it is common to refer to α-equivalence
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classes, which are equivalence classes of expressions modulo α-renaming. This means that expres-
sions that differ only in the naming of their variables are considered equivalent. For instance, the
Scheme abstractions (lambda (a) (abs (b) (+ a b))) and (lambda (x) (abs (y) (+ x y)))

are α-equivalent. Alpha-equivalence captures the notion that it is not the choice of names that
matters, but rather the connectivity of reference occurrences and binding occurrences.
We can write a function rename1 that renames occurrences of free variables in BINDEX ex-

pressions. Here are some examples of rename1:

> (rename1 ’a ’b ’(+ a c))

(+ b c)

> (rename1 ’a ’b ’(bind d (+ a c) (* a d)))

(bind d (+ b c) (* b d))

> (rename1 ’a ’b ’(bind a (+ a c) (* a d)))

(bind a (+ b c) (* a d))

> (rename1 ’a ’b ’(bind b (+ a b) (* a b)))

(bind b_1 (+ b b) (* b b_1))

The implementation of rename1 is shown in figure 2. It is defined in terms of a more gen-
eral rename function that renames a given expression according to an environment of renamings
of names to other names. The rename function uses an auxiliary function name-not-in (whose
implementation is not shown) that returns a subscripted version of a given name that is not in the
list of names provided as a second argument. For example:

> (name-not-in ’a ’(b c d))

a_1

> (name-not-in ’a ’(a b c d))

a_1

> (name-not-in ’a ’(b c a_1 d))

a_2

> (name-not-in ’a ’(a_1 a_5 a_3 b a_2 c d))

a_4

> (name-not-in ’a ’(a_1 a_5 a_3 b a_2 c d))

a_4

> (name-not-in ’a_1 ’(a_1 a_5 a_3 b a_2 c d))

a_4

> (name-not-in ’a_4 ’(a_1 a_5 a_3 b a_2 c d))

a_4
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(define rename1

(lambda (old new exp)

(rename exp (make-env (list old) (list new)))))

(define rename*

(lambda (olds news exp)

(rename exp (make-env olds news))))

(define rename

(lambda (exp env)

(cond ((literal? exp) exp)

((varref? exp)

(let ((probe (env-lookup (varref-name exp) env)))

(if (unbound? probe)

exp

(make-varref probe))))

((binapp? exp)

(make-binapp (binapp-rator exp)

(rename (binapp-rand1 exp) env)

(rename (binapp-rand2 exp) env)))

((bind? exp)

(let ((name (bind-name exp))

(defn (bind-defn exp))

(body (bind-body exp)))

(cond ((member name (env-keys env))

(make-bind name

(rename defn env)

(rename body (env-remove (list name) env))))

((member name (env-values env))

(let ((new-name (name-not-in name

(set-insert name

(free-vars body)))))

(make-bind new-name

(rename defn env)

(rename (rename1 name new-name body)

env))))

(else

(make-bind name

(rename defn env)

(rename body env)))

)))

(else (error "RENAME: unrecognized expression -- " exp))

)))

Figure 2: The implementation of renaming in BINDEX.
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3 Evaluating bind: Environment Model

In the environment model, it is straightforward to express the English-language description for
evaluating bind expressions as a clause for handling bind within the definition of env-eval:

(define env-eval

(lambda (exp env)

(cond
...

((bind? exp)

(env-eval

(bind-body exp) ; Return the result of evaluating the body

(env-bind (bind-name exp) ; in an environment that binds the name

(env-eval (bind-defn exp) ; to the result of evaluating the defn

env) ; in the current environment.

env))) ; The new binding extends the current environment.
...

)))

Notes:

• Intuitively, environments flow from the root of an abstract syntax tree to the leaves. Their
purpose is to transmit the value of each variable from the point where a value is bound to its
binding occurrence to all variable references in the scope of the declaration.

• In a BINDEX program that has no unbound variables, the following invariant is observed:
for any subexpression E of the program, when (env-eval E env) is called, all free variables
of E are bound in the environment env.

(program (x y)

(* (bind a (* x y)

(+ a y))

(bind b (bind c (* 2 y)

(+ 3 c))

(div b x))))

(program (x y)

(+ (bind x (* x y)

(+ a y))

(bind y (bind x (* 2 y)

(+ 3 x))

(div y x))))
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4 Evaluating bind: Substitution Model

Evaluating bind expressions in the substitution model is a little bit trickier than in the environment
model. Extending the subst-eval function is straighforward:

(define subst-eval

(lambda (exp)

(cond
...

((bind? exp)

(subst-eval

(subst1 (subst-eval (bind-defn exp))

(bind-name exp)

(bind-body exp))))
...

)))

Recall that (subst1 I Esubst Ebody) is an abbreviation for (subst (make-env (list I) (list Esubst))
Ebody).
The tricky part is extending subst to handle bind. Here is an “obvious” but incorrect defini-

tion of the bind clause for subst.

(define subst

(lambda (env exp)

(cond
...

((bind? env)

(make-bind (bind-name exp)

(subst env (bind-defn exp))

(subst env (bind-body exp))))
...

)))

To see why the above definition is wrong, consider what it will do in the following case:

(program (z)

(bind a (* z z)

(bind a (+ z z)

(* 3 a))))

The problem is that the naive version of subst may “accidentally” replace a reference to the
bound variable of a bind by the value of an enclosing variable with the same name. This problem
can be fixed by removing any binding for the bound variable of a bind from the environment used
by subst to process the body of the bind. Here is a correct version of subst:
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(define subst

(lambda (env exp)

(cond
...

((bind? exp)

(let ((name (bind-name exp))

(defn (bind-defn exp))

(body (bind-body exp)))

(let ((new-env (env-remove (list name) env)))

(make-bind name

(subst env defn)

(subst new-env body)))))
...

)))

Here, (env-remove vars env) returns a new environment that has all the bindings in env except
for those named by the variables in the list vars.

5 Multiple Bindings: let and let* in Scheme

Sometimes it is convenient to bind multiple names and values in a single construct. For example,
Scheme’s let is an example of such a construct:

(let ((a_sq (* a a))

(b_sq (* b b)))

(let ((numer (+ a_sq b_sq))

(denom (- a_sq b_sq)))

(quotient numer denom)))

In a construct that has multiple names and definition expressions, the question arises as to
whether any of the definition expressions are in the scope of other names in the same construct.
For example, what is the value of the following Scheme expression?

(let ((x 3)

(a 4))

(let ((a (* x 10))

(b (+ x a)))

(+ a b))))

In particular, the issue is whether the a in (+ x a) refers to the outer binding of a to 4, or the
inner binding of a to (* x 10).
In Scheme, we can determine the answer by recalling that let is syntactic sugar for an appli-

cation of a lambda, so the above is equivalent to:

((lambda (x a)

((lambda (a b) (+ a b))

(* x 10)

(+ x a)))

3

4)
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In the desugaring, it is clear that the a in (+ x a) means the outer a (bound to 4). So the result
of the expression is as shown below:

(let ((x 3) ; x = 3

(a 4)) ; a = 4

(let ((a (* x 10)) ; a = 30

(b (+ x a))) ; b = 7

(+ a b)))) ; result = 37

Scheme has another binding construct, let*, that has the same form as let, but in which each
definition expression is in the scope of the previous names in the list of bindings. For example:

(let* ((x 3) ; x = 3

(a 4)) ; a = 4

(let* ((a (* x 10)) ; a = 30

(b (+ x a))) ; b = 33

(+ a b)))) ; result = 63

The let* construct desugars into a sequence of nested lets. So the above example is equivalent
to:

(let ((x 3)) ; x = 3

(let ((a 4)) ; a = 4

(let ((a (* x 10))) ; a = 30

(let ((b (+ x a))) ; b = 33

(+ a b))))) ; result = 63

6 Multiple Bindings: bindpar and bindseq in BINDEX

To explore multiple bindings in BINDEX, we consider extending BINDEX with two multiple
binding constructs:

1. (bindpar ((Iname1
Edefn1

) . . . (Inamen
Edefn

n

)) Ebody) binds the names Iname1
. . .Inamen

to the values of the expressions Edefn1
. . .Edefn

n

, where these values are determined in parallel

(i.e., like Scheme’s let). All definition expressions are evaluated in the same environment in
which the bindpar itself is evaluated. The result of the bindpar is the result of evaluating
Ebody in an environment that extends the current environment with bindings between all the
names and the values of their respective definitions.

2. (bindseq ((Iname1
Edefn1

) . . . (Inamen
Edefn

n

)) Ebody) binds the names Iname1
. . .Inamen

to the values of the expressions Edefn1
. . .Edefn

n

, where these values are determined sequen-

tially (i.e., like Scheme’s let*). Each definition expression is evaluated in the environment
of the bindseq extending with bindings for the names that appear in the bindings of the
bindseq that precede it. The result of the bindseq is the result of evaluating Ebody in an
environment that extends the current environment with bindings between all the names and
the values of their respective definitions.

We now study the changes we need to make to the BINDEX interpreter to handle bindpar
and bindseq.
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6.1 Free Variables

The free variables of (bindpar ((Iname1
Ename1

) . . . (Inamen
Enamen

)) Ebody) are the free vari-
ables of all the Edefn expressions unioned with the the difference of the Ebody expression and all the
Iname identifiers. This calculation is expressed as a clause in the free-vars function as follows:

((bindpar? exp)

(set-union (set-union-map free-vars (bindpar-defns exp))

(set-difference (free-vars (bindpar-body exp))

(list->set (bindpar-names exp)))))

For (bindseq ((Iname1 Ename1) . . . (Inamen
Enamen

)) Ebody), the calculation of free vari-
ables is more complex because the bound variable of a binding needs to be subtracted off from
the free variables of the definitions of subsequent bindings. The following example suggests how to
calculate the free variables of a bindseq.
The calculation in the above example can be expressed succinctly as a clause in free-vars:

((bindseq? exp)

(foldr2 (lambda (name defn fvs)

(set-union (free-vars defn)

(set-difference fvs (set-singleton name))))

(free-vars (bindseq-body exp))

(bindseq-names exp)

(bindseq-defns exp)))

Just as map2 is a generalization of map that is applied to two lists, foldr2 is a generalization of
foldr that accumulates results in a simultaneous right-to-left walk over two lists. For any ternary
(three-argument) function ternop and initial value init,

(foldr ternop

init

(list a1 a2 . . . an)

(list b1 b2 . . . bn))

returns the result of the calculation

(ternop a1 b1

(ternop a2 b2

. . .

(ternop an bn init) . . .))

For instance,

(foldr (lambda (x y ans) (cons x (cons y ans)))

’(1 2 3)

’(4 5 6))

returns the list (1 4 2 5 3 6). The foldr2 function can be defined in terms of foldr and zip as
follows:
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(define foldr2

(lambda (ternop init lst1 lst2)

(foldr (lambda (duple result)

(ternop (first duple) (second duple) result))

init

(zip lst1 lst2))))

At this time, it is natural to consider foldl2, a generalization of foldl that operates on two
lists.

(foldl ternop

init

(list a1 a2 . . . an)

(list b1 b2 . . . bn))

returns the result of the calculation

(ternop an bn

. . .

(ternop a2 b2

(ternop a1 b1 init) . . .))

For instance,

(foldl (lambda (x y ans) (cons x (cons y ans)))

’(1 2 3)

’(4 5 6))

returns the list (3 6 2 5 1 4). The foldr2 function can be defined in terms of foldr and zip as
follows:

(define foldl2

(lambda (ternop init lst1 lst2)

(foldl (lambda (duple result)

(ternop (first duple) (second duple) result))

init

(zip lst1 lst2))))

6.2 Renaming

The renaming of a bindpar expression is a generalization of the renaming of a bind expression.
Figure 3 shows the rename clause that handles bindpar.
Handling bindseq directly would be even trickier than handling bindpar, so we instead use a

“quick-and-dirty” trick: we treat bindseq as if it is an instance of bind and a smaller bindseq.
For example, we treat
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((bindpar? exp)

;; This is a generalization of the clause for bind

(let ((names (bindpar-names exp))

(defns (bindpar-defns exp))

(body (bindpar-body exp)))

;; Note: LET* in Scheme is like BINDSEQ in BINDEX

(let* ((dont-renames (list-intersection names (env-keys env)))

(new-env (env-remove dont-renames env))

(body-fvs (free-vars body))

(capturables

(set-filter (lambda (x) (not (unbound? x)))

(set-map (lambda (fv) (env-lookup fv new-env))

body-fvs)))

(no-goods (set-union capturables body-fvs))

(capture-env

(set-fold (lambda (nm env)

(env-bind nm (name-not-in nm no-goods) env))

(env-empty)

capturables))

(new-names

(map (lambda (nm)

(let ((probe (env-lookup nm capture-env)))

(if (unbound? probe)

nm

probe)))

names))

)

(make-bindpar new-names

(map (lambda (d) (rename d env)) ; use *old* env here!

defns)

(rename (rename body capture-env)

new-env)))))

Figure 3: Clause of rename handling bindpar.
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(bindseq ((a (- b c))

(b (* a c))

(c (+ a b)))

(* a (+ b c)))

as if it were written

(bind a (- b c)

(bindseq ((b (* a c))

(c (+ a b)))

(* a (+ b c))))

Since the bindseq nested inside the bind has fewer bindings than the original, this is the basis for
an inductive definition of renaming on bindseq.
This approach to renaming bindseq is shown in figure 4. Treating bindseq as a composition of

bind and a smaller bindseq effectively performs an “on the fly” desugaring of bindseq into nested
binds. Later, we shall see how this can be handled more modularly by a separate desugaring pass.

((bindseq? exp)

;; We take the "quick-and-dirty" approach of

;; rewriting BINDSEQ as a BIND around a BINDSEQ,

;; rewriting that, and then undoing the transformation.

(let ((names (bindseq-names exp))

(defns (bindseq-defns exp))

(body (bindseq-body exp)))

(if (null? names)

(make-bindseq names defns (rename body env))

(let* ((new-bind

(make-bind (first (bindseq-names exp))

(first (bindseq-defns exp))

(make-bindseq (cdr (bindseq-names exp))

(cdr (bindseq-defns exp))

(bindseq-body exp))))

(renamed-bind (rename new-bind env))

(renamed-subbindseq (bind-body renamed-bind)))

(make-bindseq (cons (bind-name renamed-bind)

(bindseq-names renamed-subbindseq))

(cons (bind-defn renamed-bind)

(bindseq-defns renamed-subbindseq))

(bindseq-body renamed-subbindseq))))))

Figure 4: Clause of rename handling bindseq.

6.3 Environment Model Interpreter

The env-eval function can be extended to handle bindpar and bindseq as shown in Figure 5.
Note how foldl2 figures prominently in determining the meaning of bindseq. How would the
meaning of bindseq change if foldl2 were replaced by foldr2?
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(define env-eval

(lambda (exp env)

(cond
...

((bindpar? exp)

(env-eval (bindpar-body exp)

(env-extend

(bindpar-names exp)

(map (lambda (defn) (env-eval defn env))

(bindpar-defns exp))

env)))

((bindseq? exp)

(env-eval (bindseq-body exp)

(foldl2 (lambda (name defn e)

(env-bind name

(env-eval defn e)

e))

env

(bindseq-names exp)

(bindseq-defns exp))))
...

)))

Figure 5: Clauses of env-eval handling bindpar and bindseq.

6.4 Substitution Model Interpreter

Changing to the substitution model interpreter to handle bindpar and bindseq are shown in
figures 6 and 7. The clauses for bindpar are natural generalizations of the clauses for bind, while
the clauses for bindseq perform the same sort of “on the fly” desugaring as in rename.

7 Call-by-name vs call-by-value

16



(define subst-eval

(lambda (exp)

(cond
...

((bindpar? exp)

(subst-eval

(subst* (map subst-eval (bindpar-defns exp))

(bindpar-names exp)

(bindpar-body exp))))

((bindseq? exp)

;; Rewrite BINDSEQ into a BIND that surrounds a

;; smaller BINDSEQ, and evaluate that.

(if (null? (bindseq-names exp))

(subst-eval (bindseq-body exp))

(subst-eval

(make-bind (first (bindseq-names exp))

(first (bindseq-defns exp))

(make-bindseq (cdr (bindseq-names exp))

(cdr (bindseq-defns exp))

(bindseq-body exp))))))
...

)))

Figure 6: Clauses of subst-eval handling bindpar and bindseq.
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(define subst

(lambda (env exp)

(cond
...

((bindpar? exp)

(let ((names (bindpar-names exp))

(defns (bindpar-defns exp))

(body (bindpar-body exp)))

(let ((new-env (env-remove (bindpar-names exp) env)))

(make-bindpar names

(map (lambda (d) (subst env d)) defns)

(subst new-env body)))))

((bindseq? exp)

;; We take the "quick-and-dirty" approach of

;; rewriting BINDSEQ as a BIND around a BINDSEQ,

;; substituting into that, and then undoing the transformation.

(let ((names (bindseq-names exp))

(defns (bindseq-defns exp))

(body (bindseq-body exp)))

(if (null? names)

(make-bindseq ’() ’() (subst env body))

(let* ((new-bind

(make-bind (first (bindseq-names exp))

(first (bindseq-defns exp))

(make-bindseq (cdr (bindseq-names exp))

(cdr (bindseq-defns exp))

(bindseq-body exp))))

(substed-bind (subst env new-bind))

(substed-subbindseq (bind-body substed-bind)))

(make-bindseq (cons (bind-name substed-bind)

(bindseq-names substed-subbindseq))

(cons (bind-defn substed-bind)

(bindseq-defns substed-subbindseq))

(bindseq-body substed-subbindseq))))))
...

)))

Figure 7: Clauses of subst handling bindpar and bindseq.
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;; Invoke a program on any number of integer values

(define subst-run-cbn

(lambda (pgm ints)

(literal-value

(subst-eval-cbn

(subst-cbn* (map make-literal ints)

(program-formals pgm)

(program-body pgm))))))

;; SUBST-EVAL takes an expression and returns another expression

;; (e.g., an integer literal node, *not* an integer) that is the

;; result of evaluting the expression.

(define subst-eval-cbn

(lambda (exp)

(cond ((literal? exp) exp)

((varref? exp)

(throw ’unbound-variable (varref-name exp)))

((binapp? exp)

((binop-to-node-function (binapp-rator exp))

(subst-eval-cbn (binapp-rand1 exp))

(subst-eval-cbn (binapp-rand2 exp))))

((bind? exp)

(subst-eval-cbn

(subst-cbn1

(bind-defn exp) ;; *** Unlike CBV, DEFN is not evaluated in CBN ***

(bind-name exp)

(bind-body exp))))

((bindpar? exp)

(subst-eval-cbn

(subst-cbn*

(bindpar-defns exp) ;; *** Unlike CBV, DEFNS are not evaluated in CBN ***

(bindpar-names exp)

(bindpar-body exp))))

((bindseq? exp)

;; Rewrite BINDSEQ into a BIND that surrounds a

;; smaller BINDSEQ, and evaluate that.

(if (null? (bindseq-names exp))

(subst-eval-cbn (bindseq-body exp))

(subst-eval-cbn

(make-bind (first (bindseq-names exp))

(first (bindseq-defns exp))

(make-bindseq (cdr (bindseq-names exp))

(cdr (bindseq-defns exp))

(bindseq-body exp))))))

;; Note: would need extra clauses for BINDPAR and BINDSEQ

;; in the absence of recursion.

(else (error "SUBST-EVAL-CBN: Unknown expression type -- " exp))

)))

Figure 8: Call-by-name version of substitution model interpreter.

19



;; Auxiliary functions for substitution

(define subst-cbn1

(lambda (new old exp)

(subst-cbn (env-make (list old) (list new)) exp)))

(define subst-cbn*

(lambda (news olds exp)

(subst-cbn (env-make olds news) exp)))

;; (subst-cbn <env> <exp>) returns a copy of expression <exp>

;; in which every variable reference to a name bound in <env>

;; is replaced by the expression bound to the name. In BINDEX,

;; the entity bound to the name should be an initlit node,

;; *not* an integer.

(define subst-cbn

(lambda (env exp)

(cond ((literal? exp) exp)

((varref? exp)

(let ((probe (env-lookup (varref-name exp) env)))

(if (unbound? probe) exp probe)))

((binapp? exp)

(make-binapp (binapp-rator exp)

(subst-cbn env (binapp-rand1 exp))

(subst-cbn env (binapp-rand2 exp))))

((bind? exp)

(let ((name (bind-name exp))

(defn (bind-defn exp))

(body (bind-body exp))

;; BODY-FVS is the set of variables in the body

;; that appear free outside the BIND

(body-fvs (set-difference (free-vars (bind-body exp))

(set-singleton (bind-name exp)))))

(let ((new-env (env-remove (list (bind-name exp)) env)))

;; CAPTURABLES is the set of vars that will be free in the

;; body of the copy of BIND returned by SUBST.

(let ((capturables

(foldr set-union

(set-empty)

(map (lambda (fv)

(let ((probe (env-lookup fv new-env)))

(if (unbound? probe)

(set-empty)

(free-vars probe))))

body-fvs))))

(if (set-member? name capturables)

(let ((new-name (name-not-in name capturables)))

(make-bind new-name

(subst-cbn env defn)

(subst-cbn new-env (rename1 name new-name body))))

(make-bind name

(subst-cbn env defn)

(subst-cbn new-env body)))))))
...

Figure 9: Call-by-name version of substitution, part 1.
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...

((bindpar? exp)

(let ((names (bindpar-names exp))

(defns (bindpar-defns exp))

(body (bindpar-body exp))

;; BODY-FVS is the set of variables in the body

;; that appear free outside the BINDPAR

(body-fvs (set-difference (free-vars (bindpar-body exp))

(list->set (bindpar-names exp)))))

(let ((new-env (env-remove (bindpar-names exp) env)))

;; CAPTURABLES is the set of vars that will be free in the

;; body of the copy of BINDPAR returned by SUBST.

(let* ((dont-renames (list-intersection names (env-keys env)))

(new-env (env-remove dont-renames env))

(capturables

(foldr set-union

(set-empty)

(map (lambda (fv)

(let ((probe (env-lookup fv new-env)))

(if (unbound? probe)

(set-empty)

(free-vars probe))))

body-fvs)))

(no-goods (set-union capturables body-fvs))

(capture-env

(set-fold (lambda (nm env)

(env-bind nm (name-not-in nm no-goods) env))

(env-empty)

capturables))

(new-names

(map (lambda (nm)

(let ((probe (env-lookup nm capture-env)))

(if (unbound? probe)

nm

probe)))

names))

)

(make-bindpar

new-names

(map (lambda (d) (subst-cbn env d)) defns)

(subst-cbn new-env (rename body capture-env)))

))))
...

Figure 10: Call-by-name version of substitution, part 2.

21



((bindseq? exp)

;; We take the "quick-and-dirty" approach of

;; rewriting BINDSEQ as a BIND around a BINDSEQ,

;; substituting into that, and then undoing the transformation.

(let ((names (bindseq-names exp))

(defns (bindseq-defns exp))

(body (bindseq-body exp)))

(if (null? names)

(make-bindseq ’() ’() (subst-cbn env body))

(let* ((new-bind

(make-bind (first (bindseq-names exp))

(first (bindseq-defns exp))

(make-bindseq (cdr (bindseq-names exp))

(cdr (bindseq-defns exp))

(bindseq-body exp))))

(substed-bind (subst-cbn env new-bind))

(substed-subbindseq (bind-body substed-bind)))

(make-bindseq (cons (bind-name substed-bind)

(bindseq-names substed-subbindseq))

(cons (bind-defn substed-bind)

(bindseq-defns substed-subbindseq))

(bindseq-body substed-subbindseq))))))

(else (error "SUBST: Unrecognized expression -- " exp))

)))

Figure 11: Call-by-name version of substitution, part 3.
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;;; ENV-EVAL-CBN.SCM

;;;

;;; Evaluation of BINDEX programs using the

;;; call-by-name environment model. In this

;;; model, environment maps names to *thunks*

;;; (zero-parameter functions) that return

;;; the value when called.

;; Invoke a program on any number of integer arguments

(define env-run-cbn

(lambda (pgm ints)

(env-eval-cbn (program-body pgm)

(env-make (program-formals pgm)

;; Make thunk for each param

(map (lambda (n) (lambda () n))

ints)))))

;; Evaluate EXP relative to the environment ENV.

;; The environment ENV is a collection of delayed substitutions.

(define env-eval-cbn

(lambda (exp env)

(cond ((literal? exp)

(literal-value exp))

((varref? exp)

(let ((probe (env-lookup (varref-name exp) env)))

(if (unbound? probe)

(throw ’unbound-variable (varref-name exp))

;; Force the evaluation of thunk.

(probe))))

((binapp? exp)

((binop-to-function (binapp-rator exp))

(env-eval-cbn (binapp-rand1 exp) env)

(env-eval-cbn (binapp-rand2 exp) env)))

((bind? exp)

(env-eval-cbn (bind-body exp)

(env-bind (bind-name exp)

;; Bind name to thunk of evaluation

(lambda () (env-eval-cbn (bind-defn exp) env))

env)))

;; The clauses for BINDPAR and BINDSEQ are only needed in

;; the absence of desugaring

((bindpar? exp)

(env-eval-cbn (bindpar-body exp)

(env-extend

(bindpar-names exp)

(map (lambda (defn)

(lambda () (env-eval-cbn defn env)))

(bindpar-defns exp))

env)))

((bindseq? exp)

(env-eval-cbn (bindseq-body exp)

(foldl2 (lambda (name defn e)

(env-bind name

(lambda () (env-eval-cbn defn e))

e))

env

(bindseq-names exp)

(bindseq-defns exp))))

(else (error "ENV-EVAL: Unknown expression type -- " exp))

)))

Figure 12: Call-by-name version of environment model interpreter.
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