
CS251 Programming Languages Handout # 16
Prof. Lyn Turbak Friday, February 15
Wellesley College

Problem Set 3
Due: February 22, 2002

Reading: Carefully read the class notes on Simple Interpretation (Handout #13), and Local
Binding (Handout #15). Additionally, skim SICP 4.1, which describes a metacircular inter-
preter for Scheme. It is more complex than the simple interpreters we are studying right now, but
in two more weeks we will be building up to an interpreter of this complexity.

Submission:

• Problem 1 is a pencil-and-paper problems that only needs to appear in your hardcopy sub-
mission.

• For Problems 2 and 3, your softcopy submission should include a copy of your entire ps3

directory.

• Your hardcopy submission for Problem 2 should include the following files: env-eval.scm,
free-vars.scm, subst-eval.scm, and rename.scm.

• Your hardcopy submission for Problem 3 should be the file simplify.scm.

Problem 0: Studying BINDEX

All of the problems on this problem set involve the BINDEX language discussed in class or
extensions to this language. Before attempting the problems, you should study the code for the
implementation of the BINDEX language, which can be found in ~/cs251/ps3 after you perform
cvs update -d.
Although there is nothing to turn in for this problem, the rest of the problems will be significantly

easier once you understand how BINDEX works.
To use any of the functions defined within files in the ps3 directory, you should evaluate the

following in Scheme:

(cd "~/cs251/ps3")

(load "load-bindex.scm")

Having done this, you can now experiment with any functions in the BINDEX interpreter. For
example:

;; Run the averaging program on the inputs 3 and 8

;; under the environment model

(env-run ’(program (a b)

(bind c (+ a b)

(div c 2)))

’(3 8))

5

1

;; Run the averaging program on the inputs 3 and 8

;; under the substitution model

(subst-run ’(program (a b)

(bind c (+ a b)

(div c 2)))

’(3 8))

5

;; Calculate free variables of an expression.

(free-vars ’(bind c (+ a b) (* c d)))

(a b d)

;; Rename a variable in an expression.

(rename ’a ’b ’(bind b (+ a b) (* a b)))

(bind b˙1 (+ b b) (* b b˙1))

;; Perform a substitution in an expression.

(subst (env-make ’(a c) ’(3 5)) ’(bind c (+ a b) (* c d)))

(bind c (+ 3 b) (* c d))

Since BINDEX programs are represented as s-expressions, they can be named so that they are
easily reusable:

(define avg

’(program (a b)

(bind c (+ a b)

(div c 2))))

(env-run avg ’(3 8))

5

(env-run avg ’(20 10))

15

Of course, when writing Scheme programs that manipulate BINDEX programs you should only
use the abstract syntax operators! For example:

(program-formals avg)

(a b c)

(bind? (program-body avg))

#t

(bind-name (program-body avg))

c

Do not use any ”raw” Scheme list operations to manipulate BINDEX programs! That is, you
should not use car and cdr to access the components of a node, nor should you use cons, list,
append, etc. to create nodes. (However, you may use these operations to manipulate lists of formal
parameters, lists of binding names and definitions, etc.)

2

When experimenting with env-run, it is helpful to trace the function env-run to get a sense
for how computation proceeds. For example:

(trace env-eval)

(env-run avg ’(3 8))

[Entering #[compound-procedure 31 env-eval]

Args: (bind c (+ a b) (div c 2))

((a 3) (b 8))]

[Entering #[compound-procedure 31 env-eval]

Args: (+ a b)

((a 3) (b 8))]

[Entering #[compound-procedure 31 env-eval]

Args: b

((a 3) (b 8))]

[8

<== #[compound-procedure 31 env-eval]

Args: b

((a 3) (b 8))]

[Entering #[compound-procedure 31 env-eval]

Args: a

((a 3) (b 8))]

[3

<== #[compound-procedure 31 env-eval]

Args: a

((a 3) (b 8))]

[11

<== #[compound-procedure 31 env-eval]

Args: (+ a b)

((a 3) (b 8))]

[Entering #[compound-procedure 31 env-eval]

Args: (div c 2)

((c 11) (a 3) (b 8))]

[Entering #[compound-procedure 31 env-eval]

Args: 2

((c 11) (a 3) (b 8))]

[2

<== #[compound-procedure 31 env-eval]

Args: 2

((c 11) (a 3) (b 8))]

[Entering #[compound-procedure 31 env-eval]

Args: c

((c 11) (a 3) (b 8))]

[11

<== #[compound-procedure 31 env-eval]

Args: c

((c 11) (a 3) (b 8))]

[5

<== #[compound-procedure 31 env-eval]

Args: (div c 2)

((c 11) (a 3) (b 8))]

[5

<== #[compound-procedure 31 env-eval]

Args: (bind c (+ a b) (div c 2))

((a 3) (b 8))]

;Value: 5

Similarly, when experimenting with subst-run and eval-run, it is helpful to trace the functions

3

subst and subst-eval. For example:

(trace subst)

(trace subst-eval)

(subst-run avg ’(3 8))

[Entering #[compound-procedure 28 subst]

Args: ((a 3) (b 8))

(bind c (+ a b) (div c 2))]

[Entering #[compound-procedure 28 subst]

Args: ((a 3) (b 8))

(div c 2)]

[Entering #[compound-procedure 28 subst]

Args: ((a 3) (b 8))

2]

[2

<== #[compound-procedure 28 subst]

Args: ((a 3) (b 8))

2]

[Entering #[compound-procedure 28 subst]

Args: ((a 3) (b 8))

c]

[c

<== #[compound-procedure 28 subst]

Args: ((a 3) (b 8))

c]

[(div c 2)

<== #[compound-procedure 28 subst]

Args: ((a 3) (b 8))

(div c 2)]

[Entering #[compound-procedure 28 subst]

Args: ((a 3) (b 8))

(+ a b)]

[Entering #[compound-procedure 28 subst]

Args: ((a 3) (b 8))

b]

[8

<== #[compound-procedure 28 subst]

Args: ((a 3) (b 8))

b]

[Entering #[compound-procedure 28 subst]

Args: ((a 3) (b 8))

a]

[3

<== #[compound-procedure 28 subst]

Args: ((a 3) (b 8))

a]

[(+ 3 8)

<== #[compound-procedure 28 subst]

Args: ((a 3) (b 8))

(+ a b)]

[(bind c (+ 3 8) (div c 2))

<== #[compound-procedure 28 subst]

Args: ((a 3) (b 8))

(bind c (+ a b) (div c 2))]

[Entering #[compound-procedure 29 subst-eval]

Args: (bind c (+ 3 8) (div c 2))]

[Entering #[compound-procedure 29 subst-eval]

4

Args: (+ 3 8)]

[Entering #[compound-procedure 29 subst-eval]

Args: 8]

[8

<== #[compound-procedure 29 subst-eval]

Args: 8]

[Entering #[compound-procedure 29 subst-eval]

Args: 3]

[3

<== #[compound-procedure 29 subst-eval]

Args: 3]

[11

<== #[compound-procedure 29 subst-eval]

Args: (+ 3 8)]

[Entering #[compound-procedure 28 subst]

Args: ((c 11))

(div c 2)]

[Entering #[compound-procedure 28 subst]

Args: ((c 11))

2]

[2

<== #[compound-procedure 28 subst]

Args: ((c 11))

2]

[Entering #[compound-procedure 28 subst]

Args: ((c 11))

c]

[11

<== #[compound-procedure 28 subst]

Args: ((c 11))

c]

[(div 11 2)

<== #[compound-procedure 28 subst]

Args: ((c 11))

(div c 2)]

[Entering #[compound-procedure 29 subst-eval]

Args: (div 11 2)]

[Entering #[compound-procedure 29 subst-eval]

Args: 2]

[2

<== #[compound-procedure 29 subst-eval]

Args: 2]

[Entering #[compound-procedure 29 subst-eval]

Args: 11]

[11

<== #[compound-procedure 29 subst-eval]

Args: 11]

[5

<== #[compound-procedure 29 subst-eval]

Args: (div 11 2)]

[5

<== #[compound-procedure 29 subst-eval]

Args: (bind c (+ 3 8) (div c 2))]

;Value: 5

The file bindex-examples.scm contains a few simple programs to experiment with, but you
are encouraged to write some of your own as well. The bindex-examples.scm file also contains an
implementation of a simple test suite that will test an evaluator on a list of programs and examples
and compare the results to the expected results. You are encourage to add new programs and test

5

cases to your own local copy of bindex-examples.scm.
The test-run function is used to test a program evaluator (such as subst-run or env-run) on

the test cases in the test suite. For example:

(test-run env-run)

Running inc on (3) gives 4. OK!

Running c2f on (100) gives 212. OK!

Running c2f on (0) gives 32. OK!

Running c2f on (-40) gives -40. OK!

Running calc on (20) gives 10. OK!

Running calc on (31) gives 15. OK!

Running avg on (3 8) gives 5. OK!

Running avg on (20 10) gives 15. OK!

Running test-bindseq on (3) gives 63. OK!

Running test-bindpar on (3) gives 37. OK!

Running test-bindseq2 on (3) gives 6. OK!

Running test-bindpar2 on (3) gives 149. OK!

Running test-ast on (5 4 2) gives 42. OK!

Running test-unbound on (1 2) gives (bindex-error unbound-variable c). OK!

Running test-div-by-0 on (2 1 0) gives (bindex-error division-by-zero (div 3 0)). OK!

Running test-mod-by-0 on (2 1 0) gives (bindex-error division-by-zero (mod 3 0)). OK!

Done.

The test-run function complains if the actual result does not match the expected result specified
in test-suite. For instance, if we change the line

(list ’avg avg ’(3 8) 5)

in test-suite to instead be the (incorrect) line

(list ’avg avg ’(3 8) 6)

then running (test-run env-run) would indicate what it thinks is an error as follows:

Running avg on (3 8) gives 5 ***ERROR!*** Expected 6

6

Problem 1 [30]: Abstract Syntax Trees

Consider the following BINDEX averaging program:

(program (a b)

(bind c (+ a b)

(div c 2)))

Here is the abstract syntax tree (AST) for this program:

program

bind

varref

binapp binapp

varref varref

div+

a b

a b c 2

c

literal

Note that the multiple parameters of the program are shown branching off a single solid node that
stands for the sequence of parameters.
Suppose we annotate each node of the abstract syntax tree with a triple (FV, Env, Val) of the

following pieces of information:

1. FV : the free variables of the program or expression rooted at the node.

2. Env : The environment in which the node would be evaluated if the program were run on the
actual parameters a = 3 and b = 8. (Write environments as sets of bindings of the form key
= value.)

3. Val: The value that would result from evaluating the node in the environment Env.

7

The following picture shows the AST for the averaging program annotated with this information.
The name e0 abbreviates the environment {a = 3, b = 8} and e1 abbreviates the environment
{a = 3, b = 8, c = 11}.

program

bind

varref

binapp binapp

varref varref

div+

a b

({}, e0, 5)

({a,b}, e0, 5)

({c}, e1, 5)

a b c 2

c

({a,b}, e0, 11}

({a}, e0, 3) ({b}, e0, 8) ({c}, e1, 11) ({}, e1, 2}literal

In this problem, you are to draw a similar annotated AST for the following BINDEX program:

(program (a b c)

(* (bind d (* a c)

(bind e (- d b)

(div (* b d) (+ e a))))

(bind e (bind b (* 12 a)

(- b c))

(div e b))))

You should annotate each node of the abstract syntax tree with the same three pieces of infor-
mation used in the average example above. In this case, assume that the program is run on the
actual parameters a = 2, b = 3, and c = 5.

Note: for this problem, you will need to use a large sheet of paper and/or to write very small. It
is strongly recommended that you write the solution using pencil (not pen, so you can erase) and
paper. Don’t waste your time attempting to format it on a computer with a drawing program.

8

Problem 2 [30]: sigma

The sigma Construct

In this problem, you will extend the BINDEX interpreter to implement a new summation
construct:

(sigma var lo hi body)
Assume that var is a variable name, lo and hi are expressions denoting integers that are not
in the scope of var, and body is an expression that is in the scope of var. Return the sum
of body evaluated at all values of the index variable var ranging from lo up to hi, inclusive.
This sum would be expressed in traditional mathematical summation notation as:

hi
∑

var=lo

body.

If the value of lo is greater than that of hi, the sum is 0.

Here are some examples of sigma in action:

(sigma k 1 6 k)

; 1 + 2 + 3 + 4 + 5 + 6 = 21

(sigma k 3 5 (* k k))

; 32 + 42 +52 = 50

(sigma k 3 2 (* k k))

; evaluates to 0

(sigma i 2 5

(sigma j i 4

(* i j)))

; (2*2) + (2*3) + (2*4) + (3*3) + (3*4) + (4*4) = 55

The sigma construct can be manipulated via the following abstract syntax operations:

(make-sigma var lo hi body)
Returns a sigma node whose index variable is var, whose lower bound is lo, whose upper
bound is hi, and whose body expression is body.

(sigma-var sigma-node)
Returns the index variable of sigma-node.

(sigma-lo sigma-node)
Returns the lower bound expression of sigma-node.

(sigma-hi sigma-node)
Returns the upper bound expression of sigma-node.

(sigma-body sigma-node)
Returns the body expression of sigma-node.

9

(sigma? node)
Returns #t if node is a sigma node, and #f otherwise.

Your Task

Your goal is to extend the BINDEX interpreter so that it appropriately handles the sigma

construct. This involves extending several functions within the interpreter to handle sigma as
detailed below.

a. Extend the definition of free-vars in free-vars.scm to correctly determine the free variables
of a sigma expression.

b. Extend the definition of env-eval in env-eval.scm to correctly evaluate sigma expressions
via the environment model.

c. Extend the definition of subst in subst.scm to correctly perform substitutions into sigma

expressions.

d. Extend the definition of subst-eval in subst-eval.scm to correctly evaluate sigma expres-
sions via the substitution model.

e. Extend the definition of rename in rename.scm to correctly rename sigma expressions.

Notes

• Start your problem by loading the entire BINDEX interpreter for Problem Set 3 as described
in Problem 0.

• Loading the bindex interpreter automatically loads the file sigma.scm, which contains the fol-
lowing nullary functions for testing your extensions: test-sigma-free-vars, test-sigma-env-eval,
test-sigma-subst, test-sigma-subst-eval, and test-sigma-rename. The function test-sigma
tests all of these.

• Implementing parts (c) and (e) requires you to perform a summation as the sigma-bound
variable ranges over the integer values from the lower bound to the upper bound. There are
many ways to implement this summation, but a particularly elegant approach is to use some of
the higher-order list functions from "~/cs251/util/list-ops.scm". These are automatically
loaded when you load the BINDEX interpreter.

10

Problem 3 [40]: Program Simplification

Avoiding Magic Constants

It is good programming style to avoid “magic constants” in code by explicitly calculating certain
constants from others. For instance, consider the following two BINDEX programs for converting
years to seconds:

; Program 1

(program (years)

(* 31536000 years))

; Program 2

(program (years)

(bind seconds-per-minute 60

(bind minutes-per-hour 60

(bind hours-per-day 24

(bind days-per-year 365 ; ignore leap years

(bind seconds-per-year (* seconds-per-minute

(* minutes-per-hour

(* hours-per-day

days-per-year)))

(* seconds-per-year years)))))))

The first program uses the magic constant 31536000, which is the number of seconds in a year.1

The second program shows how this constant is calculated from simpler constants. By showing
the process by which seconds-per-year is calculated, the second program is a more robust and
well-documented software artifact. Calculated constants also have the advantage that they are
easier to modify. Although the numbers in the above program aren’t going to change, there are
many so-called “constants” built into a program that change over its lifetime. For instance, the size
of word of computer memory, the price of a first-class stamp, and the rate for a certain tax bracket
are all numbers that could be hard-wired into programs but which might need to be updated in
future version of the software.
However, magic constants can have performance advantages. In the above programs, the pro-

gram with the magic constant performs one multiplication, while the other program performs four
multiplications. If performance is critical, the programmer might avoid the clearer style and instead
opt for magic constants.

Program Simplification

Is there a way to get the best of both approaches? Yes! We can write our program in the
clearer style, and then automatically transform it to the more efficient style via a process known as
program simplification. In program simplification, we rewrite a program into another one that
has the same meaning by performing computation steps that would otherwise be performed when
running the program. Any steps we can perform during simplification are steps that are avoided
later; in most cases, this improves the run-time performance of the program.
For instance, we can use program simplification to systematically derive the first program above

from the second. We begin via a step known as constant propagation, in which we substitute
the four constants at the top of the second program into their references to yield:

1It is worth noting that this number is approximately π × 107. So a century is approximately π × 109 seconds,

which means that π seconds is approximately one nano-century!

11

(program (years)

(bind seconds-per-minute 60

(bind minutes-per-hour 60

(bind hours-per-day 24

(bind days-per-year 365 ; ignore leap years

(bind seconds-per-year (* 60 (* 60 (* 24 365)))

(* seconds-per-year years)))))))

Next, we eliminate the now-unnecessary first four bindings via a step known as dead code re-
moval:

(program (years)

(bind seconds-per-year (* 60 (* 60 (* 24 365)))

(* seconds-per-year years)))

We can now perform the three multiplications involving manifest integers in a step known as
constant folding:

(program (years)

(bind seconds-per-year 31536000

(* seconds-per-year years)))

Finally, another round of constant propagation and dead code removal yields the first program:

(program (years)

(* 31536000 years))

It is not possible to eliminate bindings whose definition ultimately depends on the program
parameters. Nevertheless, it is often possible to partially simplify such definitions. For example,
consider:

(program (a)

(bind b (* 3 4)

(bind c (+ a (- 15 b))

(bind d (div c b)

(* d c))))

The simplification techniques described above can simplify this program to:

(program (a)

(bind c (+ a 3)

(bind d (div c 12)

(* d c))))

Your Task

In this problem, your task is to write a function simplify that performs simplification on a
BINDEX program by using the constant propagation, constant folding, and dead-code elimination
steps illustrated above. Given a BINDEX program, simplify should return another BINDEX

program that has the same meaning as the original program, but which also satisfies the following
properties:

12

1. The program should not contain any bind expressions in which a variable is bound to an
integer literal.

2. The program should not contain any binary applications in which an arithmetic operator
is applied to two integer literals. There are two exceptions to this property: the program
may contain binary applications of the form (div n 0) or (mod n 0), since these cannot be
simplified by the constant folding process.

It is possible to write separate functions that perform the constant propagation, constant folding,
and dead-code elimination steps, but it is tricky to get them to work together to perform all
simplifications. It turns out that it is much more straightforward to perform all three kinds of
simplification at the same time in a single walk over the expression tree.
By analogy with env-run and env-eval, simplification can be peformed by a pair of functions

simplify and simp:

(simplify pgm)

Returns the simplified version of the given BINDEX program pgm.

(simp exp env)
Given a BINDEX expression exp and an simplification environment env, returns the simpli-
fied version of exp. The simplification environment contains name/value bindings for names
whose values are known.

Your goal is to implement simplification by fleshing out the following skeleton for these two func-
tions:

(define simplify

(lambda (pgm)

;; flesh out these details

))

(define simp

(lambda (exp env)

(cond ((literal? exp)

;; code for handling literal case

)

((varref? exp)

;; code for handling variable reference case

)

((binapp? exp)

;; code for handling binary application case

)

((bind? exp)

;; code for handling bind case

)

(else (error "SIMP: unrecognized expression: " exp))

)))

The correspondence between env-run/env-eval and simplify/simp is not coincidental. In-
deed, simp is effectively a version of env-eval that evaluates as much of an expression as it can

13

based on the “partial” environment information it is given. Because bindings for some names may
be missing in the environment, simp cannot always evaluate every expression to the integer it de-
notes and in some cases must instead return a residual expression that will determine the value
when the program is executed. Because of this, simp must always return an expression rather than
an integer; even in the case where it can determine the value of an expression, that value must be
expressed as an integer literal node, not an integer.

Notes

• To do this problem, you should flesh out the skeletons for the simplify and simp functions
in ~/cs251/ps3/simplify.scm.

• Loading ~/cs251/ps3/simplify.scm automatically loads ~/cs251/ps3/simplify-test.scm.
This latter file contains a testing function for the simplifier, which you can invoke via
(test-simplify).

• Divisions and remainders whose second operands are zero must be left in the program. Such
programs will encounter divide-by-zero errors when they are later executed. For example,

(program (a)

(bind b (* 3 4)

(bind c (div b (- 12 b))

(* c b))))

should be transformed to:

(program (a)

(bind c (div 12 0)

(* c 12)))

• In some cases it would be possible to perform more aggressive simplification if you took
advantage of algebraic properties like the associativity and commutativity of addition and
multiplication. To simplify this problem, you should not use any algebraic properties of the

arithmetic operators. For example, you should not transform (+ 1 (+ a 2)) into (+ 3 a),
but should leave it as is. You should not even perform “obvious” identities like (* 0 a) ⇒ 0,
(* 1 a) ⇒ a, (+ 0 a) ⇒ a. See the extra credit problem if you are interested in more
aggressive simplification.

• You may assume that the programs given to your simplifier do not contain the sigma construct
from Problem 3.

14

Extra Credit 1 [20]: Implementing Environment Operations Appendix A of Handout #13
presents a contract for environments. The following environment functions are said to be the core
functions in the contract: env-empty, env-bind, env-lookup, env-names, and unbound?. Show
that the remaining functions in the contract (env-make, bindings->env, env-values, env->bindings,
env-remove, env-extend,env-merge) can be implemented in terms of the core functions.

Extra Credit 2 [up to 30]: Improving Simplification In order to constrain Problem 4,
only very particular simplifications were allowed. But there are many other meaning-preserving
simplifications that can be performed that make use of algebraic properties. Extend the simplify
function to be more aggressive by implementing as many algebraic simplifications that you can
think of.
You must be careful to justify that each of your simplifications preserves the meaning of the

program. Many “obvious” simplifications can actually change the meaning of a program. For
instance, (* 0 (div a b)) cannot be simplified to 0, because it does not preserve the meaning of
the program in the case where b is 0 (in which case evaluating the expression should give an error).

15

Problem Set Header Page

Please make this the first page of your hardcopy submission.

CS251 Problem Set 3
Due Friday, February 22

Names of Team Members:

Date & Time Submitted:

Collaborators (anyone you or your team collaborated with on the problem

set):

In the Time column, please estimate the time you or your team spent on the parts of this problem

set. Team members should be working closely together, so it will be assumed that the time reported

is the time for each team member. Please try to be as accurate as possible; this information will

help me design future problem sets. I will fill out the Score column when grading you problem set.

Part Time Score

General Reading

Problem 1 [30]

Problem 2 [30]

Problem 3 [40]

Extra Credit 1 [20]

Extra Credit 2 [30]

Total

16

