
CS251 Programming Languages Handout # 19
Prof. Lyn Turbak Saturday, February 23
Wellesley College

Problem Set 4
Due: Saturday, March 2, 2002

Reading: The final version of Local Binding (Handout #15) and IBEX (Handout #18).
In this assignment, you will further study naming issues and will extend the IBEX language

implementation to support several new features.

Submission:

• Problems 1, 3(a) and 3(d) are pencil-and-paper problems that only needs to appear in your
hardcopy submission.

• For Problems 2 and 3, your softcopy submission should include a copy of your entire ps4

directory.

• Your hardcopy submission for Problem 2 should be your final version of the file primops.scm.

• Problem 3(b), your hardcopy submission should be your final version of env-eval.scm.

• Problem 3(c), your hardcopy submission should be your final version of subst-eval.scm.

• Problem 3(e), your hardcopy submission should be your final version of desugar.scm.

1

Problem 0: Studying IBEX

All of the problems on this problem set involve the IBEX language discussed in class or ex-
tensions to this language. IBEX is an extension of BINDEX that supports boolean values and
conditionals, as well as other primitive datatypes and operations.

Before attempting the problems, you should study the code for the implementation of the IBEX

language, which can be found in ~/cs251/ps4 after you perform cvs update -d.
Although there is nothing to turn in for this problem, the rest of the problems will be significantly

easier once you understand how IBEX works.
To use any of the functions defined within files in the ps4 directory, you should evaluate the

following in Scheme:

(cd "~/cs251/ps4")

(load "load-ibex.scm")

Having done this, you can now experiment with any functions in the IBEX interpreter. For
example:

;; Run the absolute value program on the input -4

;; under the environment model

(env-run ’(program (a)

(if (< a 0)

(- 0 a)

a))

’(-4))

4

;; Run the absolute value program on the input -4

;; under the substitution model

(subst-run ’(program (a)

(if (< a 0)

(- 0 a)

a))

’(-4))

4

;; Calculate free variables of an expression.

(free-vars ’(if (< a b) (+ a c) (* b d)))

(a b c d)

;; Rename a variable in an expression.

(rename ’a ’b ’(bind b (+ a b) (* a b)))

(bind b 1 (+ b b) (* b b 1))

;; Perform a substitution in an expression.

(subst (env-make ’(a c)

(map make-literal ’(3 5)))

’(bind c (+ a b) (* c d)))

(bind c (+ 3 b) (* c d))

2

Problem 1 [30]: bindpar and bindseq

a. [3] Suppose that the following program is run on the arguments 3 and 5. Indicate the value
that each name will be bound to during the execution, and also indicate the resulting value of
the program.

;; BINDSEQ test program

(program (a b)

(bindseq ((a (* a b))

(b (+ a b)))

(bindseq ((a (- b a))

(b (div b a)))

(+ a b))))

b. [5] When running the program from part a, how many times are each of the five binary
operators +, -, *, div, and mod performed in (1) a call-by-value interpreter and (2) a call-by value
interpreter?

c. [8] Redo parts a and b, except using a version of the program in which every bindseq has
been replaced by bindpar.

d. [4] Write the result of desugaring the programs from both part a and part c into BINDEX

programs that use only bind in place of bindseq and bindpar. (You should perform the desugar-
ing by hand and not use Scheme to do it for you!) Assume a reasonable convention for α-renaming
bound variables when necessary.

e. [10] Figure 1 shows a clause for handling bind within the subst-cbn function of the call-by-
name BINDEX and IBEX implementations.

1. Explain why the substitution on the body of the bind is performed with respect to new-env

(in which any binding for the bound variable of the bind has been removed) rather than
to env. Use example(s) to illustrate would would go wrong if the substitution on the body
used env instead of new-env.

2. Consider the final if expression within the bind clause of subst in Figure 1. In a call-by-
value substitution model interpreter, it turns out that only the else branch of this if would
ever be taken. Explain why this is so.

3. Give a BINDEX program (not expression) whose evaluation under a call-by-name substitu-
tion model interpreter would cause the then branch of the final if to be taken. Argue that
taking the else branch instead would cause the evaluator to give the wrong answer.

3

((bind? exp)

(let* ((name (bind-name exp))

(defn (bind-defn exp))

(body (bind-body exp))

;; BODY-FVS is the set of variables in the body

;; that appear free outside the BIND

(body-fvs (set-difference (free-vars (bind-body exp))

(set-singleton (bind-name exp))))

;; NEW-ENV is ENV with any binding for NAME removed

(new-env (env-remove (list (bind-name exp)) env))

;; CAPTURABLES is the set of all new free vars that

;; are introduced into the copy of the BIND body

;; returned by SUBST.

(capturables

(foldr set-union

(set-empty)

(map (lambda (fv)

(let ((probe (env-lookup fv new-env)))

(if (unbound? probe)

(set-singleton fv)

(free-vars probe))))

body-fvs)))

)

(if (set-member? name capturables)

; Then clause

(let ((new-name (name-not-in name capturables)))

(make-bind new-name

(subst-cbn env defn)

(subst-cbn new-env (rename1 name new-name body))))

; Else clause

(make-bind name

(subst-cbn env defn)

(subst-cbn new-env body)))))

Figure 1: Clause for handling bind within the subst-cbn function of the call-by-name BINDEX

and IBEX interpreter.

4

Problem 2 [15]: Extending IBEX with string operations

Strings

The IBEX language implementation is designed to make it fairly easy to add new primitive
dataypes and operations on these datatypes. As an example of this, you will be extending IBEX

to handle strings.
Conceptually, a string is just a sequence of characters. We will adopt the convention used in

most languages (including C, Java, Scheme, ML, and Haskell) that a string literals are denoted
by text delimited by double quotes. For example, here are some string literals: "", "a", "cs251",
"I do not like them, Sam I am!".

For adding strings to IBEX, it is easiest to assume that IBEX strings are simply represented
as strings in the underlying Scheme implementation. (This is the same decision made for IBEX

integers; but recall that IBEX booleans and symbols are represented differently than in Scheme.)
We add strings to the abstract syntax of IBEX via the following functions:

;; Define an IBEX string as a Scheme string

(define mini-string? string?)

;; Extend LITERAL? to recognize strings.

(define literal?

(lambda (exp)

(or (mini-integer? exp)

(mini-boolean? exp)

(mini-symbol? exp)

(mini-string? exp) ; *** Strings are a new kind of literal

)))

;; Extend TYPE-OF with a new STRING type.

(define type-of

(lambda (val)

(cond ((mini-integer? val) ’int)

((mini-boolean? val) ’bool)

((mini-symbol? val) ’sym)

((mini-string? val) ’string) ; *** New type for strings

(else (throw ’type-of-unknown-value val))

)))

With the above additions, it is possible to use string literals in IBEX programs. For example:

(program (n)

(if (> n 0)

"positive"

(if (= n 0)

"zero"

"negative")))

In addition to including string literals, however, we would also like to extend IBEX with operations
that allow analyzing the structure of a string and synthesizing new strings. In particular, consider
the following four string operations:

5

(strlen str)
Returns the length (number of characters in) the string str.

(strlt str1 str2)
Returns true if str1 is less than str2 in the lexicographic (dictionary) ordering of strings, and
false otherwise. For example, the following are arranged in lexicographic order: "", "a",
"aa", "ab", "b", "ba", "bb".

(str+ str1 str2)
Returns the string that has all the characters of str1 followed by all of those of str2. For
example, (str+ "ab" "bcd") yields "abbcd".

(substr lo hi str)
Assume that the characters of a length-n string are indexed from 1 (the first character) to
n (the last character). Returns the string consisting of all the characters between indices lo
and hi, inclusive. If lo is greater than hi, then the empty string is returned. If either index is
out of the range [1..n], then throws an exception whose tag is substr:index-out-of-bounds
and whose value is the offending index. For example:

(substr 1 1 "abcdef") ; Returns ”a”
(substr 2 5 "abcdef") ; Returns ”bcde”
(substr 3 2 "abcdef") ; Returns ””
(substr 0 5 "abcdef") ; Throws exception substr:index-out-of-bounds 0
(substr 2 7 "abcdef") ; Throws exception substr:index-out-of-bounds 7

Your Task

Your task is to extend the IBEX interpreter with the above four string operations by adding
appropriate bindings to the primop-env environment in the file primops.scm. Each binding asso-
ciates a name with a primitive operator descriptor created by invoking make-pdesc on four
arguments:

1. the name of the operator (a symbol);

2. the types of the operands (a list of symbols);

3. the return type (a symbol);

4. a Scheme function that takes the specified number and types of arguments and returns the
specified type of result.

Notes:

• To use any parts of the IBEX interpreter, you must first evaluate the following in Scheme:

(cd "~/cs251/ps4")

(load "load-ibex.scm")

• You will need to use Scheme string operations in your implementation. For documentation
on these, consult the section on strings in the Revised5 Report on the Algorithmic Language
Scheme (R5RS). You can access R5RS on-line from the CS251 home page.

• You can test your implementation by invoking (test-strings).

6

Problem 3 [55]: Extending IBEX with loop

The loop construct

Due to your extensive experience with IBEX in CS251, you have been elected head of the IBEX

Users Group, a worldwide consortium of IBEX programmers. At your most recent consortium
meeting, there was much grumbling from attendees about the lack of expressiveness of IBEX.
As one dissatisfied IBEX programmer put it, “Sure, sigma helps a little bit. But how can we be
expected to write general programs in this language if it doesn’t even have a real looping construct?”

You decide it’s high time to pay a visit to Ida Ray-Sun, the CTO of Loopster, a company that
specializes in loop constructs for programming languages. Ida agrees to help develop a looping
construct for IBEX if you will help with the implementation.

Ida quickly designs the following IBEX loop construct:

(loop ((sv 1 Einit1 Eupdate1
)

...

(svn Einitn Eupdaten
))

Etest

Ebody)

The loop construct describes an iteration over the state variables sv 1 . . . svn, which are assumed
to be pairwise distinct. The iteration consists of a sequence of steps between abstract units of time
starting with 0, where the state of the iteration at time t is characterized by the values of the state
variables at time t. The state variables are initialized at time t = 0 to the corresponding values of
the initializers Einit1 . . . Einitn . On each step of the iteration, the updaters Eupdate1

. . . Eupdaten

are evaluated relative to the state at time t to determine the state at time t + 1. The iteration
continues as long as the test expression Etest gives a true value when evaluated relative to the
current state. If Etest yields false for the initial state, the updaters are never evaluated. The loop
construct returns the value of Ebody relative to the first state for which Etest yields false.

The scope of state variables declared in loop is the updater expression, the test expression, and
the body expression. The scope does not include the initializer expressions.

For example, the following IBEX program calculates the factorial of n:

(program (n)

(loop ((i n (- i 1))

(prod 1 (* i prod)))

(> i 0)

prod))

Below is an iteration table that shows the values of the state variables of the loop iteration at
each point in time when the factorial of 5 is computed. Note that the values in a given row are the
“state” of the iteration at that time.

t i prod

0 5 1

1 4 5

2 3 20

3 2 60

4 1 120

5 0 120

7

As another example, here are an IBEX program that calculates the nth Fibonacci number, and
an iteration table that summarizes the iteration for n = 6.

(program (n)

(loop ((i 0 (+ 1 i))

(fibi 0 fibi+1)

(fibi+1 1 (+ fibi fibi+1)))

(< i n)

fibi))

t i fib i fib i+1

0 0 0 1

1 1 1 1

2 2 1 2

3 3 2 3

4 4 3 5

5 5 5 8

6 6 8 13

Note that when evaluating the updater expressions fibi+1 and (+ fibi fibi+1) to determine the
state for time t+ 1, both of these expressions are evaluated with respect to the values of the state
variables fibi+1 and fibi+1 at time t. Because the updaters are effectively evaluated “in parallel”,
there is no need for “temporary variables” that would often be necessary if such iteration were
expressed via a while or for loop in a language like Java or C.

Your Task

Your task is to solve the following problems related to the loop construct. Parta (a) and (d)
are pencil-and-paper problems; parts (b), (c), and (e) require extending the version of the IBEX

interpreter in ~/cs251/ps4. To use any parts of the IBEX interpreter, you must first evaluate the
following in a Scheme interpreter:

(cd "~/cs251/ps4")

(load "load-ibex.scm")

Parts (a) – (d) are independent and can be done in any order. The code for part (e) can be
written independently of the other parts, but testing it requires the completion of one of parts (b)
or (c). The abstract syntax you need for manipulating loop expressions is summarized in Figure 2.

8

(make-loop vars inits updates test body)
Constructs and returns a new loop expression with state variables vars, initializers inits, updaters
updates, test expression test, and body expression body.

(loop-vars loop-node)
Returns a Scheme list of the state variables in loop-node.

(loop-inits loop-node)
Returns a Scheme list of the initializer expressions in loop-node.

(loop-updates loop-node)
Returns a Scheme list of the updater expressions in loop-node.

(loop-test loop-node)
Returns the test expression of loop-node.

(loop-body loop-node)
Returns the body expression of loop-node.

(loop? node)
Returns #t if node is a loop expression, and #f otherwise.

Figure 2: Abstract syntax for the loop expression.

a. [5]: Variable Scoping

Consider the following (contrived) IBEX expression:

(loop ((a a (+ a 1))

(b b (- b a)))

(<= a b)

(loop ((a b (* a 2))

(b 0 (+ b (loop ((a a (div a 2))

(b 1 (* b a)))

(= a 0)

b))))

(> a b)

(+ a b)))

Copy this program onto a sheet of paper, and draw a line between every variable reference and
the variable declaration to which it refers. Indicate free variables by drawing circles around them.

9

b. [12]: Environment Model Evaluation

In this problem, you are to extend the env-eval function in env-eval.scm to correctly specify
the evaluation of the loop construct in the environment model. You should do this by fleshing
out the three expressions E1 , E2 , and E3 in the following skeleton:

((loop? exp)

(let ((vars (loop-vars exp))

(inits (loop-inits exp))

(updates (loop-updates exp))

(test (loop-test exp))

(body (loop-body exp)))

(env-eval body

(iterate E1

E2

E3))))

The above skeleton uses the following higher-order iterate function. The iterate function is
similar to generate, except that rather than returning a list of iterated values, it returns the last
value of an iteration (the one for which the done? predicate is true):

(define iterate

(lambda (seed next done?)

(if (done? seed)

seed

(iterate (next seed) next done?))))

Notes:

• Think carefully about types when doing this problem. What type of value should be returned
by the call to iterate in the skeleton? What does this imply about the types of values
returned by E1 , E2 , and E3 ?

• Be sure to use mini-bool-to-scheme-bool to convert an IBEX boolean to a Scheme
boolean.

• Use the environment operations specified in Handout 13 to manipulate environments.

• You can test your loop clause for env-eval by evaluating (test-loop-env-eval), which
uses env-eval to evaluate a suite of benchmarks containing loop.

• The desugar function used in env-run has already been extended to handle loop.

10

c. [8]: Substitution Model Evaluation

In this problem, you are to extend the subst-eval function in subst-eval.scm to correctly
specify the evaluation of the loop construct in the substitution model. You should do this by
fleshing out the three expressions E1 , E2 , and E3 in the following skeleton:

((loop? exp)

(let ((vars (loop-vars exp))

(inits (loop-inits exp))

(updates (loop-updates exp))

(test (loop-test exp))

(body (loop-body exp)))

(let ((state E1))

(if (mini-bool-to-scheme-bool

(subst-eval (subst state test)))

(subst-eval (make-loop vars

E2

updates

test

body))

E3))))

Notes:

• Think carefully about types when doing this problem. From the way that state is used in
the skeleton, what type must E1 be? Similarly use the contexts of E2 and E3 to determine
what types they must have.

• In your solution, you will need to use the subst function in subst.scm, which has already
been extended to handle loop appropriately. Note that subst depends on functions in
rename.scm and free-vars.scm, both of which files have already been extended to handle
loop appropriately.

• You can test your loop clause for subst-eval by evaluating (test-loop-subst-eval),
which uses subst-eval to evaluate a suite of benchmarks containing loop.

• The desugar function used in subst-run has already been extended to handle loop.

11

d. [10]: Desugaring least into loop

Ida notes that many iteration constructs can be desugared into an appropriate loop expression.
As an example, she invents the following least construct, whose abstract syntax is manipulated
by the functions in Figure 3.

(least var body)

(make-least var body)
Constructs and returns a new least expression with variables vars (which should be a symbol) and
body expression body.

(least-var least-node)
Returns the variable of loop-node.

(least-body least-node)
Returns the body of loop-node.

(least? node)
Returns #t if node is a least expression, and #f otherwise.

Figure 3: Abstract syntax for the least expression.

Rather than explaining the meaning of the least construct, she instead shows you how the
desugar function can be extended to desugar least into loop:

;; DESUGAR clause for LEAST

((least? exp)

(let ((var (least-var exp))

(body (least-body exp)))

(make-loop (list var)

(list (make-literal 0))

(list (make-primapp ’+

(list (make-varref var)

(make-literal 1))))

(make-primapp ’not (list (desugar body)))

(make-varref var))))

i. [3] Based on the above desugaring, give an English description for the meaning of
(least var body). Your description should be very concise.

ii. [4] What are the values of the following expressions using least?

• (least x (> (* x x) 100))

• (least i (>= (* i (least j (<= (div 100 (+ j 1))

i)))

80))

iii. [3] Briefly explain the key advantage of implementing least as syntactic sugar rather
than as a core IBEX construct (like if, bind, or loop).

12

e. [20]: Desugaring sigma into loop

Inspired by Ida’s least construct, you decide to extend IBEX with the (sigma E lo Ehi Ebody)

construct from Problem Set 3. Rather than implementing sigma “from scratch”, as you did in
Problem Set 3, you instead implement it as syntactic sugar by rewriting all sigma expressions
into expressions using loop.

You should do this problem in two parts:

• Write a desugaring rule (like those in Handout #18), that specifies how to rewrite the
expression (sigma Elo Ehi Ebody) into an expression that uses loop in addition to any
kernel IBEX constructs. The desugared expression should evaluate each of E lo and Ehi

exactly once. You will need to introduce one or more new names as part of your desugaring.
You should specify which of your new names needs to be “fresh” in order to avoid accidental
variable capture.

• Extend the desugar function in the file desugar.scm so that it implements your desugaring
rule from part (1) and correctly desugars sigma into loop.

Notes:

– To create “fresh” variables in your implementatation, you should use the name-not-in
function described in Figure 4 and defined in rename.scm.

– You can test your desugaring by evaluating (test-sigma-desugaring run), where run
is one of env-run or subst-run. (You only need one of these to be working to test your
desugaring.)

– Feel free to define any auxiliary functions that you find helpful.

(name-not-in name names)
Returns the first “subscripted” version of name that is not an element of name list names. For
example, (name-not-in ’a ’(b c d)) returns a 1 and (name-not-in ’a ’(a 2 a 4 a 1)) returns
a 3. If name is already subscripted, the existing subscript is removed before computing the new one.
For instance (name-not-in ’a 7 ’(a 2 a 4 a 1)) returns a 3.

Figure 4: Specification for the name-not-in function.

13

Extra Credit 1 [25]: Desugaring classify

The classify construct

You are a summer programming intern at Sweetshop Coding, Inc. Your supervisor, Dexter
Rose, has been studying the syntactic sugar for Scheme and is very impressed by the cond and case

constructs. He decides that it would be neat to extend IBEX with a related classify construct
that classifies an integer relative to a collection of ranges. For instance, using his construct, Dexter
can write the following grade classification program:

(program (grade)

(classify grade

((90 100) (symbol A))

((80 89) (symbol B))

((70 79) (symbol C))

((60 69) (symbol D))

(otherwise (symbol F))))

This program takes an integer grade value and returns a symbol indicating which range the grade
falls in.

In general, the classify construct has the following form:

(classify Edisc

((Elo1
Ehi1) Ebody1

)
...

((Elon
Ehin) Ebodyn

)

(otherwise Edflt))

The evaluation of classify should proceed as follows. First the discriminant expression Edisc

should be evaluated to the value Vdisc . Then Vdisc should be matched against each of the clauses
((Eloi

Ehii) Ebody i
) from top to bottom until one matches. The value matches a clause if it lies

in the range between Vloi
and Vhii , inclusive, where Vloi

is the value of Eloi
, and Vhi i is the value

of Ehii . When the first matching clause is found, the value of the associated expression Ebody i
is

returned. If none of the clauses matches Vdisc , the value of the default expression Edflt is returned.
Here are a few more examples of the the classify construct in action:

; Program 2

(program (a b c d)

(classify (* c d)

((a (- (div (+ a b) 2) 1)) (* a c))

(((+ (div (+ a b) 2) 1) b) (* b d))

(otherwise (- d c))))

; Program 3

(program (a)

(classify a

((0 9) a)

(((div 20 a) 20) (+ a 1))

(otherwise (div 100 (- a 5)))))

14

Program 2 emphasizes that any of the subexpressions of classify may be an arbitrary expression
that requires evaluations. In particular, the upper and lower bound expressions need not be integer
literals. For instance, here are some examples of the resulting value returned by Program 2 for
some sample inputs.

a b c d result

10 20 3 4 30

10 20 3 6 120

10 20 3 5 2

Program 3 emphasizes that (1) ranges may overlap (in which case the first matching range is chosen)
and (2) expressions in clauses after the matching one are not evaluated. For instance, here are here
are some examples of the resulting value returned by Program 3 for some sample inputs.

a result

0 0

5 5

10 11

20 21

25 5

30 4

Your Task

Dexter has asked you to implement the classify construct in IBEX as syntactic sugar.
You should begin by writing one or more desugaring rules that desugar classify into other
IBEX constructs. Then you should implement your rule(s) by extending the desugar function
in desugar.scm with a clause for classify. You should use the abstract syntax functions in Fig-
ure 5 to manipulate classify expressions. Your desugaring should only evaluate Edisc once; to
guarantee this, you will need to name the value with a “fresh” variable (one that does not appear
elsewhere in the program). Use the name-not-in function described in Figure 4 to choose a variable
not in a given list.

You can test your implementation by invoking (test-classify). This will use env-run to run
various programs containing classify expressions to make sure that they evaluate to an expected
answer. If not, the original (sugared) program and the desugared program will be displayed.

The hardcopy submission for this problem should include your final version of the file desugar.scm.

15

(make-classify disc clauses default)
Returns a classify construct with discriminant disc, clauses clauses, and default expression default.

(classify-discriminant classify-node)
Returns the discriminant of classify-node.

(classify-clauses classify-node)
Returns a list of the clauses of classify-node.

(classify-default classify-node)
Returns the default expression of classify-node.

(classify? node)
Returns #t if node is a classify node, and #f otherwise.

(classify-clause-lo classify-clause)
Returns the lower bound expression of classify-clause.

(classify-clause-hi classify-clause)
Returns the upper bound expression of classify-clause.

(classify-clause-body classify-clause)
Returns the body expression of classify-clause.

Figure 5: Abstract syntax for classify.

16

Problem Set Header Page

Please make this the first page of your hardcopy submission.

CS251 Problem Set 4
Due Saturday, March 2

Names of Team Members:

Date & Time Submitted:

Collaborators (anyone you or your team collaborated with on the problem

set):

In the Time column, please estimate the time you or your team spent on the parts of this problem

set. Team members should be working closely together, so it will be assumed that the time reported

is the time for each team member. Please try to be as accurate as possible; this information will

help me design future problem sets. I will fill out the Score column when grading you problem set.

Part Time Score

General Reading

Problem 1 [30]

Problem 2 [15]

Problem 3 [55]

Extra Credit [30]

Total

17

