
CS251 Programming Languages Handout # 22
Prof. Lyn Turbak Friday, March 1
Wellesley College

Problem Set 5
Due: Friday, March 8, 2002

Reading:

• Handouts: HOFL (# 18), Recursive Binding (# 23), FOFL/FOBS (# 24)

• Environment model: SICP 3.2 – 3.2.2

• Interpretation of a higher-order functional language (i.e., Scheme, which is pretty similar to
HOFL): SICP 4 – 4.2.1.

Submission:

• Problems 1 and 2 are pencil-and-paper problems that only need to appear in your hardcopy
submission.

• For Problems 3, 4, and 5, your softcopy submission should include a copy of your entire ps5
directory.

• Your hardcopy submission for Problem 3 should be the files ~/cs251/ps5/free-vars.scm

and ~/cs251/ps5/desugar.scm.

• Your hardcopy submission for Problem 4 should be the file ~/cs251/ps5/mystery.scm.

• Your hardcopy submission for Problem 5 should be the file ~/cs251/ps5/pythag.scm.

Problem 0: Getting Started
To obtain the code you need for this assignment, you should execute the following command in

a Unix shell:

cd ~/cs251; cvs update -d

This will install four new directories: fofl, fobs, hofl, and ps5.
The problems on this problem set involve the FOFL, FOBS, and HOFL languages discussed

in class. As part of working on these problems, you may want/need to study and experiment with
interpreters for these languages. Appendix A contains a description of how to use the implemen-
tations for these three languages.

1



Problem 1 [30]: Static and Dynamic Scope in HOFL

a. [12] Suppose that the program in Figure 1 is run on the input argument list ’(5). Draw
an environment diagram that shows all of the environments and closures that are created during
the evaluation of this program in statically scoped HOFL. In order to simplify the diagram,
you should treat bind as if it were a kernel construct and ignore the fact that it desugars into
an application of an abs. That is, you should treat the evaluation of (bind I Edefn Ebody) in
environment F as the result of evaluating Ebody in the environment frame F ’ shown below (where
Vdefn is the result of evaluating Edefn in F ):

IF’

F

V
defn

b. [2] What is the final value of the program from part (a) in statically scoped HOFL? (You
should figure out the answer on your own, but may wish to check it using the statically scoped
HOFL interpreter. See Appendix A.3 for details.)

c. [10] Draw an environment diagram that shows all of the environments created in dynamically
scoped HOFL when running the program from Figure 1 on the input argument list ’(5).

d. [2] What is the final value of the program from part (c) in dynamically scoped HOFL?

e. [4] In a programming language with higher-order functions, which supports modularity
better: lexical scope or dynamic scope? Explain your answer.

(program (a)

(bind linear (abs (a b)

(abs (x)

(+ (* a x) b)))

(bind line1 (linear 1 2)

(bind line2 (linear 3 4)

(bind try (abs (b)

(prepend (line1 b)

(prepend (line2 (+ b 1))

(prepend (line2 (+ b 2))

(empty)))))

(try (+ a a)))))))

Figure 1: A sample HOFL program used to illustrate the difference between static and dynamic
scope.

2



Problem 2 [15]: bindrec
Consider the following HOFL expression E:

(bind f (abs (x) (+ x 1))

(bindrec ((f (abs (n)

(if (= n 0)

1

(* n (f (- n 1)))))))

(f 3)))

a. [4] What is the value of E in statically scoped HOFL?

b. [4] Consider the expression E’ that is obtained from E by replacing bindrec by bindseq.
What is the value of E’ in statically scoped HOFL?

c. [4] What is the value of the expression E’ from part b in dynamically scoped HOFL?

d. [3] Does a dynamically scoped language need a recursive binding construct like bindrec in
order to support the creation of local recursive procedures? Briefly explain your answer.

3



Problem 3 [20]: recur
Local recursive functions defined via HOFL’s bindrec or Scheme’s letrec are often hard to

read. For example, consider the following HOFL program using a tail-recursive factorial function:

(program (n)

(bindrec ((factloop (abs (num ans)

(if (= num 0)

ans

(factloop (- num 1) (* num ans))))))

(factloop n 1)))

This program illustrates two problems:

1. The declaration of the state variables of the iteration (num and ans) is textually far away
from the initialization of these variables (to n and 1 in the invocation (factloop n 1)).

2. Following the usual indentation conventions causes much of the program to be shifted far to
the right.

These problems can be addressed by using a more readable construct for simple local recursions:

(recur Iname ((I1 E1 ) . . . (In En)) Ebody)
Create a local function named Iname whose formal parameters are I1 through In and whose
body is Ebody . The value returned by recur is the result of applying this local function to
the values that result from evaluating the initial value expressions E1 through En . Ebody is in
the scope of Iname as well as I1 through In , so Iname may be recursive. However, E1 through
En are not in the scope of Iname or I1 through In .

For example, here is a version of the above factorial example using recur:

(program (n)

(recur factloop ((num n) (ans 1))

(if (= num 0)

ans

(factloop (- num 1) (* num ans)))))

In this problem, you will extend the HOFL implementation in ~/cs251/ps5 to support the
recur construct. In your extensions, you should use the following abstract syntax operations for
the recur construct, which have already been implemented for you:

(make-recur name formals inits body)

(recur-name recur-exp) ; Iname

(recur-formals recur-exp) ; I1 through In

(recur-inits recur-exp) ; E1 through En

(recur-body recur-exp) ; Ebody

(recur? s-expression)

Before starting this problem, you should evaluate the following Scheme expressions:

4



(cd "~/cs251/ps5")

(load "load-hofl.scm")

a. [5] Based on the above specification of the recur construct, extend the definition of the
free-vars function in ~/cs251/ps5/free-vars.scm to handle the recur construct. Test your
definition by evaluating (test-recur-free-vars).

b. [15] Although it is possible to implement recur by extending env-eval and other func-
tions in the HOFL interpreter, it is easier to implement recur via desugaring. Modify the
desugar function in ~/cs251/ps5/desugar.scm to desugar recur into other HOFL constructs.
You should use bindrec in your desugaring. There is already a ”stub” clause for recur in
desugar.scm that just desugars the parts of a recur but leave the recur in place. You should
replace this stub with a clause that removes the recur altogether. Test your extension by evalu-
ating (test-recur-desugar).

5



Problem 4 [20]: Variable and Function Scoping in FOBS

As discussed in lecture, the first-order block-structured language FOBS has two namespaces:
one for functions and one for variables. It is possible to independently choose between static and
dynamic scoping in each of the two namespaces. Indeed, the FOBS implementation provides four
distinct interpreters for the four possibilities:

• fobs-run-statfun-statvar is statically scoped in both the function and variable names-
paces.

• fobs-run-statfun-dynvar is statically scoped in the function namespace but dynamically
scoped in the variable namespace.

• fobs-run-dynfun-statvar is dynamically scoped in the function namespace but statically
scoped in the variable namespace.

• fobs-run-dynfun-dynvar is dynamically scoped in both the function and variable names-
paces.

Suppose you are given a mystery interpreter that is one of the above four interpreters, but
you aren’t told which one. By evaluating various FOBS programs with the mystery interpreter,
you can determine which of the four interpreters it is. In particular, it is possible to write a single
FOBS program solve-mystery that takes zero arguments and returns a two-element list of strings
(fstring vstring), where

• fstring is "statfun" if function names are statically scoped and "dynfun" if they are statically
scoped.

• vstring is "statvar" if variable names are statically scoped and "dynvar" if they are dynam-
ically scoped.

For example, if running the mystery interpreter on the solve-mystery program returns the result
("statfun" "dynvar"), the mystery interpreter must be env-run-statfun-dynvar.

In this problem you are to write the solve-mystery program in FOBS. You should do so
by fleshing out the skeleton in ~/cs251/ps5/mystery.scm. The only types of values that your
program should manipulate are strings, functions, and lists of strings. That is, your program
should not involve any integers, booleans, or symbols. Strive to make your program as simple and
understandable as possible.

You can test your program by invoking (test-mystery) after you have evaluated the following
Scheme expressions:

(cd "~/cs251/ps5")

(load "load-mystery.scm")

Note: If you cannot solve this problem with just strings, functions, and list of strings, you can get
partial credit by solving the problem using other types of values.

6



Problem 5 [15]: Block Structure
It is possible to translate any program in a first-order block-structured language (such as FOBS)

into a first-order language without block structure (such as FOFL). This can be done by ”lifting”
all function declarations to top-level, possibly renaming some of the functions and adding some
extra formal and actual parameters to some functions.

In this problem, you will illustrate this fact by manually translating the FOBS (first-order,
block structured) program in Figure 2 into a FOFL (first-order, no block-structure) program that
has the same meaning. You should write your FOFL program in the file ~/cs251/ps5/pythag.scm.
Your FOFL program should have exactly the same number of function declarations as the FOBS

program, but all of the FOFL declarations should be top-level. You should assume that the FOBS

program is statically scoped and the FOFL program is globally scoped.

Notes:

1. Given a non-negative integer n, the program in Figure 2 returns a list of pythagorean triples,
where each such triple is a three-element list of the form (a b c), where a, b, c are positive inte-
gers such that a < b < c ≤ n and a2+b2 = c2. The program appears as pythagorean-triples
in the FOBS test suite in the file ~cs251/fobs/fobs-examples.scm.

2. You can test your FOFL program by evaluating (test-pythag) after you have evaluated
(once per session) the following:

(cd "~/cs251/ps5")

(load "load-pythag.scm")

Note that running the test program can take a long time.

7



(program (n)

(funrec

((sq (x) (* x x))

(triple (x y z) (prepend x (prepend y (prepend z (empty)))))

(from (lo)

(if (> lo n) ; only generate numbers up to (and including) n

(empty)

(prepend lo (from (+ lo 1)))))

(a-loop (as ans1)

(if (empty? as)

ans1

(bind a (head as)

(funrec

((b-loop (bs ans2)

(if (empty? bs)

(a-loop (tail as) ans2)

(bind b (head bs)

(funrec

((c-loop (cs ans3)

(if (empty? cs)

(b-loop (tail bs) ans3)

(bind c (head cs)

(if (= (+ (sq a) (sq b)) (sq c))

(b-loop (tail bs)

(prepend (triple a b c)

ans3))

(c-loop (tail cs) ans3))))))

(c-loop (from (+ b 1)) ans2))))))

(b-loop (from (+ a 1)) ans1))))))

(a-loop (from 1) (empty))

)))

Figure 2: A FOBS program for computing Pythagorean triples (a b c), where a, b, c are positive
integers such that a < b < c ≤ n and a2 + b2 = c2.

8



A FOFL, FOBS, and HOFL Interpreters

This section documents the interpreters for the FOFL, FOBS, and HOFL languages. To obtain
the code for all of these intepreters, perform a CVS update by executing the following command
in a Unix shell:

cd ~/cs251; cvs update -d

A.1 FOFL Interpreters

FOFL is a language that extends IBEX with top-level first-order functions. To use the FOFL

interpreters, evaluate the following Scheme expressions:

(cd "~/cs251/fofl")

(load "load-fofl")

There are three distinct FOFL interpreters:

• fofl-run-global: uses global scope.

• fofl-run-dynamic: uses dynamic scope.

• fofl-run-flat: uses flat scope.

A.2 FOBS Interpreters

FOBS is a language that extends FOFL with block structure. To use the FOBS interpreters,
evaluate the following Scheme expressions:

(cd "~/cs251/fobs")

(load "load-fobs")

There are four distinct FOFL interpreters:

• fobs-run-statfun-statvaruses statical scope in both the function and variable namespaces.

• fobs-run-statfun-dynvar uses static scope in the function namespace but dynamic scope
in the variable namespace.

• fobs-run-dynfun-statvar uses dynamic scope in the function namespace but static scope
in the variable namespace.

• fobs-run-dynfun-dynvar uses dynamic scope in both the function and variable namespaces.

A.3 HOFL Interpreters

HOFL is a language that extends FOBS with higher-order functions. To use the HOFL inter-
preters, evaluate the following Scheme expressions:

(cd "~/cs251/hofl")

(load "load-hofl")

There are two distinct HOFL interpreters:

• hofl-run-static uses static scope.

• hofl-run-dynamic uses dynamic scope.

9



Problem Set Header Page

Please make this the first page of your hardcopy submission.

CS251 Problem Set 5
Due Friday, March 8

Names of Team Members:

Date & Time Submitted:

Collaborators (anyone you or your team collaborated with on the problem

set):

In the Time column, please estimate the time you or your team spent on the parts of this problem

set. Team members should be working closely together, so it will be assumed that the time reported

is the time for each team member. Please try to be as accurate as possible; this information will

help me design future problem sets. I will fill out the Score column when grading you problem set.

Part Time Score

General Reading

Problem 1 [30]

Problem 2 [15]

Problem 3 [20]

Problem 4 [20]

Problem 5 [15]

Total

10


