
CS251 Programming Languages Handout # 36
Prof. Lyn Turbak Sunday, April 7
Wellesley College

Problem Set 7
Due: Saturday, April 13, 2002

Reading:

• Handout #30: Type Checking

• Handout #35: Type Reconstruction

Code:

• Problems 2, 3, and 4 require you to do some SML programming. All of the code you need is
in the ~/cs251/ps7 directory. To install this code, execute the following in a Linux shell:

cd ~cs251/p7

cvs update -d

• To test your modifications to the SML programs, create an SML buffer (via M-x sml) and
make sure you are connected to the ~/cs251/ps7 directory (via M-x sml-cd).

Submission:

• Problem 1 is a pencil-and-paper problem that only needs to appear in your hardcopy submis-
sion.

• For Problems 2, 3, and 4, your softcopy submission should include a copy of your entire ps7
directory.

• Your hardcopy submission for Problem 2 should be the files ~/cs251/ps7/hoflad/Eval.sml
and ~/cs251/ps7/hoflad/Parser.sml.

• Your hardcopy submission for Problem 3 should be the file:

~/cs251/ps7/hofmad/TypeCheck.sml.

• Your hardcopy submission for Problem 4 should be the file:

~/cs251/ps7/hofmad/Recon.sml.

1



Problem 1 [20]: Monomorphic Type Reconstruction
Following the format of the type reconstruction example given in class, give a derivation for

reconstructing an explicitly typed HOFLEMT expression from the following implicitly typed
HOFLIMT expression:

((abs (f) (f 5))

(abs (n) (abs (x) (> x n))))

For your derivation, you should draw an abstract syntax tree for the above expression and should
annotate each node with (1) the type environment A that would be used for reconstructing the
node and (2) the triple (E, T , σ) that results from calling reconExp on the node, where E is
the explicitly type expression corresponding to the node, T is the type reconstructed for the node,
and σ is the type substitution reconstructed for the node. You should use the type reconstruction
algorithm presented in Handout #35.

To make the annotated tree more compact, you are encouraged to name complex entities and
give the definitions of these names separately.
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Problem 2 [40]: Tuples and Variants
In this problem you will extend the SML implementation of HOFL with two new data struc-

tures: tuples and variants. We will call the resulting language HOFLAD (for HOFL And Data).
This will give you some experience with programming language implementation in SML and will
also expose you to some issues concerning data structures.

Tuples
An n-tuple is a value with n component values. Tuples are also known as positional products

because they combine components that are referenced by their positions within the tuple. Tuples
are closely related to records, also known as a named products, in which component values are
indexed by names rather than positions. Most programming languages have some sort of tuple
and/or record data structure. Examples of record facilities include SML and Haskell’s records, C’s
struct, CLU’s record and struct, Common Lisp’s defstruct, and and Pascal’s record. A Java
class instance can even be viewed as a kind of record whose components are instance variables.

We introduce tuples into the HOFLAD language via the following two new kinds of expressions:

(tuple E1 . . . En)
Creates a tuple value with n component values, where the ith component value (indices start
at 1) is the value of the expression Ei .

(match-tuple (I1 . . . In) Etup Ebody)
Evaluates Etup to the value Vtup , which should be a tuple value with n component values;
otherwise, match-tuple signals an error. It returns the value of Ebody in an environment
where the names I1 . . . In are bound, in order, to the n component values of Vtup , and the
meanings of all other names are determined by the lexical context in which the match-tuple
expression appears. Note that all the I1 . . . In should be distinct.

For example, consider the following HOFLAD abstraction:

(abs (amount entry)

(match-tuple (name student? tuition) entry

(if student?

(tuple name student? (+ tuition amount))

entry)))

This abstraction denotes a function that takes two arguments (1) an integer named amount

and (2) a tuple named entry with three component values: a string, a boolean, and an integer.
If the boolean is true, the function returns a similar tuple where the integer component has been
incremented by amount; otherwise the function returns the original tuple.

As another example, consider the HOFL program in Fig. 1, which defines and uses zip and
unzip as well as some other functions:

Variants
A variant data structure is a value that consists of an identifying tag and a single component

value. Variants are supported by many typed programming languages; they are used to model
situations in which the calculation performed on a value depends on the run-time type of the value.
Variants are often combined with records into a single data structure that has a tag and multiple
component values. Examples of this include Pascal’s variant records, SML and Haskell’s sum-of-
products datatypes, and Java’s objects (where the class of an object is its variant tag and the
instance variables are the record components). It is rarer to see pure variants; examples include C’s
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(program (n)

(bindrec ((down-from (abs (x)

(if (= x 0)

(empty)

(prepend x (down-from (- x 1))))))

(map (abs (f lst)

(if (empty? lst)

lst

(prepend (f (head lst))

(map f (tail lst))))))

(zip (abs (duple-of-lists)

(match-tuple (L1 L2) duple-of-lists

(if (scor (empty? L1) (empty? L2))

(empty)

(prepend (tuple (head L1) (head L2))

(zip (tuple (tail L1) (tail L2))))))))

(unzip

(abs (list-of-duples)

(if (empty? list-of-duples)

(tuple (empty) (empty))

(match-tuple (tl1 tl2) (unzip (tail list-of-duples))

(match-tuple (hd1 hd2) (head list-of-duples)

(tuple (prepend hd1 tl1)

(prepend hd2 tl2)))))))

)

(bind ints (down-from n)

(bind bools (map (abs (x) (= 0 (mod x 2))) ints)

(unzip (map (abs (tup)

(match-tuple (a b) tup

(if b (tuple a (* a a)) (tuple (- 0 a) a))))

(zip ints bools)))))))

Figure 1: A program illustrating tuples in the context of zip and unzip.
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union (which must be combined with C’s struct facility in order to create tags) and the oneof and
variant constructs of the CLU language. Tagged data is common in dynamically typed languages
like Scheme; see Sections 2.4 and 2.5 of SICP for a discussion.

Here we will consider pure variants and will make the single component of a variant a tuple
when we want a variant with multiple components. We will introduce variants into HOFLAD via
the following new kinds of expressions.

(variant tag E)
Creates a variant value whose tag is tag and whose component value is the value of E.

(tagcase Edisc (tag1 I1 Ebody1
) . . . (tagn In Ebodyn

))
Evaluates the discriminant expression Edisc to the value Vdisc , which should be a variant
value; otherwise tagcase signals an error. If the tag of Vdisc is the same as the tag tag i in the
ith tagcase clause, the tagcase returns the value of Ebody i

in a context where Ii is bound
to the component value of Vdisc and the meanings of all other names are determined by the
lexical context in which the tagcase expression appears. If the tag of Vdisc does not match
any tag i, then an error is signalled. Note that all the tag i should be distinct.

As an example of variants, consider a simple system for manipulating geometric figures like
squares, rectangles, and triangles. Each kind of figure is characterized by different information:

• a square has a side length;

• a rectangle has a width and height;

• a triangle has three side lengths (alternatively, it could be represented by combinations of
side lengths and angles).

Here is an example of a HOFLAD expression manipulating figures:

(bind perim

(abs (fig)

(tagcase fig

(sqr side (* 4 side))

(rect width*height

(match-tuple (width height) width*height

(* 2 (+ width height))))

(tri sides

(match-tuple (s1 s2 s3) sides

(+ s1 (+ s2 s3))))

))

(prepend (perim (variant rect (tuple 2 3)))

(prepend (perim (variant tri (tuple 4 1 6)))

(prepend (perim (variant sqr 5))

(empty)))))

The perim function uses a tagcase to discriminate on its figure argument and perform a perimeter
calculation that depends on the kind of figure.

As another example, here is a function that scales each dimension of a figure by a given scaling
factor sf.

5



(abs (sf fig)

(tagcase fig

(sqr side (variant sqr (* sf side)))

(rect width*height

(match-tuple (width height) width*height

(variant rect (tuple (* sf width) (* sf height)))))

(tri sides

(match-tuple (s1 s2 s3) sides

(variant tri (tuple (* sf s1) (* sf s2) (* sf s3)))))

))

Your Task
In the following parts, you will be extending the SML evaluator of HOFL that we studied in

class to the HOFLAD language that supports tuples and variants. The abstract syntax, parser,
and pretty-printers of HOFL have already been extended to support the tuple, match-tuple,
variant, and tagcase constructs of HOFLAD. See Appendix A for a summary of HOFLAD.

a. [10]: Tuples

Modify the eval function in ~/cs251/ps7/hoflad/Eval.sml to handle the the tuple and match-tuple
constructs. See the notes in Appendix A for details concerning the evaluator and environments.
Note in particular that all non-bindrec-bound values inserted into an environment must have
the NonRecVal tag; see Section A.2 for details.

To test your solution, first evaluate

use("loadProb2.sml");

and then evaluate

testProb2a();

You will need to reevaluate both of these expressions any time you make a change to Eval.sml.
Note that you are very likely to encounter numerous SML type checking errors when evaluating
first expression; you must fix these before you proceed. Be aware that it will typically take many
attempts to fix all the type errors!

b. [15]: Variants

Modify the HOFL evaluator in ~/cs251/ps7/hoflad/Eval.sml to evaluate the tuple and
match-tuple constructs. You can test these as in Part (a), except that you should evaluate
testProb2b() as your second expression.

c. [15]: Sum-of-products Data

As seen in the variant examples above, the proposed variant notation is rather clumsy. Typically,
a variant will have a tuple as a component, and the tuple and match-tuple constructs for
manipulating these are cumbersome. As noted above, many languages combine the notion of
variants and tuples into a single sum-of-product data type. Here will will do this by adding
the constructs data and datacase, whose syntax and meaning are introduced by the following
examples:
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(bind perim

(abs (fig)

(datacase fig

(sqr (side) (* 4 side))

(rect (width height)

(* 2 (+ width height)))

(tri (s1 s2 s3)

(+ s1 (+ s2 s3)))

))

(prepend (perim (data rect 2 3))

(prepend (perim (data tri 4 1 6))

(prepend (perim (data sqr 5))

(empty)))))

(abs (sf fig)

(datacase fig

(sqr (side) (data sqr (* sf side)))

(rect (width height)

(data rect (* sf width) (* sf height)))

(tri (s1 s2 s3)

(data tri (* sf s1) (* sf s2) (* sf s3)))

))

Here is a more formal specification of data and datacase:

(data tag E1 . . . En)
Creates a sum-of-products variant value whose tag is tag and whose component is a tuple
whose values are the value of E1 . . . En .

(datacase Edisc (tag1 (I(1 ,1) . . . I(1 ,k1 )) Ebody1
) . . . (tagn (I(n,1) . . . I(n,kn )) Ebodyn

))
Evaluates the discriminant expression Edisc to the value Vdisc, which should be a variant
value; otherwise datacase signals an error. If the tag of Vdisc is the same as the tag tag i in
the ith datacase clause, the datacase returns the value of Ebody i

in a context where I(i ,1)

. . . I(i ,ki ) are bound to the components of the tuple that is the component of the variant
value Vdisc , and the meanings of all other names are determined by the lexical context in
which the datacase expression appears. If the tag of Vdisc does not match any tag i, or if
the component of Vdisc is not a tuple, or if the number of names I(i ,1) . . . I(i ,ki ) does not
match the number of components in the tuple within Vdisc , then an error is signalled. Note
that all the tag i should be distinct, and for any i, all the I(i ,1) . . . I(i ,ki ) should be distinct.

It would be possible to add data and datacase to HOFLAD by extending the abstract syntax
type Exp. But a much easier way to achieve this result is to desugar data and datacase into appro-
priate variant and tuple commands. In this problem, you are to implement an appropriate desug-
aring for data and datacase by extending the desugaring section of ~/cs251/ps7/hoflad/Parser.
Before attempting this problem, you should (1) study the notes on HOFLAD parsing in Ap-
pendix A.3; (2) should study the parsers for tuple, match-tuple, variant, and tagcase in
~/cs251/ps7/hoflad/Parser; and (3) should study the desugarings for bind, bindseq, scand,
scor, and funrec in ~/cs251/ps7/hoflad/Parser.

As part of your desugaring for datacase, you will need to introduce a name for the tuple value
that is the component of a variant. Rather than using some sort of machinery for generating
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fresh names, you should instead choose an arbitrary name that begins with the character #;
because # is treated specially by the HOFLAD parser, such a name could not have been in the
original HOFLAD program, and so cannot accidentally capture any variables from the original
program. (You should convince yourself that one occurrence of the name you choose also cannot
accidentally capture another occurence of the same name!)

To test your solution, first evaluate

use("loadProb2.sml");

and then evaluate

testProb2c();
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Problem 3 [20]: Type Checking Tuples
In Problem 2, you extended the evaluator in the SML implementation of the dynamically typed

HOFL language to handle the tuple and match-tuple constructs. Here, you will extend the type
checker for the SML implementation of the statically typed, explicitly typed HOFLEMT language
to handle these two constructs. (It is also possible to extend HOFLEMT to handle variants, but
this involves some complexities we wish to avoid, and so we ignore variants in the explicitly typed
language.)

Extending the explicitly typed HOFLEMT with the tuple and match-tuple constructs yields
the HOFMAD language. To handle tuple values, the type system of HOFMAD must extend the
types of HOFLEMT with the following type:

(tupleof T1 . . . Tn)
Denotes the type of a tuple value whose n component values have the types T 1 . . . Tn.

As a simple example of manipulating tuples in HOFMAD, consider the program in Fig. 2,
which is an explicitly typed version of a similar example from Problem 2: The funcion f denotes a
function that takes two arguments (1) an integer named amount and (2) a tuple named entry with
three component values: a string, a boolean, and an integer. If the boolean is true, the function
returns a similar tuple where the integer component has been incremented by amount; otherwise
the function returns the original tuple.

(program (n)

(bind f (abs ((amount int) (entry (tupleof string bool int)))

(match-tuple (name student? tuition) entry

(if student?

(tuple name student? (+ tuition amount))

entry)))

(f 1 (f 20 (f 300 (tuple "Alyssa Hacker" true n))))))

Figure 2: A program illustrating HOFMAD tuples.

Note that, as usual in an explicitly typed language, the formal parameters of the function f are
annotated with explicit types. However, the names declared by match-tuple are not annotated
with any type information. Intuitively, this is because the types of these names can be deduced
from the type of the tuple expression being deconstructed. This is similar to the reason why the
names declared in HOFLEMT’s bindpar need not have explicit type annotations.

As another example, study the HOFMAD program in Fig. 3, which defines and uses versions
of zip, unzip, and map that manipulate tuples. Convince yourself that the program is well-typed.

Your Task

a. [5]: Typing Rules

Write down typing rules for tuple and match-tuple in the style of the typing rules in figure 4
of Handout #30.

b. [15]: Type Checking Implementation

In this part, you will extend the SML type checker for HOFLEMT from Handout #30 that
we studied in class to handle the tuple and match-tuple constructs of HOFMAD. An almost
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(program (n)

(bindrec ((down-from (-> (int) (listof int))

(abs ((x int))

(if (= x 0)

(empty int)

(prepend x (down-from (- x 1))))))

(map1 (-> ((-> (int) bool) (listof int)) (listof bool))

(abs ((f (-> (int) bool))

(lst (listof int)))

(if (empty? lst)

(empty bool)

(prepend (f (head lst))

(map1 f (tail lst))))))

(map2 (-> ((-> ((tupleof int bool)) (tupleof int int))

(listof (tupleof int bool)))

(listof (tupleof int int)))

(abs ((f (-> ((tupleof int bool)) (tupleof int int)))

(lst (listof (tupleof int bool))))

(if (empty? lst)

(empty (tupleof int int))

(prepend (f (head lst))

(map2 f (tail lst))))))

(zip (-> ((tupleof (listof int) (listof bool)))

(listof (tupleof int bool)))

(abs ((duple-of-lists (tupleof (listof int) (listof bool))))

(match-tuple (L1 L2) duple-of-lists

(if (scor (empty? L1) (empty? L2))

(empty (tupleof int bool))

(prepend (tuple (head L1) (head L2))

(zip (tuple (tail L1) (tail L2))))))))

(unzip (-> ((listof (tupleof int int)))

(tupleof (listof int) (listof int)))

(abs ((list-of-duples (listof (tupleof int int))))

(if (empty? list-of-duples)

(tuple (empty int) (empty int))

(match-tuple (tl1 tl2) (unzip (tail list-of-duples))

(match-tuple (hd1 hd2) (head list-of-duples)

(tuple (prepend hd1 tl1)

(prepend hd2 tl2)))))))

)

(bind ints (down-from n)

(bind bools (map1 (abs ((x int)) (= 0 (mod x 2))) ints)

(unzip (map2 (abs ((tup (tupleof int bool)))

(match-tuple (a b) tup

(if b (tuple a (* a a)) (tuple (- 0 a) a))))

(zip (tuple ints bools))))))))

Figure 3: A program illustrating HOFMAD tuples in the context of zip and unzip.
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complete implementation of HOFMAD can be found in ~/cs251/ps7/hoflmad. The abstract
syntax, types, values, parser, and pretty-printers of HOFMAD have already been extended to
support the tuple and match-tuple expressions as well as the tupleof type.

Modify the checkExp function in ~/cs251/ps7/hofmad/TypeCheck.sml to handle the the tuple
and match-tuple constructs. You should carefully study the existing clause of checkExp before
you write your new ones.

The following documentation in appendix B describes the resources you will need for this problem.

• The abstract syntax for HOFMAD expressions can be found in Fig. 13.

• The signature for HOFMAD types can be found in Fig. 14.

• The signature for the HOFMAD type checker can be found in Fig. 15.

• The signature for the type environments used by the type checker (Ident.Env) is given in
Figs. 11 and 12 in App. A. In the case of type checking, the binding type ’b is instantiated
to Type.Ty. The Ident.Env structure is abbreviated as TEnv in within the implementation
of the TypeCheck structure.

To test your solution, first evaluate

use("loadProb3.sml");

and then evaluate

testProb3();

You will need to reevaluate both of these expressions any time you make a change to TypeCheck.sml.
Note that you are very likely to encounter numerous SML type checking errors when evaluating
first expression; you must fix these before you proceed. Be aware that it will typically take many
attempts to fix all the type errors!

You’ll know that a test case succeeds if it concludes by printing OK!. Otherwise, an error message
will be displayed indicated why the test failed.
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Problem 4 [20]: Reconstructing Tuple Types
In this problem, you will extend the type reconstructer for HOFLIMT presented in Handout

#35 to handle the tuple and match-tuple constructs. Your extended type reconstructer should
be able to transform the implicitly typed HOFLAD programs in Figs. 4 and 5 to the corresponding
explicitly typed programs in Figs. 2 and 3.

Modify the reconExp function in ~/cs251/ps7/hofmad/Recon.sml to handle the the tuple

and match-tuple constructs. You should carefully study the existing reconExp clauses before you
write your new ones.

The following documentation in the appendices describes the resources you will need for this
problem.

• The abstract syntax for implicitly typed HOFLAD expressions can be found in Fig. 6 in
appendix A. This syntax is contained in the Hoflad.AST structure, which is abbreviated I

(for “implicit”) in Recon.sml.

• The abstract syntax for explicitly typed HOFMAD expressions can be found in Fig. 13 in
appendix B. This syntax is contained in the AST structure, which is abbreviated E (for
“explicit”) in Recon.sml.

• The signature for HOFMAD types can be found in Fig. 14 in appendix B.

• The signature for the HOFMAD type subsitutions can be found in Fig. 16 in appendix B.
Note that the Subst structure with this signature has already been extended to correctly
handle the tuple and match-tuple expressions as well as the tupleof type.

• The signature for the HOFMAD type reconstructer can be found in Fig. 17 in Fig. 14 in
appendix B.

• The signature for the type environments used by the type reconstructer (Ident.Env) is given
in Figs. 11 and 12 in App. A. In the case of type reconstruction, the binding type ’b is
instantiated to Type.Ty. The Ident.Env structure is abbreviated as TEnv in within the
implementation of the Recon structure.

To test your solution, first evaluate

use("loadProb4.sml");

and then evaluate

testProb4();

You will need to reevaluate both of these expressions any time you make a change to Recon.sml.
You’ll know that a test case succeeds if it concludes by printing OK!. Otherwise, an error

message will be displayed indicated why the test failed.
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(program (n)

(bind f (abs (amount entry)

(match-tuple (name student? tuition) entry

(if student?

(tuple name student? (+ tuition amount))

entry)))

(f 1 (f 20 (f 300 (tuple "Alyssa Hacker" true n))))))

Figure 4: An implicitly typed version of the program in Fig. 2.

(program (n)

(bindrec ((down-from (abs (x)

(if (= x 0)

(empty)

(prepend x (down-from (- x 1))))))

(map1 (abs (f lst)

(if (empty? lst)

(empty)

(prepend (f (head lst))

(map1 f (tail lst))))))

(map2 (abs (f lst)

(if (empty? lst)

(empty)

(prepend (f (head lst))

(map2 f (tail lst))))))

(zip (abs (duple-of-lists)

(match-tuple (L1 L2) duple-of-lists

(if (scor (empty? L1) (empty? L2))

(empty)

(prepend (tuple (head L1) (head L2))

(zip (tuple (tail L1) (tail L2))))))))

(unzip

(abs (list-of-duples)

(if (empty? list-of-duples)

(tuple (empty) (empty))

(match-tuple (tl1 tl2) (unzip (tail list-of-duples))

(match-tuple (hd1 hd2) (head list-of-duples)

(tuple (prepend hd1 tl1)

(prepend hd2 tl2)))))))

)

(bind ints (down-from n)

(bind bools (map1 (abs (x) (= 0 (mod x 2))) ints)

(unzip (map2 (abs (tup)

(match-tuple (a b) tup

(if b (tuple a (* a a)) (tuple (- 0 a) a))))

(zip (tuple ints bools))))))))

Figure 5: An implicitly typed version of the program in Fig. 3.
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A HOFLAD

A.1 Abstract Syntax

The abstract syntax, parser, and pretty-printers of HOFL have been extended to support the
tuple, match-tuple, variant, and tagcase constructs of HOFLAD.

Fig. 6 presents the abstract syntax of HOFLAD. The first seven constructors have been inher-
ited from HOFL; the last four constructors are new in HOFLAD.

and Exp =

Lit of Literal

| VarRef of Id

| Abs of Id list * Exp (* formals, body *)

| FunApp of Exp * Exp list (* rator, rands *)

| PrimApp of Primitive.Primop * Exp list (* rator, rands *)

| If of Exp * Exp * Exp (* test, then, else *)

| BindRec of Id list * Exp list * Exp (* names, defns, body *)

(* new in HOFLAD *)

| Tuple of Exp list (* tuple components *)

| MatchTuple of Id list * Exp * Exp (* names, tuple, body *)

| Variant of Tag * Exp (* tag, component *)

| TagCase of Exp * (Tag * Id * Exp) list (* discriminant, clauses *)

Figure 6: The abstract syntax of HOFLAD expressions.

The HOFLAD syntax uses the types Id and Tag, which are from the Ident and Tag structures,
respectively. The signatures for these structures are almost identical, and are given in Figs. 7 and 8.

signature IDENT = sig

type Id (* abstract type of identifiers *)

val toString : Id -> string (* returns string for given identifier *)

val fromString : string -> Id (* returns identifier for given string *)

val compare : Id * Id -> order (* compare two identifiers *)

val equal : Id * Id -> bool (* test equality of two identifiers *)

structure Env : ENV (* environment whose keys are identifiers *)

sharing type Env.key = Id

end

Figure 7: Signature for HOFLAD identifiers.

signature TAG = sig

type Tag (* abstract type of tags *)

val toString : Tag -> string (* returns string for given tag *)

val fromString : string -> Tag (* returns tag for given string *)

val compare : Tag * Tag -> order (* compare two tags *)

val equal : Tag * Tag -> bool (* test equality of two tags *)

structure Env : ENV (* environment whose keys are tags *)

sharing type Env.key = Tag

end

Figure 8: Signature for HOFLAD tags.
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A.2 Evaluation

The datatype Val of HOFL values has been extended in HOFLAD to support tuple and variant
values; see Fig. 9. The signature for HOFLAD evaluation appears in Fig. 10 and the signature
for environments appears in Figs. 11 and 12; these are the same as in HOFL. In the case of
evaluation, environments map keys of type Ident.Id (which you can think of as a synonym for
string) to values of type EvalValue (i.e., the type to which ’b is instantiated in the environment
signature). As in HOFL, the EvalValue type is the type of values stored in the environment of the
evaluator. The RecVal constructor of EvalValue is used to implement the “knot-tying” aspect of
bindrec. Environment bindings not introduced by bindrec need to be tagged with the NonRecVal
constructor.

signature VALUE = sig

datatype Val =

UnitVal

| IntVal of int

| BoolVal of bool

| SymVal of string

| StringVal of string

| ListVal of Val list

| ClosureVal of Ident.Id list * AST.Exp * EvalValue Ident.Env.env

(* new in HOFLAD *)

| TupleVal of Val list

| VariantVal of Tag.Tag * Val

(* It would be nicer to have EvalValue hidden within Eval,

but ML’s types and restrictions on non-recursive modules

require us to put it here. An alternative would be to

define IdentEnv in a way that it did not require us

to specify the type of the values bound in the environment. *)

and EvalValue =

NonRecVal of Val

| RecVal of Val option ref (* use SML’s mutable reference cells

to "tie the knot" of recursion *)

val equal : (Val * Val) -> bool

(* test value equality *)

val toString : Val -> string

(* return a string representation of a value *)

end

Figure 9: Signature for HOFLAD values.
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signature EVAL = sig

val run : AST.Program -> int list -> Value.Val

(* Returns the result of running the given program on the given list

of arguments *)

val eval : AST.Exp -> Value.EvalValue Ident.Env.env -> Value.Val

(* Returns the result of evaluating the given expression in the

given environment *)

val runString’ : string -> int list -> Value.Val

(* Returns the result of running the program that is the result of

parsing the given string on the given argument list. *)

val runString : string -> int list -> Value.Val

(* Like runString’, but runs the program in the context of a standard

error handler. This is the version that should be called from

top-level. *)

val runFile’ : string -> int list -> Value.Val

(* Returns the result of running the program that is the contents of

the file with the given name on the given argument list. *)

val runFile : string -> int list -> Value.Val

(* Like runString’, but runs the program in the context of a standard

error handler. This is the version that should be called from

top-level. *)

val withStandardHandler : (exn -> ’a) -> (unit -> ’a) -> ’a

(* Wraps the thunk (second argument) in a standard exception handler

for TypeCheckError. The first argument allows reraising the exception

or throwing it away (when ’a is unit) *)

end

Figure 10: Signature for HOFLAD evaluator.
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signature IDENT_ENV = sig

type key = Ident.Id

type ’b env

(* Type of env that maps identifier keys to values of type ’b *)

val empty : ’b env

(* empty denotes an empty env *)

val bind : (Ident.Id * ’b * ’b env) -> ’b env

(* bind(key,value,tbl) returns a new env that includes the

binding key->value in addition to all bindings of tbl.

Any existing binding for key in tbl is shadowed by key->value. *)

val extend : (Ident.Id list * ’b list * ’b env) -> ’b env

(* extend(keys,values,tbl) returns a new env that includes

corresponding bindings between keys and values in addition to

all bindings of tbl. Any existing binding for keys in tbl

are shadowed by the new bindings. *)

val lookup : (Ident.Id * ’b env) -> ’b option

(* lookup(key,tbl) returns SOME(value) if tbl contains the binding

key->value. If there is no binding for key, lookup returns NONE. *)

val unbind : (Ident.Id * ’b env) -> ’b env

(* unbind(key,tbl) returns a new env that includes all

bindings of tbl except for a binding for key. *)

val remove : (Ident.Id list * ’b env) -> ’b env

(* unbind(keys,tbl) returns a new env that includes all

bindings of tbl except for bindings for keys. *)

val bindingsToEnv : (Ident.Id * ’b) list -> ’b env

(* bindingsToEnv(keyValuePairs) returns a env whose bindings consist

of all the bindings specified by the list of pairs keyValuePairs. *)

val keys : ’b env -> Ident.Id list

(* keys(tbl) returns a list of all keys for bindings in tbl.

Each key is mentioned only once. *)

val values : ’b env -> ’b list

(* values(tbl) returns a list of all values for bindings in tbl.

The values are in the same order as the keys returned by

keys(tbl). Because the same value may be bound to more than

one key, the result may contain duplicates. *)

Figure 11: Environment signature, part 1.
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val map : (’a -> ’b) -> ’a env -> ’b env

(* (map f env) returns an environment of bindings {k -> f(v) |

(k -> v)} is a binding in env. *)

val mapi : ((key * ’a) -> ’b) -> ’a env -> ’b env

(* (map f env) returns an environment of bindings {k -> f(k,v) |

(k -> v)} is a binding in env. *)

val foldr : ((’a * ’b) -> ’b) -> ’b -> ’a env -> ’b

(* (foldr f z env) returns the result of folding f from right-to-left

starting with z over the values of env (ordered by key). *)

val foldri : ((key * ’a * ’b) -> ’b) -> ’b -> ’a env -> ’b

(* Like foldr, but f takes the key as well as the value and answer *)

val foldl : ((’a * ’b) -> ’b) -> ’b -> ’a env -> ’b

(* Like foldr, but accumulates values left-to-right *)

val foldli : ((key* ’a * ’b) -> ’b) -> ’b -> ’a env -> ’b

(* Like foldl, but f takes the key as well as the value and answer *)

end

Figure 12: Environment signature, part 2.
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A.3 Parsing

A parser is a function that translates a character-based representation of a program into an abstract
syntax tree. The HOFLAD parser has a two phase structure:

1. In the first phase, the HOFLAD parser translates a character-based representation of a
HOFLAD program into a tree for the symbolic expression datatype Sexpr. The Sexpr

datatype models the tree structure of Scheme’s parenthesized s-expressions:

datatype Sexpr =

Intx of int

| Boolx of bool

| Charx of char

| Realx of real

| Symx of string

| Stringx of string

| Listx of Sexpr list

There is one constructor for each kind of leaf (integer, boolean, character, real, symbol, and
string) and a constructor for lists of s-expressions (which are denoted by paired parentheses
in Scheme). Each constructor name ends with an x to emphasize that it is a constructor for
s-eXpressions. For example, the HOFLAD program

(program (a b)

(if (< a (* 2 b)) "foo" "bar"))

would be parsed as the following Sexpr tree:

Listx [Symx("program"),

Listx [Symx("a"), Symx("b")],

Listx [Symx("if"),

Listx [Symx("<"),

Symx("a"),

Listx [Symx("*"), Intx(2), Symx("b")]

],

Stringx("foo"),

Stringx("bar")

]

]

2. In the second phase, the HOFLAD parser translates the Sexpr tree into aHOFLAD abstract
syntax tree. The HOFLAD AST for the above sample program is:

Prog([Ident.fromString("a"), Ident.fromString("b")],

If(PrimApp(LT,

VarRef(Ident.fromString("a")),

PrimApp(Mul,

Lit(IntLit(2)),

VarRef(Ident.fromString("b")))),

Lit(StringLit("foo")),

Lit(StringLit("bar"))))
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Using a two-phase parser allows the Sexpr parser to be shared with other languages. In fact, HOFL

and HOFLEMT use the very same Sexpr parser as HOFLAD.
Expression parsing is accomplished via the toExp function in the file ~/cs251/ps7/hoflad/Parser.

For instance, here are the clauses responsible for parsing an Sexpr into an HOFLAD abs or if
expression:

(* parse abstraction *)

| toExp (Listx([Symx "abs", Listx(formalsx), bodyx])) =

Abs(map (fn (Symx(fml)) => Ident.fromString(fml)

| s => parseErr ("toExp: improper abs formal",s))

formalsx,

toExp bodyx)

| toExp (x as (Listx((Symx "abs") :: _))) =

parseErr ("toExp: Ill-formed abstraction", x)

(* parse conditional *)

| toExp (Listx[(Symx "if"), x1, x2, x3]) =

If(toExp(x1), toExp(x2), toExp(x3))

| toExp (x as (Listx((Symx "if") :: _))) =

parseErr ("toExp: Ill-formed if", x)

The second clause of each pair of clauses treats as an error any s-expression beginning with the
keyword (i.e., abs or if) that does not have the expected structure.

The toExp function also performs desugaring. For example, the desugaring of scand is imple-
mented by the following clauses:

(* desugar scand *)

| toExp (Listx([Symx("scand"),x1,x2])) =

If(toExp x1, toExp x2, Lit(BoolLit(false)))

| toExp (x as (Listx((Symx("scand")) :: _))) =

parseErr ("toExp: Ill-formed scand ", x)
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B HOFMAD Documentation

This section documents the HOFMAD language. In particular:

• Fig. 13 gives the abstract syntax for HOFMAD, which is the same as that for HOFLAD

except for the removal of the Variant and TagCase constructors.

• Fig. 14 gives the types for HOFMAD, which extends the types of of HOFLEMT with the
TupleTy constructor.

• Fig. 15 gives the signature for the HOFMAD type checker.

• Fig. 16 gives the signature for type substitutions in HOFMAD.

• Fig. 17 gives the signature for the HOFMAD type reconstructor.

structure AST = struct

type Id = Ident.Id (* local abbreviation *)

datatype Exp =

Lit of Literal.Lit

| VarRef of Id

| PrimApp of Primitive.Primop * Exp list (* rator, rands *)

| PrimEmpty of Type.Ty (* special exp for typed empty list *)

| If of Exp * Exp * Exp (* test, then, else *)

| Abs of Id list * Type.Ty list * Exp (* formals, formalTypes, body *)

| FunApp of Exp * Exp list (* names, defns, body *)

| BindPar of Id list * Exp list * Exp (* names, defns, body *)

| BindRec of Id list * Type.Ty list

* Exp list * Exp (* names, types, defns, body *)

(* new in HOFMAD *)

| Tuple of Exp list (* tuple components *)

| MatchTuple of Id list * Exp * Exp (* names, tuple, body *)

datatype Program = Prog of Id list * Exp (* formals, body *)

end

Figure 13: Structure specifying abstract syntax trees for the explicitly typed HOFMAD language.
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signature TYPE = sig

datatype Ty =

UnitTy | IntTy | BoolTy | SymTy | StringTy (* base types *)

| ListTy of Ty (* component type *)

| ArrowTy of Ty list * Ty (* arg types, result type *)

(* New for HOFMAD *)

| TupleTy of Ty list (* tuple types *)

| TyVar of TypeVar.TVar (* type variables *)

val equal : Ty * Ty -> bool (* are two types equal? *)

val toSexpr : Ty -> Sexpr.Sexpr (* S-expression representation of type *)

val toString : Ty -> string (* string representation of type *)

val TVs : Ty -> TypeVar.Set.set (* set of all type variables appearing in type *)

val TVsList : Ty list -> TypeVar.Set.set

(* Set of all type variables appearing in a list of types. *)

end

Figure 14: Signature for the HOFMAD types.
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signature TYPE_CHECK = sig

exception TypeCheckError of string

(* Exception raised when type checking error encountered *)

val checkProg : AST.Program -> Type.Ty

(* Returns the type of a well-typed program. Raises TypeCheckError

if the program is not well-typed. *)

val checkExp : AST.Exp -> Type.Ty Ident.Env.env -> Type.Ty

(* Returns the type of a well-typed expression relative to the

given type environment. Raises TypeCheckError if the expression

is not well-typed relative to the type environment *)

val checkString’ : string -> Type.Ty

(* Returns the type of the program parsed from the input string.

Raises TypeCheckError if the program is not well-typed. *)

val checkString : string -> Type.Ty

(* Like checkString’, but converts all TypeCheckError exceptions to

Fail exceptions. This is the better function to call from top-level. *)

val checkFile’ : string -> Type.Ty

(* Returns the type of the program parsed from file with the given name.

Raises TypeCheckError if the program is not well-typed. *)

val checkFile : string -> Type.Ty

(* Like checkFile’, but converts all TypeCheckError exceptions to

Fail exceptions. This is the better function to call from top-level. *)

val withStandardHandler : (exn -> ’a) -> (unit -> ’a) -> ’a

(* Wraps the thunk (second argument) in a standard exception handler

for TypeCheckError. The first argument allows reraising exception

or throwing it away (when ’a is unit) *)

end

Figure 15: Signature for the HOFMAD type checker.
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signature SUBST =

sig

type subst

exception UnifyError of string

val empty: subst

val unify : (Type.Ty * Type.Ty) -> subst

val unifyList : (Type.Ty list * Type.Ty list) -> subst

val union : (subst * subst) -> subst

val unionList : subst list -> subst

val subTy : subst -> Type.Ty -> Type.Ty

val subTys : subst -> Type.Ty list -> Type.Ty list

(* The ASTs here are HOFMAD (not HOFLAD) ASTs *)

val subExp : subst -> AST.Exp -> AST.Exp

val subExps : subst -> AST.Exp list -> AST.Exp list

val toString : subst -> string

end

Figure 16: Signature for type substitutions in HOFMAD. More details on these functions can be
found in Handout #35.
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signature RECON = sig

val reconProg: Hoflad.AST.Program -> AST.Program

(* Returns an explicitly typed (HOFMAD) program that is

a well-typed type-annotated version of the given

untyped (HOFLAD) program. Raises ReconError if

no such well-typed program exists. *)

val reconExp: Hoflad.AST.Exp -> Type.Ty Ident.Env.env

-> (AST.Exp * Type.Ty * Subst.subst)

(* Returns an explicitly typed (HOFMAD) expression that is

a well-typed type-annotated version of the given

untyped (HOFLAD) expression in the given type environment.

Raises ReconError if no such well-typed expression exists. *)

val reconString’ : string -> AST.Program

(* Returns the explicitly typed program that is the reconstructed

version of the implicitly typed program in the given string *)

val reconString : string -> AST.Program

(* Like reconString’, but converts all UnifyError and ReconError exceptions to

Fail exceptions. This is the better function to call from top-level. *)

val reconFile’ : string -> AST.Program

(* Returns the explicitly typed program that is the reconstructed

version of the implicitly typed program in the given filename *)

val reconFile : string -> AST.Program

(* Like reconFile’, but converts all UnifyError and ReconError exceptions to

Fail exceptions. This is the better function to call from top-level. *)

val withStandardHandler : (exn -> ’a) -> (unit -> ’a) -> ’a

(* Wraps the thunk (second argument) in a standard exception handler

for ReconError and UnifyError. The first argument allows reraising exception

or throwing it away (when ’a is unit) *)

exception ReconError of string

end

Figure 17: Signature for the HOFMAD type reconstructer.
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