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Call-by-Value Recursion

This handout discusses a number of subtle issues surrounding the meaning and implementation
of a recursive binding construct like bindrec in a call-by-value language.

1 The Scope of bindrec

HOFL’s bindrec construct allows creating mutually recursive structures. For example, here is the
classic even?/odd? mutual recursion example expressed in HOFL:

(program (n)

(bindrec ((even? (abs (x)

(if (= x 0)

true

(odd? (- x 1)))))

(odd? (abs (y)

(if (= y 0)

false

(even? (- y 1)))))

)

(prepend (even? n)

(prepend (odd? n)

(empty)))))

The scope of the names bound by bindrec (even? and odd? in this case) includes not only
the body of the bindrec expression, but also the definition expressions bound to the names. This
distinguishes bindrec from bindpar, where the scope of the names would include the body, but
not the definitions.
The difference between the scoping of bindrec and bindpar can be seen in the two contour

diagrams in Fig. 1. In the bindrec expresion, the reference occurrence of odd? within the even?
abstraction has the binding name odd? as its binding occurrence; the case is similar for even?.
However, when bindrec is changed to bindpar in this program, the names odd? and even? within
the definitions become unbound variables. If bindrec were changed to bindseq, the occurrence of
even? in the second binding would reference the declaration of even? in the first, but the occurrence
of odd? in the first binding would still be unbound.
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(program (n)

  

  (bindrec ((even? (abs (x)

                     (if (= x 0)

                         #t

                         (odd? (- x 1)))))

            

            (odd?  (abs (y)

                     (if (= y 0)

                         #f

                         (even? (- y 1)))))

            

            )

     (prepend (even? n) 

              (prepend (odd? n)

                       (empty))))

 )
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(program (n)

  

  (bindpar ((even? (abs (x)

                     (if (= x 0)

                         #t

                         (odd? (- x 1)))))

            

            (odd?  (abs (y)

                     (if (= y 0)

                         #f

                         (even? (- y 1)))))

            

            )

     (prepend (even? n) 

              (prepend (odd? n)

                       (empty))))

 )
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Figure 1: Contour diagrams illustrating the scoping of bindrec and bindpar.
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2 Evaluating bindrec

How is bindrec handled in the environment model? We do it in three stages:

1. Create an empty environment frame that will contain the recursive bindings, and set its
parent pointer to be the environment in which the bindrec expression is evaluated.

2. Evaluate each of the definition expressions with respect to the empty environment. If eval-
uating any of the definition expressions requires the value of one of the recursively bound
variables, the evaluation process is said to encounter a black hole and the bindrec is con-
sidered ill-defined.

3. Populate the new frame with bindings between the binding names and the values computed
in step 2. Adding the bindings effectively “ties the knot” of recursion by making cycles in
the graph structure of the environment diagram.

The result of this process for the even?/odd? example is shown below, where it is assumed
that the program was called on the input 5. The body of the program would be evaluated in
environment ENV 1 constructed by the bindrec expression. Since the environment frames for
containing x and y would all have ENV 1 as their parent pointer, the references to odd? and even?

in these environments would be well-defined.

n




5




even?




odd? 




(abs (x) ... odd? ...)




(abs (y) ... even? ...)




ENV0




ENV1




In order for bindrec to be meaningful, the definition expressions cannot require immediate
evaluation of the bindrec-bound variables (else a black hole would be encountered). For example,
the following bindrec example clearly doesn’t work because in the process of determining the value
of x, we’re asking to use the value x before we’ve determined it.

(bindrec ((x (+ x 1)))

(* x 2))

In contrast, in the even?/odd? example we are not asking for the values of even? and odd? in
the process of evaluating the definitions. Rather the definitions are abstractions that will refer to
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even? and odd? at a later time, when they are invoked. Abstractions serve as a sort of delaying
mechanism that make the recursive bindings sensible.
As a more subtle example of a meaningless bindrec, consider the following

(bindrec ((a (prepend 1 b))

(b (prepend 2 a)))

b)

Unlike the above case, here we can imagine that the definition might mean something sensible.
Indeed in so-called call-by-need (a.k.a lazy) languages (such as Haskell), the above definitions are
very sensible, and stand for the following list structure:

a




b




1




2




However, call-by-value (a.k.a. strict or eager) languages (such as HOFL, Scheme, ML, Java, C, etc)
require that all definitions be completely evaluated to values before they can be bound to a name
or inserted in a data structure. In this class of languages, the attempt to evaluate (prepend 1 b)

fails because the value of b cannot be determined.
Nevertheless, by using the delaying power of abstractions, we can get something close to the

above cyclic structure in HOFL. In the following program, the references to the recursive bindings
one-two and two-one are “protected” within abstractions of zero variables (which are known as
thunks).

(program (n)

(bindrec ((one-two (pair 1 (abs () two-one)))

(two-one (pair 2 (abs () one-two)))

(prefix (abs (num stream)

(if (= num 0)

(empty)

(prepend (fst stream)

(prefix (- num 1)

((snd stream)))))))

)

(prefix n one-two)))

Any attempt to use the delayed variables requires applying the thunks to zero arguments (as in the
expression ((snd stream)) within the prefix function). When the above program is applied to
the input 5, the result is the list (1 2 1 2 1).
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3 Implementing bindrec

Implementing the “knot-tying” aspect of the recursive bindings of bindrec within the env-eval
function of the statically scoped HOFL interpreter is rather tricky. We will consider a sequence of
incorrect definitions for the bindrec clause on the path to developing some correct ones.
Here is a first attempt:

;; Broken Attempt 1

((bindrec? exp)

(env-eval

(bindrec-body exp)

(env-extend

(bindrec-names exp)

(map (lambda (defn)

(env-eval defn ???))

(bindrec-defns exp))

env)))

There is a problem here: what should the environment ??? be? It shouldn’t be env but the new
environment that results from extending env with the recursive bindings. But the new environment
has no name in the above clause.
A second attempt uses Scheme’s let to name the result of env-extend:

;; Broken Attempt 2

((bindrec? exp)

(env-eval

(bindrec-body exp)

(let ((new-env (env-extend

(bindrec-names exp)

(map (lambda (defn)

(env-eval defn new-env))

(bindrec-defns exp))

env)))

new-env)))

This attempt fails because, by the scoping rules of let, new-env is an unbound variable in
(env-extend ...).
A third attempt replaces let with letrec:

;; Broken Attempt 3

((bindrec? exp)

(env-eval

(bindrec-body exp)

(letrec ((new-env (env-extend

(bindrec-names exp)

(map (lambda (defn)

(env-eval defn new-env))

(bindrec-defns exp))

env)))

new-env)))
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The above clause attempts to use the knot-tying ability of Scheme’s own recursive binding con-
struct, letrec, to implement HOFL’s recursive binding construct. Now the new-env within
(env-extend ...) is indeed correctly scoped. Unfortunately, there is still a problem: because
Scheme is a call-by-value language, we come face to face with the same sort of problem encoun-
tered in the recursive list example from above. That is, occurrence of env-eval within the map
invocation requires that all its arguments be values before it is invoked. But its new-env argument
is defined to be the result of a computation that depends on the result returned by this occurrence
of env-eval. This leads to an irresolvable set of constraints: env-eval must return before it can
be invoked!
We can fix the problem in the same way we fixed the recursive list problem: by using thunks

to delay evaluation of the recursive bound variable. In particular, rather than storing the result of
evaluating the definition in the environment, we can store in the environment a thunk for evaluating
the definition:

;; Working Attempt 4

((bindrec? exp)

(env-eval

(bindrec-body exp)

(letrec ((new-env (env-extend

(bindrec-names exp)

(map (lambda (defn)

(lambda () ;; Introduce a thunk!

(env-eval defn new-env)))

(bindrec-defns exp))

env)))

new-env)))

Now the bindrec clause is sensible, but we are not done. We have changed what names are
bound to in the environment! Before, all names were bound to HOFL values. Now, at least some
names are bound to thunks that return HOFL values when they are “dethunked” - i.e., applied to
zero arguments to retrieve their values.
There are two ways to proceed at this point:

1. Use thunks everywhere. We can modify env-eval to ensure (1) that all entities stored in
the environments used by env-eval are thunks and (2) that whenever a name lookup is
performed, the resulting thunk should be dethunked. This makes sense if you think in terms
of types (which will be our next major topic of study in the course). Point (1) says that the
type of environments is changing from (variable → value) to (variable → (unit → value)),
where unit is the type of one element. Point (2) says that since the result of an environment
lookup is now of type (unit → value) , it must be applied to zero arguments in order to get
a value.

A drawback of this approach is that it is a global change that affects many other parts of the
evaluator. It requires:

• changing env-run to “thunkify” (i.e., wrap in a thunk) the integer arguments of the
program.

• changing funapply to thunkify the results of evaluating the argument expressions.1

1Thunkifying the evaluation of the argument expressions rather than the results of the evaluation would lead to

call-by-name semantics, not call-by-value semantics.
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• changing the varref clause of env-eval to dethunk the thunk returned by a name
lookup.

2. Use thunks only for bindrec. A more modular way to handle the thunks introduced into the
environment by bindrec is to allow environments to associate names with either (1) a HOFL

value or (2) a thunk that produces a HOFL value when dethunked. In this approach, the
only additional modification we need to make to env-eval is in the varref clause:

((varref? exp)

(let ((probe (env-lookup (varref-name exp) env)))

(cond ((unbound? probe)

(throw ’unbound-variable (varref-name exp)))

((procedure? probe)

(probe)) ; *** Dethunk thunks introduced by BINDREC.

(else probe)))) ; *** No dethunking necessary for HOFL values

Here, we use the Scheme predicate procedure? distinguish thunks (for which procedure?

returns true) and HOFL values (for which procedure? returns false).

The changes in the second approach fine, but they are inefficient. In particular, the dethunking
process ends up re-evaluating a recursive definition expression every time it is looked up in the
environment.
It turns out that Scheme has a more efficient mechanism for delaying computations than thunks.

The construct (delay E) delays the expression of E by returning a promise; if Eprom is an expres-
sion denoting a promise, its delayed computation can be forced via the application (force Eprom).
The promise “remembers” the value of its computation, so an attempt to force a promise the second
time performs no computation but returns the previously computed value.
By replacing all instance of thunks and dethunking by delay and force in the code presented

above, a more efficient implementation of recursive binding can be achieved. The highlights are
shown in Figure 2.
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(define env-eval

(lambda (exp env)

(cond
...

((varref? exp)

(let ((probe (env-lookup (varref-name exp) env)))

(cond ((unbound? probe)

(throw ’unbound-variable (varref-name exp)))

((promise? probe)

(force probe)) ; *** Force promises introduced by BINDREC.

(else probe)))) ; *** No force necessary on non-promises
...

((bindrec? exp)

(env-eval

(bindrec-body exp)

(letrec ((new-env (env-extend

(bindrec-names exp)

(map (lambda (defn)

; *** Evaluation of defns must be delayed

(delay (env-eval defn new-env)))

(bindrec-defns exp))

env)))

new-env)))
...

)))

Figure 2: Implementing bindrec with delay and force.
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