
CS251 Programming Languages Handout # 32

Prof. Lyn Turbak March 28, 2002

Wellesley College

SML Exercises

This handout contains some simple exercises to familiarize you with using and programming in
SML.

1 Preliminaries

Here are the steps you need to follow to use SML:

1. In a shell in the ~/cs251 directory, perform a cvs update -d to grab all relevant files.

2. Launch Emacs start SMLNJ within Emacs by typing M-x sml Enter.

3. Go to the SMLNJ interpreter buffer via C-x b *sml* Enter.

4. In Emacs, change the default directory used by sml by typing M-x sml-cd Enter dir ,
where dir is the name of the directory you wish to be the default directory for finding SML
files. For this exercise, you dir to be ~/cs251/sml/test.

2 The HOFL evaluator

Follow the steps below to use the SML implementation of the HOFL evaluator:

1. To install the HOFL evaluator, compile and load the SML implementation of the HOFL
evaluator by evaluating the following use command in the SML interpreter:

use("loadHoflEval.sml");

Executing the above expressions will cause many lines of text to appear on the screen. Al-
though some of the lines seem to indicate some sort of error, you can ignore these. Here’s an
example of something you can safely ignore:

[checking ../sml/hoflemt/CM/x86-unix/Pretty.cm.stable ... not usable]

You know that everything has compiled OK if the lines of text generated after use ends with
the following:

val it = () : unit

2. Try evaluating a simple HOFL program using Eval.runString, as shown below:

Eval.runString "(program (a b) (div (+ a b) 2))" [3,5];

3. For larger programs, it is more convenient to write them in a file, and use Eval.runFile

to evaluate them. Write a simple HOFL program named hofl-test.hfl in the directory
~/cs251/sml/test, and evaluate it as follows:

1



Eval.runFile "hofl-test.hfl" args;

where args is an appropriate argument list for your program.

3 The HOFLEMT Type Checker

Follow the steps below to use the SML implementation of the HOFLEMT type checker:

1. To install the HOFLEMT type checker, evaluate the following in the SML interpreter:

use("loadHoflemtTypeCheck.sml");

2. Try type checking a simple HOFLEMT program using TypeCheck.checkString, as shown
below:

TypeCheck.checkString "(program (x) (+ x 1))";

TypeCheck.checkString "(program (x) (if x 1 2))";

The second example should give a type checking error because x (assumed to be an integer
since it’s a program parameter) is used as the boolean test expression in an if.

3. For larger programs, it is more convenient to write them in a file, and use Eval.checkFile

to evaluate them. Write a simple HOFLEMT program named hoflemt-test.hem in the
directory ~/cs251/sml/test, and type check it as follows:

TypeCheck.checkFile "hoflemt-test.hem";

4 Writing and Compiling SML code

1. Create a file named ~/cs251/sml/test/insert.sml that contains a structure named Ins

containing a single component: a function named insert. Your file should have the following
format, where you need to fill in the ellipses:

structure Ins =

struct

fun insert ...

end

The insert function should take two arguments (curried): (1) an integer and (2) a list of
integers. Assume the second argument is sorted from low to high. The insert function
should insert the first argument into the correct position within the sorted list and return the
new list.

2



2. Create a configuration file named ~/cs251/sml/test/insert.cm that contains the following
lines:

Group is

insert.sml

3. Compile your insert function by executing the following:

CM.make’("insert.cm");

Fix any errors that are reported by the SML type checker.

4. Test your insert function in the SML interpreter on appropriate arguments. For instance,
the following invocation:

Ins.insert 3 [1,2,4,5];

should yield the list result [1,2,3,4,5].

5. Create a file named ~/cs251/sml/test/sort.sml that contains a structure named Isort

with a single component: a function named sort. Your file should have the following form:

structure Isort =

struct

fun sort ...

end

The sort function should take a list of integers and return a sorted list of integers. You
should use the “insertion sort” algorithm for sorting, which uses your insert function from
above to insert individual elements into sorted lists. To reference the insertion function from
the Ins structure, you should use the fully qualified named Ins.insert.

6. Create a configuration file named ~/cs251/sml/test/sort.cm that contains the following
lines:

Group is

sort.sml

insert.cm

7. Compile your insert function by executing the following:

CM.make’("sort.cm");

Fix any errors that are reported by the SML type checker.

3



8. Test your sort function in the SML interpreter on appropriate arguments. For instance,
evaluating

Isort.sort [4,2,1,5,3];

should yield the resulting list [1,2,3,4,5].

4


