
CS251 Programming Languages Handout # 35

Prof. Lyn Turbak April 2, 2002

Wellesley College

Type Reconstruction

Note: The presentation of the unification and type reconstruction algorithms in this handout
is simpler than the presentation in class and supersedes the class presentation. In particular,
important changes include:

1 Introduction

In the typed toy languages that we’ve studied so far (HOFLEMT and HOFLEPT), it is necessary
to specify explicit type information in certain situations. For example, in HOFLEMT:

• All formal variables declared by abs must be accompanied by their types.

• All names declared by bindrec must have explicit types.

• An application of the primitive operator for creating an empty list must indicate the compo-
nent type of the empty list.

In addition, the HOFLEPT language requires special constructs for introducing (pabs) and elim-
inating (papp) universally quantified (forall) types.

What determines the placement of explicit type information in a language? That is, why is it
that some type information must be provided while other type information can be elided? The
answer to this question lies in the structure of the type checker. As noted earlier, a simple type
checker has the structure of an evaluator. Consider type checking an abstraction. When entering
an abstraction, the type checker has no information about the types of the formal parameters; these
must be provided explicitly. However, once the types of the formals is known, it is easy for the
type checker to determine the type of the body, so this information need not be declared.

Could a more sophisticated type checker do its job with even less explicit information? Certainly,
programmers can reason proficiently about type information in many programs where there are no
explicit types at all. Such reasoning is important because understanding the type of an expression,
especially one that denotes a procedure, is often a major step in figuring out what purpose the
expression serves in the program. As an example of this kind of type reasoning, consider the
following HOFL expression:

(abs (f g x y)

(if (f 3 y) (f x "static") (g x)))

By studying the various ways in which f, g, x, and y are used in the body of the above abstraction,
we can piece together a lot of information about the types of these variables. The application
(f 3 y), for example, returns a boolean because it is used as the predicate in an if expression.
Thus, f is a function of two arguments that returns a boolean. From the two calls (f 3 y) and
(f x "static"), we can determine that the the types of x and the first argument to f are integers,
and the type of y and the second argument to f are strings. The fact that (f x "static") and
(g x) are branches of the same if implies that their returns types must be the same. From previous
information, we deduce that g is a function mapping a single integer parameter to a boolean.

1

There is no reason that a program cannot carry out the same kind of reasoning exhibited above.
Automatically computing the type of an expression that does not contain type information is known
as type reconstruction or type inference. Type reconstruction is more complicated than type
checking because type reconstruction must operate properly without programmer supplied type
assertions.

Type reconstruction is the formalization of the kind of reasoning seen in the example above.
A type reconstruction algorithm is an automatic way of determining the types of an expression
(and all the subexpressions along the way). We can think of the different subexpressions in the
above example as specifying constraints on the types of the expressions. It is possible to view these
constraints as a set of simultaneous type equations that restrict the type of an expression. If these
equations can be solved, then the most general typing for the expression results. If these equations
cannot be solved, then the expression is not well-typed.

Consider once more the abs expression studied above. Suppose that:

• τabs is the type of the result of evaluating the abs expression;

• τif is the type of the result of evaluating the if expression;

• τf is the type of f;

• τg is the type of g;

• τx is the type of x;

• τy is the type of y;

Here, subscripted versions of τ are type variables that stand for types which we may not yet
know. Below are some equations involving these type variables that are implied by our sample
HOFL expression:

τabs = (→ (τf τg τx τy) τif) abs has a function type from args to body

τf = (→ (int τy) τres1) In first call to f, rator has type from arguments to result

τf = (→ (τx string) τres2) In second call to f, rator has type from arguments to result

τg = (→ (τx) τres3) In call to g, rator has type from arguments to result

τres1 = bool Type of if test must be bool

τres2 = τres3 if branches must have same type

τif = τres2 if has type of first branch

Above, the types τres1, τres2, and τres3 have been introduced as the names of components of τf and
τg.

A solution to the above equations yields the following variable bindings:

τx 7→ int

τy 7→ string

τif 7→ τres1 = τres2 = τres3 = bool

τf 7→ (→ (int string) bool)

τg 7→ (→ (int) bool)

τabs 7→ (→ ((→ (int string) bool) (→ (int) bool) int string) bool)

Note that a collection of type equations need not always have the neat form of solution indicated
by the example. For example, suppose we modify the above example to be:

2

(abs (f g x y)

(if (f 3 4) (f x "static") (g x)))

The collection of equations for the modified example has no solution since it is overconstrained.
The first call to f implies that f’s second argument is an integer, while the second call implies that
f’s second argument is a string. But integers and strings are disjoint types, so this conflict cannot
be resolved.

On the other hand, the collection of type equations may be underconstrained, as in the following
perturbation of the above example:

(abs (f g x y)

(if (f x y) (f x "static") (g x)))

In this case, the type of x is unknown, and the type deduced for the expression is

(→ ((→ (τx string) bool) (→ (τx) bool) τx bool) bool)

The appearance of τx in this type implies that τx can be instantiated with any type. That is, the
type of the abstraction is polymorphic in τx. In the notation of HOFLEPT, this polymorphic type
would be expressed as

(forall (t) (→ ((→ (t string) bool) (→ (t) bool) t string) bool))

2 Solving Type Equations

In this section, we present the mathematical machinery for solving equations involving types. At
the same time, we will show how that machinery can be implemented in SML.

2.1 Type Variables

In order to express and solve type equations, we need a notion of type variable that allows us
to refer to an unknown type. As shown above, in mathematical notation we will use subscripted
versions of τ to stand for type variables.

For creating and manipulating type variables in SML, we will use a TypeVar structure matching
the TYPE_VAR signature in Fig. 1. A type variable is an entity of abstract type TVar. A TVar can
only be created by calling the nullary fresh procedure; every time it is called, it returns a new type
variable that is different (as tested by equal and compare) from any previously created variable.
Note that fresh does not correspond to a mathematical function because it returns different results
when called on the same input. Intuitively, it maintains some sort of local state that allows it to
“know” how many times it has been called. It is possible to implement type reconstruction without
such “stateful functions”, but doing so requires some tedious management of variable names (of
the sort seen in the substitution model) that we wish to avoid here.

In the particular implementation of TypeVar that we shall use, the string representation of a
type variable returned by the toString function will have the form #n, where n is and integer
indicating the number of times that fresh has been called. The first call to fresh will return a
type variable with printed representation is #1, the second call to fresh will return a type variable
with printed representation #2, and so on.

3

signature TYPE_VAR = sig

type TVar (* abstract type of type variables *)

val fresh : unit -> TVar

(* returns a new type variable not equal to any previously returned *)

val equal : TVar * TVar -> bool (* test the equality of two type variables *)

val compare : TVar * TVar -> order (* compare two type variables *)

val toString : TVar -> string

(* returns the string representation of a type variable *)

structure Set : SET

sharing type Set.item = TVar

(* an set whose elements type variables *)

structure Env : ENV

sharing type Env.key = TVar

(* an environment whose keys are type variables *)

end

Figure 1: SML signature for type variables.

The TypeVar structure contains two component structures: a Set structure for modeling sets
whose elements are type variables, and a Env structure for modeling environments whose keys are
type variables.

In order to manipulate types containing type variables, it is necessary to extend the types of
HOFLEMT with an additional constructor TyVar for type variables. This is shown in Fig. 2,
which shows the signature for the Type structure that will be used in the type reconstructor. The
signature also includes a function TVs that returns a set of the type variables in a given type and
a function TVsList that returns a set of the type variables in a given list of types.

As an example of manipulating types and type variables, consider implementations of the TVs
and TVsList functions within the TypeVar structure, shown in Fig. 3.

2.2 Type Substitutions

We represent the solution to a set of type equations using an entity called a type substitution.
A type substitution σ =

⋃n
i=1{τi 7→ T i} is a set of bindings between type variables and types. Here

is an example of a type substitution:

σ1 = {τa 7→ int, τb 7→ τd, τc 7→ (→ (τe bool) τd)}

Note that type variables may appear on the right hand side of a type binding, either by themselves,
or as components of other types.

We shall require that all type substitutions satisfy two properties:

1. The type variables in all the bindings of a type substitution are distinct. Formally: if τ 7→ T

and τ ′ 7→ T ’ are two bindings in σ, then T 6= T′ implies τ 6= τ ′.

4

signature TYPE = sig

datatype Ty =

UnitTy | IntTy | BoolTy | SymTy | StringTy (* base types *)

| ListTy of Ty (* component type *)

| ArrowTy of Ty list * Ty (* arg types, result type *)

(* New for type reconstruction *)

| TyVar of TypeVar.TVar (* type variables *)

val equal : Ty * Ty -> bool (* are two types equal? *)

val toSexpr : Ty -> Sexpr.Sexpr (* S-expression representation of type *)

val toString : Ty -> string (* string representation of type *)

val TVs : Ty -> TypeVar.Set.set (* set of all type variables appearing in type *)

val TVsList : Ty list -> TypeVar.Set.set

(* Set of all type variables appearing in a list of types. *)

end

Figure 2: SML signature for types used in type reconstruction.

structure TVSet = TypeVar.Set (* abbreviation *)

fun TVs UnitTy = TVSet.empty

| TVs IntTy = TVSet.empty

| TVs BoolTy = TVSet.empty

| TVs StringTy = TVSet.empty

| TVs SymTy = TVSet.empty

| TVs (TyVar(tv)) = TVSet.singleton(tv)

| TVs (ListTy(ty)) = TVs(ty)

| TVs (ArrowTy(argTys,resTy)) =

TVSet.union(TVsList(argTys),

TVs(resTy))

and TVsList tys =

ListOps.foldr TVSet.union TVSet.empty (map TVs tys)

Figure 3: Functions for calculating the type variables appearing in a type or list of types.

5

This condition implies that a type substitution can be viewed as a partial function from type
variables to types. A partial function is one that may be defined for some type variables
and undefined for others. The type variables on which the partial function is defined is
called the domain of the partial function; in this case, the domain of a type substitution
σ =

⋃n
i=1{τi 7→ T i} is dom(σ) =

⋃n
i=1{τi}.

Because type substitutions can be viewed as functions, we will use mathematical function
application notation σ(τ) to denote the type bound to a type variable in σ. The codomain

of a substitution is the set of all types bound to type variables in its domain: cod(σ) =
⋃n

i=1{σ(τi)}.

2. No type bound to a type variable in a type substitution mentions one of the bound type
variables of the type subsitution. Formally: dom(σ)

⋂

(
⋃

τ∈σ TVs(σ(τ))) = {}

A type T is canonical with respect to (w.r.t.) a set S of type variables if it does not contain
them (i.e., S

⋂

TVs(T) = {}). By extension, a type is canonical w.r.t. a type substitution σ

if it is canonical w.r.t. dom(σ). So another way to phrase the second property of substitutions
is that each type bound in a type substitution σ must be canonical w.r.t. σ. We can also
“lift” the canonical notion to expressions: an expression E is canonical w.r.t. a set of type
variables S (resp. type substitution σ) if it does not contain any type variables in S (resp.
dom(σ)). The notion can similarly be lifted to type environments: an type environment A

is canonical w.r.t. a set of type variables S (resp. type substitution σ) if cod(A) does not
contain any type variables in S (resp. dom(σ)).

Given that type substitutions can be viewed as functions on type variables, it is natural to “lift”
them to act as functions on types. Applying a type substitution σ to a type T yields a copy of T

in which all occurrences of any τ ∈ dom(σ) has been replaced by σ(τ). We will abuse notation and
write σ(T) for the result of applying σ to T . For example, suppose that T1 is:

(→ (τa (listof τc)) (→ (τd τf) τb)).

Then σ1(T1) is:

(→ (int (listof (→ (τe bool) τd))) (→ (τd τf) τd)).

Note that σ(τ) = τ if τ 6∈ dom(σ).
We can similarly lift application of a type substitution to expressions, and will write σ(E) for

a copy of E in which every occurrence of a τ ∈ dom(σ) has been replaced by σ(τ). For example,
suppose that the expression E is:

(abs ((f τc) (x τa) (y τb))

(f (prepend x (empty τa)) (= x y)))

Then the result of applying σ to E, written σ(E), is:

(abs ((f (→ (τe bool) τd)) (x int) (y τd))

(f (prepend x (empty int)) (= x y)))

6

It is also possible to lift the application of type substitutions to type environments, where a
type environment A can be viewed as function from the expression identifiers of a language to its
types. In this case, (σ(A))(I) = σ(A(I)).

Note that applying a type substitution σ to any type T , expression E, or type environment A

replaces all occurrences of type variables in dom(σ) by types that (by property 2 of type substi-
tutions) do not contain occurrences of these type variables. Therefore, σ(T), σ(E), and σ(A) are
canonical w.r.t. σ.

In the SML implementation, type substitutions are SML values that have the SML type subst.
Applying a type substitution to types and expressions is accomplished functions with the following
signatures:

val subTy : subst -> Type.Ty -> Type.Ty

val subTys : subst -> Type.Ty list -> Type.Ty list

val subExp : subst -> AST.Exp -> AST.Exp

val subExps : subst -> AST.Exp list -> AST.Exp list

The implementation of these functions is shown in Fig. 4. Type substitutions are implemented
as environments that are keyed by type variables (i.e., elements of TypeVar.Env). Applying these
type substitutions to types and expressions is performed by straightforward recursive tree walks.

2.3 Unification

Suppose that we are given a type equation that equates two types, each of which may contain type
variables. For example, we might be given Ta = Tb, where

T a ≡ (→ (τa (listof τb)) int)

Tb ≡ (→ (bool τc) τb).

(The notation T ≡ T′ means that T and T′ are syntactically identical.) We would like to be able
to “solve” such a type equation. In algebra, solving an equation with variables means finding a
substitution for the variables that makes both sides of the equation the same value or expression.
The same is true for type equations: a solution to a type equation T1 = T2 is a type substitution σ

such that σ(T1) ≡ σ(T2). In the above example, a solution to Ta = Tb is the following substitution:

σ = {τa 7→ bool, τb 7→ int, τc 7→ (listof int)}

We can verify that σ(Ta) ≡ σ(Tb) ≡ (→ (bool (listof int)) int).
A type substitution that makes the two types in a type equation syntactically equal is called a

unifier for the two types. If a unifier exists, we say that the two types can be unified and that the
unifier is the result of the unification of the two types. Not every pair of types can be unified; in
the case where no unifier exists, we say that unification fails. For instance, the type equation int

= bool is clearly insoluble, as is (→ (τ) int) = (→ (bool) τ), so unification fails in both of
these cases. A trickier case is τ = (listof τ). Here there is no finite type T such that {τ 7→ T } is
a unifier, so the equation is insoluable. (If we allowed infinite types, then the infinitely nested list
type T = (listof (listof (listof . . .))) would be a solution.) By the same reasoning, any
type equation of the form τ = T where τ ∈ TVs(T) is insoluable. In this case, unification is said
to fail because of the “occurs check” τ ∈ TVs(T).

In some cases there may be many solutions to a type equation. For instance, consider the
following type equation:

(→ (τ1) τ2) = (→ (τ2) τ3)

7

structure SubstEnv = TypeVar.Env

type subst = Type.Ty SubstEnv.env

and subTy s UnitTy = UnitTy

| subTy s IntTy = IntTy

| subTy s BoolTy = BoolTy

| subTy s StringTy = StringTy

| subTy s SymTy = SymTy

| subTy s (typ as TyVar(tv)) =

(case SubstEnv.lookup(tv,s) of

NONE => typ

| SOME(t) => t

(* By subst property 2, t is canonical w.r.t. s

and so no further substitutions must be performed *)

)

| subTy s (ListTy(eltTy)) = ListTy(subTy s eltTy)

| subTy s (ArrowTy(argTys, resTy)) =

ArrowTy(subTys s argTys,subTy s resTy)

and subTys s tys = List.map (subTy s) tys

and subExp s (lit as Lit(_)) = lit

| subExp s (vref as VarRef(_)) = vref

| subExp s (PrimApp(primop,rands)) =

PrimApp(primop,subExps s rands)

| subExp s (PrimEmpty(ty)) = PrimEmpty(subTy s ty)

| subExp s (If(test,thenExp,elseExp)) =

If(subExp s test, subExp s thenExp, subExp s elseExp)

| subExp s (Abs(formals,types,body)) =

Abs(formals, subTys s types, subExp s body)

| subExp s (FunApp(rator,rands)) =

FunApp(subExp s rator, subExps s rands)

| subExp s (BindPar(names,defns,body)) =

BindPar(names,subExps s defns, subExp s body)

| subExp s (BindRec(names,types,defns,body)) =

BindRec(names, subTys s types, subExps s defns, subExp s body)

and subExps s exps = List.map (subExp s) exps

Figure 4: Implementation of functions for applying type substitutions to types and expressions.

8

This equation can be solved by any unifier that binds τ1, τ2, and τ3 to the same type. Examples of
such unifiers are:

σ1 = {τ1 7→ int, τ2 7→ int, τ3 7→ int}
σ2 = {τ1 7→ bool, τ2 7→ bool, τ3 7→ bool}
σ3 = {τ1 7→ τ3, τ2 7→ τ3}
σ4 = {τ1 7→ τ2, τ3 7→ τ2}
σ5 = {τ1 7→ τ4, τ2 7→ τ4, τ3 7→ τ4}

(The canonicalization property of type substitutions prevents τ3 7→ τ3 from being explicitly listed
in σ3 and τ2 7→ τ2 from being explicitly listed in σ4. But, when viewed as functions on types, σ3

still maps τ3 to τ3 and σ4 still maps τ2 to τ2.)
Intuitively, the substitutions σ3, σ4, and σ5 are more general than σ1 and σ2, because the latter

can be obtained from the former by instantiating more type variables. For instance, σ1 can be
obtained from σ5 by instantiating τ4 to int. We shall say that σ1 is more general than σ2 (written
σ1 ≥ σ2) if there exists an instantiation substitution σinst such that σinst ◦ σ1 = σ2. Here, ◦ is
function composition; i.e., (σinst ◦σ1)(T) = σinst(σ1(T)). It turns out that if HOFLEMT types T1

and T2 have a unifier, then they have a most general unifier σmgu such that σmgu ≥ σ for every
unifier σ of T1 and T2. In the above example, σ3, σ4, and σ5 are all most general unifiers for the
two types in the equation.

2.4 A Unification Algorithm

Here we present a unification algorithm that, given two types, returns their most general unifier
if it exists, and otherwise indicates that unification fails for the two types. We shall express the
algorithm in SML using the following signature:

type subst

exception UnifyError of string

val empty: subst

val unify : (Type.Ty * Type.Ty) -> subst

val unifyList : (Type.Ty list * Type.Ty list) -> subst

val union : (subst * subst) -> subst

val unionList : subst list -> subst

val subTy : subst -> Type.Ty -> Type.Ty

val subTys : subst -> Type.Ty list -> Type.Ty list

val subExp : subst -> AST.Exp -> AST.Exp

val subExps : subst -> AST.Exp list -> AST.Exp list

The type subst is the SML type of type substitutions, and empty is the empty type substitution.
Given two types, unify either returns an element of type subst that is the most general unifier of
the two types or raises a UnifyError exception if the two types cannot be unified. The unifyList
function returns the most general unifier that unifies corresponding pairs of types in two lists of
types. The union function returns a single substitution that combines all type constraint informa-
tion in a single substitution. The unionList function combines the type constraint information in
a list of substitutions into a single substitution. The unifyList, union, and unionList functions
all raise a UnifyError exception if the type constraints cannot be solved. The subTy, subTys,
subExp, and subExps functions were described in section 2.2.

9

As in section 2.2, we shall assume that substitutions are represented as environments of type
subst that map type variables to types (i.e., subst is an abbreviation for Type.Ty TypeVar.Env).
Such environments have the environment signature in Figs. 11–12 where TypeVar.TyVar replaces
the key type and ’b is instantiated to the type Type.Ty.

An SML implementation of the above unification signature is presented in Figs. 5–6. The
unify implementation is relatively straightforward. Equal base types can be unified with an empty
substitution, and compound types with the same type constructor (e.g., listof or ->) can be
unified by recursively unifying their corresponding components. The most important case is when
a type variable τ is being unified to a type T . In this case, an occurs check is performed to see if τ
appears in T ; if not, a substitution with the single binding {τ 7→ T } is returned.

The case of unifying a type variable τ with itself needs to be handled specially. Such a unification
should always succeed, but a naively applying the occurs check would cause it to fail. In this case,
the implementation returns a substitution containing an identity binding {τ 7→ τ}. Technically,
this violates the canonicalization property of type substitutions, since the right-hand side constains
a type variable bound on the left-hand side. However, when a type substitution is viewed as a
function on types, type environments, or expressions, a type substitution containing an identity
binding is behaviorally indistinguishable from one without the binding. Because it is convenient
and not harmful, the implementation allows substitutions to contain such identity bindings, but
enforces the canonicalization property for all non-identity bindings.1

Combining two type substitutions σ1 and σ2 via union is the the trickiest part of the unification
implementation. While σ1 and σ2 both necessarily satisfy the canonicalization property, we must
ensure that their combination does as well. Even in the case where dom(σ1)

⋂

dom(σ2) = {}, it is
not correct to simply take the union of the bindings of the two substitutions, since it may be that
types in cod(σ1) reference types in dom(σ2) or that types in cod(σ2) reference types in dom(σ1).
For example, consider:

σa = {τ1 7→ τ2, τ3 7→ τ4, τ5 7→ τ6}
σb = {τ2 7→ τ3, τ4 7→ τ5, τ6 7→ τint}

Unioning σa and σb should yield a substitution in which all six type variables are bound to int –
a result that clearly cannot be obtained with a straightforward union!

Moreover, combining substitutions with disjoint domains can introduce cycles where none ex-
isted before. For example, consider:

σc = {τ3 7→ τ4}
σd = {τ4 7→ (listof τ3)}

Unioning σc and σd should fail because a binding of τ3 to (listof τ3) violates the occurs check.
In the case where S = dom(σ1)

⋂

dom(σ2) is non-empty, it is additionally necessary to incor-
porate into the result any constraints from unifying σ1(τ) and σ2(τ) for all τ ∈ S.

The implementation of union in Fig. 6 handles all of these situations. It works by collecting
a result substitution by using an insert function to insert the bindings of σ1 one at a time into
a growing result substitution that is initialized to σ2. When inserting the binding τ 7→ T into the
answer substitution σans, insert needs to handle two cases:

1. If τ 6∈ dom(σans),

1Although identity bindings would be easy to remove in unifyTVar, they would be harder to remove in the insert

function in Fig. 6.

10

structure SubstEnv = TypeVar.Env

type subst = Type.Ty SubstEnv.env

exception UnifyError of string

val empty = SubstEnv.empty

fun unify(UnitTy,UnitTy) = empty

| unify(IntTy,IntTy) = empty

| unify(BoolTy,BoolTy) = empty

| unify(StringTy,StringTy) = empty

| unify(SymTy,SymTy) = empty

| unify(ListTy(t1),ListTy(t2)) = unify(t1,t2)

| unify(ArrowTy(argTys1,resTy1),ArrowTy(argTys2,resTy2)) =

unifyList(resTy1::argTys1,resTy2::argTys2)

| unify(TyVar(tv1), t2) = unifyTVar(tv1,t2)

| unify(t1, TyVar(tv2)) = unifyTVar(tv2,t1)

| unify(t1,t2) =

raise UnifyError("Cannot unify the following types:\n"

^ (Type.toString(t1)) ^ "\n"

^ (Type.toString(t2)) ^ "\n")

and unifyTVar(tv,typ) =

let val _ = occursCheck(tv,typ)

in SubstEnv.bind(tv,typ,empty)

end

and occursCheck(tv,typ) =

if occursIn(tv,typ) andalso

(not (sameTypeVar(tv,typ)))

(* It’s OK for a type variable to be bound to itself *)

then raise UnifyError ("Occurs check failed!\n" ^ "The type variable "

^ (TypeVar.toString(tv)) ^ " occurs in the type:\n"

^ (Type.toString(typ)) ^ "\n")

else ()

and occursIn(tv,typ) = TypeVar.Set.member(Type.TVs(typ),tv)

and sameTypeVar(tv, TyVar(tv’)) = TypeVar.equal(tv,tv’)

| sameTypeVar(tv, _) = false

and unifyList(ts1,ts2) =

if length(ts1) = length(ts2) then

foldr union empty (ListOps.map2 unify ts1 ts2)

else

raise UnifyError ("unifyList: mismatch in length of lists:\n"

^ (typesToString(ts1)) ^ "\n"

^ (typesToString(ts2)) ^ "\n")

Figure 5: Implementation of unification, part 1.

11

and union(s1,s2) = SubstEnv.foldri insert s2 s1

and insert(tv,typ,ans) =

let val typ’ = subTy ans typ

in case SubstEnv.lookup(tv,ans) of

NONE =>

SubstEnv.bind(tv,typ’,SubstEnv.map (subTy (unifyTVar(tv,typ’))) ans)

| SOME(ty) =>

let val newsub = unify(typ’,ty)

in SubstEnv.foldri SubstEnv.bind

(SubstEnv.map (subTy newsub) ans)

newsub

end

end

and unionList(substs) = foldr union empty substs

Figure 6: Implementation of unification, part 2.

• The type T is canonicalized with respect to σans to create T′ = σans(T). Since T′ does
not contain any type variables in dom(σans), the binding τ 7→ T ′ can extend the answer
substitution as long as T ′ also does not contain τ itself. The occurs check performed by
unifyTVar guarantees this.

• Since types in cod(σans) may contain τ, it is necessary to map the application of the
substitution τ 7→ T ′ over each type in cod(σans). This removes all occurrences of τ from
the right-hand sides of substitutions (making all of them canonical with respect to the
new binding τ 7→ T ′) and preserves the canonical property of each type in cod(σans)
w.r.t. dom(σans) (since T ′ is canonical w.r.t. dom(σans)).

2. If τ ∈ dom(σans),

• The type T is canonicalized with respect to σans to create T′ = σans(T). In this case,
since τ ∈ dom(σans), we know that T′ cannot contain τ, and so no occurs check is
necessary.

• A substitution σnew is created by unifying T ′ and σans(τ). It is guaranteed that dom(σans)
is disjoint from dom(σnew) and any type variables in cod(σnew).

• The bindings of σnew can be unioned with those of σans as long as the types in cod(σans)
are first canonicalized w.r.t. σnew. This is accomplished by mapping the application of
σnew over each type in cod(σans).

3 Monomorphic Type Reconstruction

In this section we show how to use the unification technology developed in the previous section to
implement type reconstruction for a language with a monomorphic type system. The type recon-
struction algorithm shown here, due to Hindley and Milner, is at the core of type reconstruction in
modern languages like ML and Haskell. The Hindley-Milner algorithm can also reconstruct types
for a restricted class of polymorphic functions, though we shall not study this important feature
here.

12

3.1 HOFLIMT

We illustrate type reconstruction in the context of automatically deriving an explicitly typed
HOFLEMT program from a program in an implicitly typed language we shall christen HOFLIMT.
The HOFLIMT language has exactly the same syntax as the dynamically typed HOFL language.
The difference between HOFLIMT and HOFL is that a HOFLIMT program is required to be
typable, in the sense that it can be transformed into a well-typed HOFLEMT program simply
by adding type annotations without making any other changes.

For example, consider the three HOFL programs in Fig. 7. The first of these programs (P1)
is a HOFLIMT program because it can be annotated to be the following well-typed HOFLEMT

program:

(program (a b)

(bindpar ((appa (abs ((f (-> (int) int))) (f a)))

(inc (abs ((x int)) (+ x 1)))

(pos (abs ((y int)) (> y 0))))

(prepend a

(prepend (if (pos a) (appa inc) b)

(empty int)))))

However, neither P2 nor P3 is a HOFLIMT program. In P2 , appa is used polymorphically – it is
applied to both pos (a function of type (→ (int) int)) and inc (a function of type (→ (int)

bool)). There is no way to give the single copy of app5 a type that matches both of these uses. In
P3 , appa is used monomorphically, but an attempt is made to make a list with both boolean and
integer elements – something that is fine in HOFL, but cannot be type-checked in HOFLEMT.

Note that any well-typed HOFLEMT program can be transformed into an implicitly typed
HOFLIMT program simply by erasing the type annotations. Although we shall not do so here,
it is possible to formalize the well-typedness of HOFLIMT programs by using versions of the
HOFLEMT typing rules in which all the type annotations on expressions have been erased.

3.2 Type Reconstruction For HOFLIMT

The SML implementation of a type reconstruction algorithm for HOFLIMT appears in Figs. 8–10.
The entry point to the type reconstructor is the following function:

val reconProg: Hofl.AST.Program -> AST.Program

The Hofl.AST structure implements the abstract syntax tress of HOFLIMT (which are exactly
the same as those of HOFL). The reconProg function transforms a program from this structure to
one in the AST structure, which implements the abstract syntax trees for a version of HOFLEMT

in which types have been extended (as in Section 2.1) to include type variables. The type recon-
structor must use explicitly qualified names for abstract syntax nodes like Abs, FunApp, If, etc.,
to distinguish whether they are HOFLIMT nodes or HOFLEMT nodes. The following structure
abbreviations are introduced to make this distinction more concise

structure I = Hofl.AST

structure E = AST

Here I stands for the syntax in the implicitly typed language, while E stands for the syntax in the
explicitly typed language. The i and e letters are also used in variable names within the code as

13

P1 ≡ (program (a b)

(bindpar ((appa (abs (f) (f a)))

(inc (abs (x) (+ x 1)))

(pos (abs (y) (> y 0))))

(prepend a

(prepend (if (pos a) (appa inc) b)

(empty)))))

P2 ≡ (program (a b)

(bindpar ((appa (abs (f) (f a)))

(inc (abs (x) (+ x 1)))

(pos (abs (y) (> y 0))))

(prepend a

(prepend (if (appa pos) (appa inc) b)

(empty)))))

P3 ≡ (program (a b)

(bindpar ((appa (abs (f) (f a)))

(inc (abs (x) (+ x 1)))

(pos (abs (y) (> y 0))))

(prepend (pos a)

(prepend (appa inc)

(empty)))))

Figure 7: Sample HOFL programs. Only P1 is a HOFLIMT program.

prefixes that indicate which expressions denote implicitly typed syntax and which denote explicilty
typed syntax.

The core of the type reconstruction algorithm are the reconExp and reconExps functions, whose
signatures are:

val reconExp: Hofl.AST.Exp

-> Type.Ty Ident.Env.env

-> (AST.Exp * Type.Ty * Subst.subst)

val reconExps: Hofl.AST.Exp list

-> Type.Ty TypeVar.Env.env

-> (AST.Exp list * Type.Ty list * Subst.subst)

The reconExp function takes as arguments (1) a HOFLIMT expression EI and (2) a type envi-
ronment AI mapping free expression variables to their types. Its result is a triple with the following
components:

• A well-typed HOFLEMT expression EE whose type erasure is EI .

• The type TE of EE .

• A type substitution σE that contains solutions to type variable constraints encountered during
the type reconstruction of EI .

14

The elements of the triple satisfy the following type judgement:

σE(AI) ` σE(EE) : σE(TE)

The reconExps function is similar to reconExp except that it takes a list of expressions rather
than a single expression, and the triple it returns contains a list of expressions and a list of types.
The third component of the resulting triple is a single type substitution (not a list of such substi-
tutions) that combines constraint information collected from reconstructing all of the expressions.

Figs. 8–9 show the implementation of reconProg, reconExp, and reconExps. reconProg in-
vokes reconExp on the program body in a type environment that assumes all program formals are
integers. The literal and variable cases for reconExp are straightforward. Neither introduces any
type variable constraints, so the returned substitution is empty in both cases.

The abstraction and application cases are more interesting; in some sense, they are the heart
of the algorithm. When we encounter an abstraction, we have no idea what the types of the
formal parameters should be, so we introduce a fresh type variable for each parameter into the type
environment for reconstructing the abstraction body. This type variable will be involved in any
type constraints implied by uses of the parameter in the body. The explicitly typed abstraction that
is returned annotates each formal parameter with its associated type variable, and the returned
type is the function type expected from HOFLEMT’s typing rule for abstractions. The returned
substitution is the one that results from reconstructing the abstraction’s body. This substitution
will be combined with constraints accumulated in the rest of the program, and the final program
substitution will be used to resolve (when possible) to type variables introduced for each formal
parameter.

The FunApp case is the first case of reconExp that introduces type variable constraints. Given
the implicitly typed function application (EI0 . . . EIn), the clause recursively reconstructs the
subexpressions to yield the explicitly type expressions EE0 . . . EEn , their types TE0 . . . TEn, and
the substitution σE. The typing rule for applications is asserted by unifying the operator type
TE0 with the function type (→ (TE1 . . .TEn) τres), where τres is a freshly generated type variable
denoting the result type of the application. Any constraints determined by the unification process
are merged with σE to yield the substitution appSub for the abstraction. These constraints will
later be used to resolve any occurences of τres in the reconstructed program.

The if case also introduces constraints. It uses unification to guarantee that the test expression
has type bool and that the then and else branch have the same type, which is returned a the type
of the if.

Primitive applications are handled similarly to function applications. The primArrowTy function
(detailed in Fig. 10) returns an arrow type for each primop, at which point this case effectively
becomes equivalent to a function application. An important feature of primArrowTy is that it
returns freshly generated type variables for each invocation of a list operation. This allows list
operations to be treated polymorphically. The fact that the empty list is encoded via special
syntax in HOFLEMT (PrimEmpty) means that the empty list primop must be handled specially.

The final case of reconExp is BindRec. To handle the recursive scope of the bound identifiers,
the reconstructor creates a type Genvironment recTenv that extends the given type environment
with a binding between each bound name and a fresh type variable. It then ties the recursive
knot by unifying the freshly chosen type variables with the resulting definition types, and finally
reconstructs the bindrec body relative to the extended environment.

A Environment Signature

15

structure I = Hofl.AST (* Implicitly typed syntax *)

structure E = AST (* Explicitly typed syntax *)

structure TEnv = Ident.Env

exception ReconError of string

fun newTyVar () = TyVar(TypeVar.fresh())

fun reconProg (I.Prog(formals,ibody)) =

let val (ebody, _, sub) =

reconExp ibody (TEnv.extend(formals,

map (fn _ => IntTy) formals,

TEnv.empty))

in E.Prog(formals,subExp sub ebody)

end

and reconExp (I.Lit(lit)) tenv = (E.Lit(lit), litType(lit), Subst.empty)

| reconExp (I.VarRef(var)) tenv =

(case TEnv.lookup(var, tenv) of

NONE => raise ReconError("Unbound variable: " ^

(Ident.toString(var)))

| SOME(ty) => (E.VarRef(var), ty, Subst.empty)

)

| reconExp (I.Abs(formals,ibody)) tenv =

let val formalTys = map (fn _ => newTyVar()) formals

val (ebody, bodyTy, bodySub) =

reconExp ibody (TEnv.extend(formals,formalTys,tenv))

in (E.Abs(formals, formalTys, ebody),

ArrowTy(formalTys,bodyTy),

bodySub)

end

| reconExp (I.FunApp(irator, irands)) tenv =

let val (erator, ratorTy, ratorSub) = reconExp irator tenv

val (erands, randTys, randsSub) = reconExps irands tenv

val resultTy = newTyVar()

val appSub = unionList[unify(ratorTy, ArrowTy(randTys, resultTy)),

ratorSub,

randsSub]

in (E.FunApp(erator,erands), resultTy, appSub)

end

Figure 8: Core type reconstruction, part 1.

16

| reconExp (I.PrimApp(primop,irands)) tenv =

let val (erands,randTys,randsSub) = reconExps irands tenv

val resTy = newTyVar()

val primSub = union(unify(primArrowTy(primop),

ArrowTy(randTys,resTy)),

randsSub)

val resTy’ = subTy primSub resTy

in (case primop of

(* Handle Empty specially *)

Empty => (case resTy’ of

ListTy(t) => E.PrimEmpty(t)

| _ => raise ReconError

("Shouldn’t happen: non list type for empty")

)

| _ => E.PrimApp(primop,erands),

resTy’,

primSub)

end

| reconExp (I.If(itest,ithen,ielse)) tenv =

let val (etest,testTy,testSub) = reconExp itest tenv

val (ethen,thenTy,thenSub) = reconExp ithen tenv

val (eelse,elseTy,elseSub) = reconExp ielse tenv

val ifSub = unionList[unify(testTy, BoolTy),

unify(thenTy,elseTy),

testSub,

thenSub,

elseSub]

in (E.If(etest,ethen,eelse), thenTy, ifSub)

end

| reconExp (I.BindRec(names,idefns,ibody)) tenv =

let val defnTyVars = map (fn _ => newTyVar()) idefns

val recTenv = TEnv.extend(names, defnTyVars, tenv)

val (edefns, defnTys, defnsSub) = reconExps idefns recTenv

val (ebody, bodyTy, bodySub) =

reconExp ibody (TEnv.extend(names, defnTys, recTenv))

val recSub = unionList[unifyList(defnTyVars, defnTys),

defnsSub,

bodySub]

in (E.BindRec(names, defnTyVars,edefns,ebody), bodyTy, recSub)

end

and reconExps iexps tenv =

let val (eexps,tys,subs) =

ListOps.unzip3(map (fn exp => reconExp exp tenv) iexps)

in (eexps,tys,unionList(subs))

end

Figure 9: Core type reconstruction, part 2.

17

val arithopTy = ArrowTy([IntTy,IntTy],IntTy)

val relopTy = ArrowTy([IntTy,IntTy],BoolTy)

val logopTy = ArrowTy([BoolTy,BoolTy],BoolTy)

fun primArrowTy(Add) = arithopTy

| primArrowTy(Sub) = arithopTy

| primArrowTy(Mul) = arithopTy

| primArrowTy(Div) = arithopTy

| primArrowTy(Mod) = arithopTy

| primArrowTy(LT) = relopTy

| primArrowTy(LE) = relopTy

| primArrowTy(EQ) = relopTy

| primArrowTy(NE) = relopTy

| primArrowTy(GE) = relopTy

| primArrowTy(GT) = relopTy

| primArrowTy(Band) = logopTy

| primArrowTy(Bor) = logopTy

| primArrowTy(Not) = ArrowTy([BoolTy],BoolTy)

| primArrowTy(Symeq) = ArrowTy([SymTy,SymTy],BoolTy)

(* For the following, return new type vars for every call *)

| primArrowTy(Empty) = ArrowTy([],ListTy(newTyVar()))

| primArrowTy(IsEmpty) = ArrowTy([ListTy(newTyVar())], BoolTy)

| primArrowTy(Head) =

let val t = newTyVar()

in ArrowTy([ListTy(t)], t)

end

| primArrowTy(Tail) =

let val t = newTyVar()

in ArrowTy([ListTy(t)], ListTy(t))

end

| primArrowTy(Prepend) =

let val t = newTyVar()

in ArrowTy([t, ListTy(t)], ListTy(t))

end

fun litType(UnitLit) = UnitTy

| litType(IntLit(_)) = IntTy

| litType(BoolLit(_)) = BoolTy

| litType(StringLit(_)) = StringTy

| litType(SymLit(_)) = SymTy

Figure 10: Auxiliary functions used by type reconstruction algorithm.

18

signature STRING_ENV = sig

type key = string

type ’b env

(* Type of env that maps string keys to values of type ’b *)

val empty : ’b env

(* empty denotes an empty env *)

val bind : (string * ’b * ’b env) -> ’b env

(* bind(key,value,tbl) returns a new env that includes the

binding key->value in addition to all bindings of tbl.

Any existing binding for key in tbl is shadowed by key->value. *)

val extend : (string list * ’b list * ’b env) -> ’b env

(* extend(keys,values,tbl) returns a new env that includes

corresponding bindings between keys and values in addition to

all bindings of tbl. Any existing binding for keys in tbl

are shadowed by the new bindings. *)

val lookup : (string * ’b env) -> ’b option

(* lookup(key,tbl) returns SOME(value) if tbl contains the binding

key->value. If there is no binding for key, lookup returns NONE. *)

val unbind : (string * ’b env) -> ’b env

(* unbind(key,tbl) returns a new env that includes all

bindings of tbl except for a binding for key. *)

val remove : (string list * ’b env) -> ’b env

(* unbind(keys,tbl) returns a new env that includes all

bindings of tbl except for bindings for keys. *)

val bindingsToEnv : (string * ’b) list -> ’b env

(* bindingsToEnv(keyValuePairs) returns a env whose bindings consist

of all the bindings specified by the list of pairs keyValuePairs. *)

val keys : ’b env -> string list

(* keys(tbl) returns a list of all keys for bindings in tbl.

Each key is mentioned only once. *)

val values : ’b env -> ’b list

(* values(tbl) returns a list of all values for bindings in tbl.

The values are in the same order as the keys returned by

keys(tbl). Because the same value may be bound to more than

one key, the result may contain duplicates. *)

Figure 11: Environment signature, part 1.

19

val map : (’a -> ’b) -> ’a env -> ’b env

(* (map f env) returns an environment of bindings {k -> f(v) |

(k -> v)} is a binding in env. *)

val mapi : ((key * ’a) -> ’b) -> ’a env -> ’b env

(* (map f env) returns an environment of bindings {k -> f(k,v) |

(k -> v)} is a binding in env. *)

val foldr : ((’a * ’b) -> ’b) -> ’b -> ’a env -> ’b

(* (foldr f z env) returns the result of folding f from right-to-left

starting with z over the values of env (ordered by key). *)

val foldri : ((key * ’a * ’b) -> ’b) -> ’b -> ’a env -> ’b

(* Like foldr, but f takes the key as well as the value and answer *)

val foldl : ((’a * ’b) -> ’b) -> ’b -> ’a env -> ’b

(* Like foldr, but accumulates values left-to-right *)

val foldli : ((key* ’a * ’b) -> ’b) -> ’b -> ’a env -> ’b

(* Like foldl, but f takes the key as well as the value and answer *)

end

Figure 12: Environment signature, part 2.

20

