CS251 Programming L anguages Handout #39
Prof. Lyn Turbak May 11, 2004
Wellesley College

FINAL EXAM REVIEW PROBLEMS

The CS251 final is a self-scheduled final exam held during the normal final exam period. The exam
is open book; you may refer to class handouts, your notes, and whatever additional materials you
find useful. However, you may not use a computer during the exam. By the Honor Code, you are
not alowed to talk to anyone about the details of the exam before or after taking it, until the final
examination period is over.

Hereisalist of topics covered in CS251 that are fair game for the final exam:

programming paradigms: functional, imperative, object-oriented
syntax: abstract syntax trees, free variables, substitution, desugaring
evaluation models and interpreters: substitution model, environment model
data: first-class functions, aggregate data programming, sum-of-product datatypes, lazy data
scoping: lexical, dynamic; block structure; environment diagrams & closures
parameter passing: call-by-value, cal-by-name, call-by-need, call-by-reference.
types: dynamic vs. static; explicit (e.g. Java, C) vs. reconstructed (e.g. OCaml, Haskell) ;
imperative programming: mutable data, mutable variables, memoization; benefits and
drawbacks.
e control constructs: tail recursion, non-local exits (I abel /j unp, call-with-current-
cont i nuati on); exceptions (r ai se, t rap, handl e); continuation-passing style.
* real languages: OCaml, Scheme, Java, C, Haskel. Note: Y ou will be expected to read
and write programs in OCaml and Scheme. Y ou will be expected to read very simple Java,
C, Haskell, Pascal programs, but will not be expected to write them.
» toy languages: You will be expected to read and write programsin any of these mini-
languges:
INTEX = integer literals + arithmetic operations + program parameters
BINDEX = INTEX + local binding (bi nd)
IBEX = BINDEX + boolean literals + relational & arithmetic ops + if

HOFL = FOBS + abstractions (allowing higher-order functions) + bindrec (merges
function and variable namespaces) + pairs + lists

HOILEC = HOFL + explicit mutable cells + sequencing + strings

HOILIC = HOILIC with implicit mutable cells for every variable; these are assigned
tovia<-.

Below are (1) the cover sheet for the Spring 2004 final and (2) problems intended to help you
review material for the final exam. They are not necessarily indicative of the kinds of questions that
will be asked on the exam (i.e., some review questions are mor e difficult/time consuming than
what would be on an exam.) They also do not cover all of the above topics.

Wellesley College a CS251 Programming Languages a Spring, 2004
CS251 FINAL EXAM

YOUR NAME:

This exam has six problems. Each problem has several parts. The number of points for each
problem and part is shown in square brackets next to the problem or part. There are 100 total
points ontheexam. The last problem (Problem 6) isworth 38 points; be sure to
allocate sufficient time to work on this problem.

Write al your answers on the exam itself. Whenever possible, show your work so that partial
credit can be awarded.

The exam is open book. Y ou may refer to class handouts, your notes, and whatever additional
materials (including books) would be useful. However, you may not use a computer during the
exam. By the Honor Code, you are not alowed to talk to anyone about the details of the exam
before or after taking it, until the final examination period is over.

The exam includesan appendix on p. 12 containing definitions of higher-order list
functionsin HOILIC that are smilar to the list functions we studied in OCaml, Scheme, and
Haskell during the semester.

Please keep in mind the following tips:

Skim the entire exam before you begin solving problems. Work first on the problems on which
you feel most confident. You do not need to work on the problemsin the order
they are presented. In particular, since Problem 6 is worth 38 points, you might not want to
leave it until the very end of the exam.

Try to do something on every problem so that you can receive partial credit. For programming
problems, you can receive partia credit for explaining your strategy with words and pictures.

Show your work, so that you can receive partia credit even if the final answer isincorrect. If
your work does not fit on the page and you must place it elsewhere, indicate whereit is.

Allocate your time carefully. If you are taking too long on a problem, wrap it up and move on.
If you finish early, go back and check your answers.

GOOD KILL!
The following table will be used in grading your exam:

Problem Score

Problem 1[9]

Problem 2 [10]
Problem 3[16]
Problem 4[12]
Problem 5[16]
Problem 6 [38]
Total [100]

Problem 1. OCaml Types

Consider the following sequence of function declarationsin the OCaml language:

let testl (x, f, g) = (x, f(x), 9(x))

let test2 (x, f, @) = (x, f(x), g(f(x)))

let test3 (x, f, g) = (x, f(x), g(f(x)), f(9(x)))
let test4 (x, f, g) = (x, f(x), g(x, f(x)))

let test5 (x, f, g) = (x, f(x), g(f(x), f(g(x))))
let test6 (x, f, g) = (x, f(x), 9(x, f(g(x))))

Part a. For each of the above function declarations, write down the type that OCaml would
reconstruct for the function. If OCaml would not be able to reconstruct a type for afunction, say
so and explain why.

Part b.

(1) Define acurried version of thet est 1 function namedt est 1- curri ed.
(2) Givethetypeof test 1-curri ed.
(3) Below isan expression usingt est 1. Show how to rewriteit usingt est 1- curri ed:

test1(3, funy ->y * 2, funz ->2z > 0)
Part c. Writeadeclaration of afunctionf that has the following OCaml type:
(‘a->'blist) -> (‘b ->‘clist) ->(‘a->"'c list)
Y ou may find it helpful to use the following OCaml list functionsin your definition:

List.map: (‘a —> ‘b) -> (‘alist) -> (‘b list)
List.flatten (‘a list list) -> (‘a list)

Part d. Below isacurry2 function curries any function whose argument is a tuple of two
values. What isthe type of curry2?

let curry2 f = (fun x -> (funy -> f(x,y)))

Part e. Defineanuncurry?2 functionthat istheinverse of curry2. That is, for any curried
functionf of two arguments, curry2(uncurry2(f)) should be indistinguishable from f ; and for
any uncurried function g of two arguments, uncur ry2(curry2(g)) should be indistinguishable
fromg.

Part f. While Scheme and OCaml are smilar in many respects, Schemeis adynamically typed
language while OCaml is a statically typed language. Briefly discuss the advantages and
disadvantages of static typing vs. dynamic typing.

Part g. While both OCaml and Java are statically typed languages, there are some key differences
between the languages. Briefly describe the main differences.

Problem 2: Environment Diagrams and M utation
Consider the following procedures in an imperative call-by-value statically-scoped Scheme:

(define make- updat er
(let ((n 0))
(1l anbda (init update)
(begin

(set! n (+n 1))

(let ((uid n)
(state init))
(lanmbda ()
(begin (set! state (update uid state))

state)))))))

(define try
(lambda (u n)
(if (=no0)

()
(Fet ((v (u)))
(cons v (try u (- n 1)))))))

(define test
(lanmbda ()
(let* ((a (make-updater ‘() cons))
(b (make-updater 1 *))
(c (make-updater 0 +)))
(list (try a 2) (try b 3) (try c 4)))))

What isthevalue of (t est) ? Draw environment diagrams to justify your answer. Y ou need not
draw environment frames for invocations of thet ry procedure.

Problem 3: Non-local Exits

For the purposes of this problem, abinary treeis either (1) aleaf or (2) the result of applying the
node constructor to aleft binary tree and aright binary tree. Thel eaf ? predicate determinesif a
valueisaleaf (non-node), and the selectorsleft andri ght extract the left and right subtrees of a
binary tree.

Assume that append isa procedure that takes two lists and returns anew list containing all of the
elements of thefirst followed by al of the elements of the second. E.g.:

(append ‘(a b c) ‘(d e)) returnsthelist(a b ¢ d e)

Assume that post pend isaprocedure that takes alist L and avaue V and returns anew list
containing all of the elements of L followed by V. E.g.:

(postpend ‘(a b c¢) d) returnsthelist(a b ¢ d)

Consider the following f ri nge procedure, which iswritten in aversion of call-by-value, statically-
scoped Scheme supporting thel abel andj unp constructs:

(define (fringe tree)
(1 abel return
(letrec ((hel per (lanbda (tr address)
(if (leaf? tr)
(if (nunmber? tr)
(junmp return (cons tr address))
(list tr))
(append (hel per (left tr)
(postpend address ‘left))
(hel per (right tr)
(postpend address ‘right)))))))
(hel per tree ‘()))))

Part a. For each of the three expressionsin the following table, indicate the value of the
expression. Assume that the operand expressions of afunction application are evaluated in |eft-to-
right order.

Expression Vaue
(fringe (node (node ‘a ‘b) (node ‘c ‘d)))
(fringe (node (node ‘a 2) (node ‘c ‘d)))
(fringe (node (node ‘a ‘b) (node 3 ‘d)))
(fringe (node (node ‘a 2) (node 3 ‘d)))

Part b. Givean English specification for f ri nge.

Part c. Writeanfunctionfri nge- cps that behaves the same as fringe, but uses explicit continutations
rather than the implicit onesused by f ri nge.

Part d. Describe the difficulties that would be encountered in implementing f r i nge without using
explicit or implicit continuations.

Problem 4: Parameter Passing

Consider the following Scheme expression:

(let ((a 1))
(let ((inc (lanmbda ()

(begin (set! a (+ a l))
a)))
(f (lambda (y 2z)
(begin
(set!' y (+y 3))
, (+a(*z2))))))
(f a (inc))))

For each of the following parameter-passing mechanisms, indicate the value of the above
expression in aversion of Scheme using that parameter-passing mechanism. Assume that all
operands are evaluated in |eft-to-right order.

Parameter-Passing Mechanism| Value of sample expression
Cdl-by-value

Call-by-reference
Call-by-name
Call-by-need

Problem 5: Static vs. Dynamic Scope
Part a. Consider the following definitionsin call-by-value Scheme:

(define (raise-to n)
(lanbda (x) (expt x n))) ; (expt x n) conputes xN

(define (sumproc n limt)
(if (>nlimt)
0
(+ (proc n)
(sumproc (+ n1l1) limt))))

For each of the following two scoping mechanisms, indicate the value of the expression
(sum (raise-to 2) 1 3) inaversonof Scheme using that scoping mechanism:

Scoping Mechanism | Valueof (sum (raise 2) 1 3)

Lexicd

Dynamic

Part b. Suppose E is an expression in which no abstraction has free variables. Can the value of E
be different in a statically-scoped and dynamically-scoped interpreter?

Part c. Can alanguage be lexically scoped without being block structured? Briefly explain your
answer.
6

Problem 6: Desugaring
Oneway to define an or construct is as a user-defined procedure:

(define orl (lanbhda (a b) (if a a b))
An alternative way to define an or construct is via syntactic sugar:
(or2 Eq1 Ep) desugars to (let ((1 Ep)) (if 1 1 Ep)) ; assune 1 fresh

Part a. For each of the following parameter passing mechanismsin an imperative version of
statically-scoped Scheme, explain your answer to the following question:

Are(orl E1 Ep) and(or2 E; Ep) interchangeablefor all expressionse; and E»?

» call-by-vaue
» call-by-name
« cal-by-need

Part b. The desugaring for or 2 has the side condition "assume 1 fresh". What could go wrong
with this desugaring if the side condition were omitted?

Part c. What are the advantages of defining alanguage construct via desugaring rather than
adding it asakernel construct of the language?

Problem 7: Block Structure

Trandate each of the following two block-structured top-level HOFL function declarations into an
equivalent collection of non-block-structured HOFL function declarations.

(def (index-of-bs elt Ist)
(bindrec ((index-loop (fun (i L)
(if (null? L)
-1

(if (=elt (head L))
i
(index-loop (+ i 1) (tail L))))))
(index-loop 1 Ist)))

(def (cartesian-product-bs Istl |st?2)
(bindrec ((prod (fun (Ist)
(if (null? Ist)
(null)
(let ((elt (head Ist)))
(bindrec ((duple (fun (b)
(prepend elt
(prepend b
(enmpty)))))
(map-duple (fun (L)
(if (null? L)
(null)
(prepend
(dupl e (head L))

(map-duple (tail L))))))
(append (map-duple |st?2)
(prod (tail Ist)))))))
(prod Istl)))

PROBLEM 8: Scoping

H&R Block Structure, atax software vendor, has developed a program for computing the cost of
taxable itemsin adynamically scoped imperative call-by-value version of HOILIC. Their program
includes the following top-level definitions:

(def *rate* 0.05)

(def taxed
(fun (anount)
(* amount (+ 1 *rate*))))

(def with-rate
(fun (rate thunk)
(let ((*rate* rate))
(thunk))))

The global variable*r at e* represents the default salestax rate (5%). The proceduret axed Uses
the global value of *r at e* unlessit has been shadowed by alocal binding of *r at e*, such as that
made by wi t h-r at e. This approach is more convenient than having to pass tax rates as explicit
parameters throughout alarge program. For example, consider the expression E¢ax:

(+ (taxed 200)
(+ (wvith-rate 0.075 (lanbda () (taxed 1000)))
(taxed 400)))

This expression evaluates to 210 + 1075 + 420 = 1705.
a. What isthe value of E¢ax 1N a statically-scoped version of HOILIC? Explain.
b. H&R Block Structure asks you to port their code to a lexically-scoped imperative call-by-vaue

HOILIC. Show how to definewi t h-r at e in lexically-scoped HOILIC so that it has the same
behavior asthe abovewi t h-r at e in adynamically scoped HOILIC. Hint: use side effects.

Problem 9: Variables and Scoping

Consider the following expression in statically-scoped HOILEC (the Higher-Order Imperative Language
with Explicit Cells):

(bi ndpar ((a 20)
(z (cell a)))

(bind inc! (abs x
(begin (:=2z (+ (! z) x))
(! z)))
(bindrec ((s (prepend b t))
(t (map inc! s)))
(+ (head t) (head (tail t))))))

Part a. Circledl of the free variable references in the above expression.

Part b. For each bound variable reference, draw an arrow from the reference to the point where the
variableis declared.

Part c. Suppose that the above expression is evaluated in an environment in which
1. map isthe usual higher-order mapping function.
2. dl other free variables areinitially bound to the number 1.

Give the value of the above expression under each of the following parameter passing mechanisms. If the
expression loops, raises an error, or is otherwise undefined, say so.

call-by-vaue:
cal-by-name
call-by-need

Problem 10: The Aggregate Data Style of Programming

Here's a Scheme procedure that prompts the user for a sequence of non-negative integers and
returns the percentage of even integersin that sequence. The user indicates the end of the sequence
by typing anegative integer:

(define even-pct
(lanmbda ()
(letrec ((loop (lanbda (n evens total)
(if (<no0
(/ evens total)
(l oop (read-int)
(if (even? n) (+ evens 1) evens)

(+ total 1))))))
(loop (read-int) 0 0))))

Assume that the nullary r ead- i nt procedure prompts the user (viathe prompt i nt >) for asingle
integer and returns thisinteger. Then here's a sample use of even- pct :

(even-pct)

int> 3

int> 8

int> 2

int> -1

0.66666 ; Two out of the three integers were even.

Part a. Rewriteeven- pct asan aggregate data style program in terms of the higher-order
proceduresgener at e, map, filter,and fol dr. (SeeAppendix A for definitions of these higher
order procedures.) Y ou may not assume the existence of al engt h function for lists; if you need
one, you must defineit interms of gener at e, map, filter,and fol dr.

Part b. Briefly describe two advantages of writing even- pct in the aggregate data style vs. the
original style.

Part c. Briefly describe two disadvantages of writing even- pct in the aggregate data style vs. the
original style.

Part d. Proponents of lazy functional programming languages claim that lazinessis essential for
programming in the signal processing style. Briefly explain their claim.

10

PROBLEM 11: Lazy Data

Let theterm ordered duple (“orduple’ for short) refer to alist of two non-negative integersin
which thefirst integer isless than or equal to the second integer. E.g. (0 2), (1 2) and(2 2)
areall orduples, but (-1 2) and(2 1) arenot orduples. Orduple a is said to be less than duple b
if either

1. (+ (first a) (second a)) islessthan(+ (first b) (second b))
or 2.(+ (first a) (second a)) isequal to(+ (first b) (second b))
but(first a) islessthan(first b).

For example, the first nine orduplesin order are:
(00) (01) (02 (11) (03) (12 (04 (13 (22
Part a. Using Scheme streams, define an infinite sorted stream of all orduples named al | -

or dupl es. You may use whatever auxiliary procedures you find helpful as part of your definition,
including the higher order stream operators in appendix B.

Part b. Pythagorean triples are length-3 lists of the form (ab ¢) where0 < a£ b and & + b2 = 2.
Using al | - or dupl es from Part aand the stream operators from Appendix B, define an infinite
stream pyt hagor eans that contains al Pythagorean triples.

Y ou may assume that the Schemesqgrt function returns an integer when called on a perfect square.
Thatis, (sqrt 25) returnstheinteger 5, not the floating point number 5.0. The Scheme predicate
i nt eger ? testswhether agiven valueis an integer.

Part c. Thedefinition of al | - or dupl es from part awill not work if lists are used in place of
streams. Explain why.

11

Problem 12: Control

Consider the following map2 procedurein aversion of Scheme supporting exception handling (via
rai selt rap/handl e) :

(define map2
(lanbda (f Istl Ist2)
(cond
((and (null? I'stl) (null? Ist2))

()
((or (null? Istl) (null? Ist2))
(raise length (list Istl Ist2)))
(el se (cons (f (car Istl) (car Ist2))
(map2 f (cdr Istl) (cdr 1st2)))))))

map2 Maps atwo-argument procedure over the corresponding elements of two lists:

> (map2 * '(1 2 3) '(45 6))
(4 10 18)

If the two lists do not have the same length, nap2 raisesthel engt h error.

a. Oneway to handle lists of different lengthsisto ignore the elements of the longer list that do not
correspond to elements in the shorter one. Below, write anap2-t r uncat e procedure that hasthis
behavior. For example:

> (map2-truncate * '(1 2 3) '(4 5 6))
(4 10 18)

> (map2-truncate * '(1 2 3 45) '(45 6))
(4 10 18)

> (map2-truncate * '(1 2 3) '(456 7 8))
(4 10 18)

map2-t runcat e should be expressed as an exception handler wrapped around a call to nap2.
(define map2-truncate
(lambda (f Istl Ist2)
<your code goes here>))

b. Another way to handle lists of different lengthsisto return the symbol f ai | ed. Below, write a map2-
fai | procedure that has this behavior. For example:

> (map2-fail * '(123) '(4 5 6))
(4 10 18)

> (map2-fail * '(1 23 45) '(4 5 6))
failed

> (map2-fail * "(1 2 3) '"(456 7 8))
failed

map2- f ai | should be expressed as an exception handler wrapped around a call to nap2.
(define nmap2-fai

(lanbda (f Istl Ist2)
<your code goes here>))

12

c. Inalanguage that supports| abel andj unp constructsin additiontor ai se andt r ap, it is possibleto
simulate handl e by using t r ap in conjunction with | abel andj unp. Show this by writing a procedure
map2-fai |l 2 that :

1. behaves exactly like map-f ai | ;
2. isimplemented by wrapping at r ap (not handl e) handler around acall to map2.

(define map2-fail 2
(lambda (f Istl Ist2)
<your code goes here>))

Problem 13: Church Pairs

HOFL supports both lists and pairs. However, it turns out that pairs need not be primitivein
HOFL; they could be implemented as suggested by the following program:

(program (n)
(bindpar ((cons (fun (a b) (fun (f) (f a b)))
(car (fun (p) (p (fun (xy) x))))
_ (cdr (fun (p) (p (fun (xy) vy)))))
(bindpar ((p (cons (> n 0) n))
_ (g (cons (* n2) (* nn))))
(if (car p)
(car Q)
(+ (cdr p) (cdr g))))))

When called on two arguments, a and b, cons returns aprocedure (cal it p for pair) as aresult.
The pair p isaprocedure of one argument, f , that callsf ona andb. The car procedure takes such
apairp and appliesit to afunction that returns the first of itstwo arguments, while cdr appliesp to
afunction that returns the second of its two arguments. This representation pairsiscaled a
Church pair &fter itsinventor, the logician Alonzo Church.

Part a. Use the substitution model to provethat (car (cons 3 4)) yields 3 for the above
definitions of cons and car . (A similar argument would show that (cdr (cons 3 4)) yields4.)

Part b. Use the environment model to provethat (car (cons 3 4)) yields 3 for the above
definitions of cons and car .

Part c. Would the above definitions work in adynamically scoped version of HOFL? Explain.

Part d. In Scheme, cons, car, and cdr are not only used to define genera pairs, but can also be
used to definelists. Isthe same true in (untyped) HOFL?

Part e. InHOILEC, the imperative version of HOFL with explicit cells, the above definitions can
be extended to support Scheme's pair mutation operatorsset - car! and set - cdr! . Show how
this can be done by filling out the the expressions <fi 1 1_i> below.

(bi ndpar
((cons (fun (a b)
(bindpar ((a-cell (cell a))
(b-cell (cell b)))
(fun (f) (f <Fill_1> <fill_2> <fill_3> <fill_4>))))
(car (fun (p) (p (fun (xy sx sy) x))))

(cdr (fun (p) (p (fun (x 'y sx sy) y))))
(set-car! (fun (p v) (p (fun (x y sx sy) (sx v

)))))
(set-cdr! (fun (p v) (p (fun (x y sx sy) (sy Vv)))))
)

expression using the above definitions)

13

Problem 14: Loop Desugarings

Summer intern Bud Lojack has been asked to add the following whi | e and f or loop constructs to
HOILIC:

(V\hl I € Etest Ebod)
If E,oe, ISTalSE, returns false. If Erese 1STrUE, EXECUtESE,,,, and then evaluates
(V\hl I € Etest Ebody) agaln

(fOf Ilndex Elnlt test date
Introducesthevanablehndl whlchlsmltlallzed tothevaueof E; ;.. Aslong a

Etese 1STrue, eXecutese,,q, and then changes 1., to havethevaue of E, gate. If
Ewese DECOMeESTfalse, thef or loop returnsthef al se value.

For example, here are two different versions of the factorial function written in terms of these
loops:

(def (fact-while n)
(bind ans 1
(begin (while (> n 1)
(begin (<- ans (* n ans))
(<= n(-n1))))

ans)))

(def (fact-for n)

(bind ans 1
(begin (for i 2 (<=i n) (+i 1) (<- ans (* i ans)))
ans)))

Part a. Bud realizesthat both constructs can be implemented viadesugaring. Hereis hisfirst
attempt at adesugaring rule for whi | e:

(While Etese Epoay) desugars to
(if Ecest

(begl n Ebody (V\hl l € Etest Ebody))
fal se)

Bud'srule has abig problem. What isit?

Part b. Help Bud out by writing a correct desugaring rule for whi | e.

Part c. Thefor construct can be implemented via a desugaring that uses the while construct. Give
such a desugaring.

14

Appendix A: Definitions of Higher-Order List Operations

(define zip
(lambda (Istl Ist?2)
(if (or (null? Istl) (null? Ist2))
()
(cons (list (car Istl) (car |st2))
(zip (cdr Istl) (cdr Ist2))))))

(define generate
(lambda (seed next done?)
(if (done? seed)
"0

(cons seed (generate (next seed) next done?)))))

(define map
(1l anbda (f Ist)
(if (null? Ist)
()
(cons (f (car Ist))
(map f (cdr Ist))))))

(define map2
(lambda (f Istl Ist2)
(map (1 anbda (duple)
(f (first duple) (second duple)))
(zip Istl Ist2))))

(define filter
(lambda (pred Ist)
(if (null? Ist)
()
(if (pred (car Ist))
(cons (car Ist) (filter pred (cdr Ist)))
(filter pred (cdr Ist))))))

(define foldr
(lanbda (binop init Ist)
(if (null? Ist)
init
(binop (car Ist) (foldr binop init (cdr Ist))))))

(define foldr2
(lanbda (ternop init Istl Ist2)
(foldr (lanbda (duple result)
(ternop (first duple) (second duple) result))
init
(zip Istl Ist2))))

(define foldl
(lanmbda (binop init |st)
(if (null? Ist)
init
(foldl binop (binop (car Ist) init) (cdr Ist)))))

(define foldl2
(lanmbda (ternop init Istl Ist2)
(foldl (lanbda (duple result)
(ternop (first duple) (second duple) result))
init
(zip Istl lst2))))

15

(define forall?
(lanbda (pred Ist)
(if (null? Ist)
#t
(and (pred (car Ist))
(forall? pred (cdr Ist))))))

(define forall 2?
(lambda (pred Istl |st?2)
(forall? (on-duple pred)
(zip Istl lst2))))

(define exists?
(lanbda (pred Ist)
(if (null? Ist)
#f
(or (pred (car Ist))
(exists? pred (cdr Ist))))))

(define exists2?
(lambda (pred Istl |st?2)
(exi sts? (on-duple pred)
(zip Istl Ist2))))

(define sone
(lambda (pred |st)
(if (null? Ist)
#f
(if (pred (car Ist))
(car |Ist)
(some pred (cdr Ist))))))

(define sone2
(lambda (pred Istl |st?2)
(some (on-duple pred)
(zip Istl Ist2))))

(define on-duple
(1 anbda (f)
(lanbda (dupl e)
(f (first duple) (second duple)))))

Appendix B: Definitions of Higher-Order Stream Operations

(define generate-stream
(lanmbda (seed next done?)
(if (done? seed)
t he- enpt y- st ream
(cons-stream seed
(generate-stream (next seed) next done?)))))

(define map-stream
(lambda (f str)
(if (streamnull? str)
t he- enpt y- st ream
(cons-stream (f (head str))
(map-streamf (tail str))))))

16

(define map-streant
(lambda (f strl str2)
(if (or (streamnull? strl) (streamnull? str2))
t he- enpt y- st ream
(cons (f (head strl) (head str2))
(map-strean? f (tail strl) (tail str2))))))

(define append-streans
(lambda (strl str?2)
(if (streamnull? strl)
str2
(cons-stream (head str1l)
(append-streans (tail strl) str2)))))

(defi ne append- streans-del ayed
(lambda (strl1 del ayed-str?2)
(if (streamnull? strl)
(force del ayed-str2)
(cons-stream (head strl)
(append- streans-del ayed (tail strl) delayed-str2)))))

(define append-stream of - streans
(lambda (str)
(if (streamnull? str)
t he- enpt y- st ream
(append- streans- del ayed
(head str)
(del ay (append-streamof-streans (tail str)))))))

(defi ne append- nap-stream
(lanmbda (f str)
(append- stream of - streans
(rmap-streamf str)

(define filter-stream
(lanmbda (pred str)
(if (streamnull? str)

t he- enpt y- st ream

(if (pred (head str))
(cons-stream (head str)

(filter-streampred (tail str)))

(filter-streampred (tail str))))))

(define foldr-stream
(lambda (op init str)
(if (null? str)
init
(op (head str)
(foldr-streamop init (tail str))))))

(define foldl-stream
(lambda (op init str)
(if (streamnull? str)
init
(foldl-streamop (op init (head str)) (tail str)))))

17

