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First-Class Functions

NOTE: This draft is still missing some examples.

Data and procedures and the values they amass,

Higher-order functions to combine and mix and match,

Objects with their local state, the messages they pass,

A property, a package, a control point for a catch —

In the Lambda Order they are all first-class.

One Thing to name them all, One Thing to define them,

One Thing to place them in environments and bind them,

In the Lambda Order they are all first-class.

–Abstract for the Revised4 Report on the Algorithmic Language Scheme,
MIT Artificial Intelligence Lab Memo 848b, November 1991

1 Functions as First-Class Values

The key feature that sets the functional programming paradigm apart from other paradigms is its
treatment of functions as first-class values. A value is said to be first-class if it can be:

1. named by a variable;

2. passed as an argument to a function;

3. returned as the result of a function;

4. stored in a data structure;

5. created in any context.

You can tell a lot about a programming language by what its first-class values are. For example,
integers are first-class in almost every language. But compound structures like records and arrays
do not always satisfy all four first-class properties. For example, early versions of Fortran did
not allow arrays to be stored in other arrays. Early versions of Pascal allowed records and arrays
to be passed to a function as a value but not to be returned from a function as a result. Modern
versions of C do not allow arrays to be passed as arguments or returned as results from functions,
though they do allow pointers to arrays to be passed in this fashion. When combined with the fact
that the lifetime of a local array ends when the procedure it was declared in is exited, this leads to
numerous subtle bugs that plague C programmers.
In Pascal, functions and procedures satisfy the properties 2 and 5 but not the others. C functions

(more precisely, C function pointers) satisfy properties 1 through 4, but do not satisfy property 5,
since all functions must be declared at top level.
Functions in Ocaml (as well as in Scheme and Haskell) satisfy all five first-class properties.

Unlike C functions, they can be created anywhere in a program by a fun expression. This is
a source of tremendous power; it is hard to overemphasize the importance of fun and first-class
functions. Functions that take other functions as arguments or return them as results are known
as higher-order functions. We will see many examples of the power of higher-order functions in
this course.
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1.1 The Substitution Model

As we have seen, a fun expression is just an Ocaml notation for a function value.. For example,
the fun expression

fun (a,b) -> (a + b) / 2

is pronounced “a function of two arguments that divides the sum of its two arguments by 2”. Such
an expression can be used in the operator position of a function call:

# (fun (a,b) -> (a + b) / 2) 3 7;;

- : int = 5

We can understand the meaning of a function application by the substitution model. In
this model, a function application rewrites to a copy of the function body in which the formal
parameters have been replaced by the actual argument values. For example:

# (fun (a,b) -> (a + b) / 2) 3 7;;

⇒ (3 + 7) / 2

⇒ 10 / 2

⇒ 5

1.2 Naming Functions

By the naming property of first-class function, we can attach a name to the averaging function
using let:

# let avg = fun (a,b) -> (a + b) / 2;;

val avg : int * int -> int = <fun>

# avg (8,10);;

- : int = 9

Note that let does not create a function, it just names one. Rather, it is fun that creates the
function. This fact is unfortunately obscured by the fact that Ocaml supports syntactic sugar for
function definition that hides the fun. That is, the above definition can also be written as:

# let avg (a,b) = (a + b) / 2;;

val avg : int * int -> int = <fun>

Even though the fun is not explicit in the sugared form of definition, it is important to remember
that it is still there!
The fact that functions are values implies that the operator position of a function call can be

an arbitrary expression. E.g. the expression

(if n = 0 then avg else fun (x,y) -> x + y) (3,7)

returns 5 if n evaluates to 0 and otherwise returns 10.

1.3 Passing Functions as Arguments

Functions can be used as arguments to other functions. Consider the following expressions:

# let app_3_5 = fun p -> p (3,5);;

(* Top-level environment now contains binding app_3_5 7→ (fun p -> p (3,5)) *)
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# app_3_5 (fun (x,y) -> x + y);;

⇒ (fun p -> p (3,5)) (fun (x,y) -> x + y)

⇒ (fun (x,y) -> x + y) (3,5)

⇒ 3 + 5

⇒ 8

# app_3_5 (fun (x,y) -> x * y);;

⇒ (fun p -> p (3,5)) (fun (x,y) -> x * y)

⇒ (fun (x,y) -> x * y) (3,5)

⇒ 3 * 5

⇒ 15

# app_3_5 avg

⇒ (fun p -> p (3,5)) (fun (a,b) -> (a + b) / 2)

⇒ (fun (a,b) -> (a + b) / 2) (3,5)

⇒ (3 + 5) / 2

⇒ 8 / 2

⇒ 4

# app_3_5 (fun (a,b) -> a)

⇒ (fun p -> p (3,5)) (fun (a,b) -> a)

⇒ (fun (a,b) -> a) (3,5)

⇒ 3

# app_3_5 (fun (a,b) -> b)

⇒ (fun p -> p (3,5)) (fun (a,b) -> b)

⇒ (fun (a,b) -> b) (3,5)

⇒ 5

1.4 Returning Functions as Results

Functions can be returned as results from other functions. For example, suppose that expt is an
exponentiation function — i.e., expt(b,p) returns the result of raising the base base to the power
p.

# let to_the = fun p -> (fun b -> expt(b,p))

(* Top-level environment now contains binding 7→ fun p -> (fun b -> expt(b,p)) *)

# let sq = to_the 2

⇒ let sq = (fun p -> (fun b-> expt(b,p))) 2

⇒ let sq = (fun b -> expt(b,2))

(* Top-level environment now contains binding sq 7→ (fun b -> expt(b,2)) *)

# sq 5

⇒ (fun b -> expt(b,2)) 5

⇒ expt(5,2)

⇒ 25

# (to_the 3) 5

⇒ ((fun p -> (fun b -> expt(b,p))) 3) 5

⇒ (fun b -> expt(b,3)) 5

⇒ expt(5,3)

⇒ 125

Note that the function resulting from a call to to_the must somehow “remember” the value of
power that to_the was called with. As shown above, this “memory” is completely explained by
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the substitution model, in which to_the returns a specialized copy of (fun b -> expt(b,p)) in
which p is a particular integer.
Observe that the to_the function effectively takes two arguments (power p and base b), but

rather than taking them in a single tuple, it takes them “one at a time”. That is, to_the takes
the power p and returns a function that takes the base b and returns the result of raising b to p.
Functions that take their arguments one at a time in this fashion are know as curried1 functions.
The type of to_the is int -> (int -> int), which can also be written int -> int -> int,

since -> is treated as a right-associative operator. An uncurried (which we will also call “tupled”)
version of to_the would have type int * int -> int. In Ocaml libraries like the List module,
most multi-argument functions are written in a curried style rather than a tupled style. This is
because the result of applying a curried function to one argument yields another function, and
such a function is likely to be useful as an argument to a higher-order function. For example, if
app5 is the function (fun f -> f 5), then the application app5 (to_the 2) makes sense but the
application app5 (expt 2) does not. (We would have to write app5 (fun b -> expt(b,2)).)
As an example of using curried functions, consider a variant of app_3_5 that expects a curried

two-argument function as its argument:

# let app_3_5’ = fun f -> f 3 5;;

val app_3_5’ : (int -> int -> ’a) -> ’a = <fun>

For example:

# app_3_5’ to_the;;

- : int = 125

Ocaml’s infix operators can be “converted” to curried prefix operators by wrapping them in
parentheses. For example, (+) is a function of type int -> int -> int:

# (+) 1 2;;

- : int = 3

We can use these with app_3_5:

# app_3_5’ (+);;

- : int = 8

# app_3_5’ (-);;

- : int = -2

How would we multiply 3 by 5 (be careful – this is tricky!)
With Ocaml’s syntactic sugar, we can dispense with one or more explicit funs in a curried

function declaration. For example, all of the following are equivalent declarations of to_the:

# let to_the = fun p -> fun b -> expt(b,p);;

val to_the : int -> int -> int = <fun>

# let to_the p = fun b -> expt(b,p);;

val to_the : int -> int -> int = <fun>

# let to_the p b = expt(b,p);;

val to_the : int -> int -> int = <fun>

We can write functions that both take functions as arguments and return them as results. For

1named after the logician Haskell Curry, who is also remembered in the name of the programming language

Haskell.
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example, the following flip function swaps the arguments of a curried two-argument function:

# let flip f a b = f b a

val flip : (’a -> ’b -> ’c) -> ’b -> ’a -> ’c = <fun>

# (flip (-)) 3 2;;

- : int = -1

# (flip to_the) 5 2;;

- : int = 25

# app_3_5’ (flip (<));;

- : bool = false

We can use the “memory” of substitution to create functions like app_3_5’ via the following
function:2

# let church_pair = fun x -> fun y -> fun f -> f x y

For example, church_pair 3 5 returns a function equivalent to app_3_5’ and and church_pair 17 32

returns a function equivalent to fun f -> f 17 32.
Because church_pair creates a function that remembers two values, it is effectively a pairing

operator. That is, church_pair x y in many ways acts like the tuple (x,y). For example, we
can write functions church_fst and church_snd that extract the left and right elements of this
functional “pair”:

# let church_fst p = p (fun a b -> a);;

val fst : ((’a -> ’b -> ’a) -> ’c) -> ’c = <fun>

# church_fst (church_pair 17 32);;

⇒ (fun p -> p (fun a b -> a)) ((fun x y -> fun f -> f x y) 17 32)

⇒ (fun p -> p (fun a b -> a)) (fun f -> f 17 32)

⇒ (fun f -> f 17 32) (fun a b -> a)

⇒ (fun a b -> a) 17 32

17

How would church_snd be defined? What is the value of (church_pair 17 32) (+)?
Since any data structure can be made out of pairs, it is not surprising that any data structure

can be implemented in terms of functions. In fact, you should start thinking of functions as just
another kind of data structure! This semester we will see many examples of how abstract data
types can be elegantly represented by functions.
Note that functions with “memory” are very similar to methods in object-oriented languages.

Indeed, later in the semester we will see how numerous aspects of the object-oriented programming
paradigm can be modeled using first-class functions.

1.5 Storing Functions in Data Structures

Functions can be stored in data structures, like tuples and lists:

2We name the function church pair because it is a functional encoding of pairs invented by Alonzo Church.
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# let fun_tuple = (to_the, (+), app_3_5’, church_pair);;

val fun_tuple :

(int -> int -> int) * (int -> int -> int) * ((int -> int -> ’a) -> ’a) *

(’b -> ’c -> (’b -> ’c -> ’d) -> ’d) = (<fun>, <fun>, <fun>, <fun>)

# match fun_tuple with (f,g,h,k) -> (h f, k 1 2 g);;

- : int * bool = (125, true)

1.6 Creating Functions

Finally, functions can be created in any context. In many programming languages, such as C,
functions can only be defined at “top-level”; it is not possible to declare one function inside of
another function. But as seen above in the to_the and pair examples, the ability to specialize a
function to “remember” values in its body hinges crucially on the ability to have one fun nested
inside another. In this pattern, applying the outer fun can cause values to be substituted into
the body of the inner fun, allowing the resulting abstraction to “remember” the values of the
parameters to the outer one.

2 Higher-Order List Functions

One of the commandments of computer science is thou shalt abstract over common patterns of

computation. Upon seeing that two code fragments share similar structure, a good programmer
will write a function whose body captures the commonalities and whose parameters express what is
different between the fragments. Then the two code fragments can be expressed as two invocations
of the same function on different arguments. For example, suppose we see the following pattern of
pair addition:

. . . let ((a,b),(c,d)) = (p,q) in let (p’,q’) = (a+c,b+d) in . . .

. . . let ((w,x),(y,z)) = (r,s) in let (r’,s’) = (w+y,x+z) in . . .

Then we should introduce a function that captures this pattern:

let add_pairs ((x1,y1),(x2,y2)) = (x1+x2,y1+y2)

. . . let (p’,q’) = add_pairs (p,q) in . . .

. . . let (r’,s’) = add_pairs (r,s) in . . .

First-class functions are essential tools for abstracting over common idioms. Often what differs
between two similar patterns can only be expressed with function parameters. For example, to
capture the pattern in

. . . let ((a,b),(c,d)) = (p,q) in let (p’,q’) = (a+c,b+d) in . . .

. . . let ((w,x),(y,z)) = (r,s) in let (r’,s’) = (w-y,x-z) in . . .

we need to abstract over the fact that + is used in the first case and - is used in the second. We
can do this with a functional argument:

let glue_pairs f ((x1,y1),(x2,y2)) = (f x1 x2, f y1 y2)

. . . let (p’,q’) = glue_pairs (+) (p,q) in . . .

. . . let (r’,s’) = glue_pairs (-) (r,s) in . . .

In this section we explore how first class functions enable abstracting over common list process-
ing idioms. We will use these abstractions heavily throughout the rest of the semester.
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2.1 List Transformation: Mapping

Consider the following map_sq function:

let rec map_sq xs =

match xs with

[] -> []

| x::xs’ -> (x*x)::(map_sq xs’)

If we want to instead increment each element of the list rather than square it, we would write the
function map_inc:

let rec map_inc xs =

match xs with

[] -> []

| x::xs’ -> (x+1)::(map_inc xs’)

The idiom of applying a function to each element of a list is so common that it deserves to be
captured into a function, which is traditionally called map:

let rec map f xs =

match xs with

[] -> []

| x::xs’ -> (f x)::(map f xs’)

Given map, it is easy to define map_sq and map_inc:

# let map_sq xs = map (fun x -> x*x) xs;;

val map_sq : int list -> int list = <fun>

# let map_inc ys = map (fun x -> x+1) ys;;

val map_inc : int list -> int list = <fun>

Interestingly, we can define map_sq and map_inc without naming the list arguments:

# let map_sq = map (fun x -> x*x);;

val map_sq : int list -> int list = <fun>

# let map_inc = map (fun x -> x+1);;

val map_inc : int list -> int list = <fun>

In these examples, we are partially applying the curried map function by supplying it only with
its function argument. It returns a function that expects the second argument (the input list)
and returns the resulting list. There is no need to name the input list. These simplifications are
instances of a general simplification known as eta-reduction, which says that fun x -> f x can
be simplified to f for any function f.
It’s not necessary to name mappers. As show in Fig. 1, we can use map directly wherever we

need it. These examples highlight that map can be used on any type of input and output lists.
Indeed, the type of map inferred by Ocaml is:

val map : (’a -> ’b) -> ’a list -> ’b list

So map uses an ’a -> ’b function to map an ’a list to a ’b list.
The examples also show how partially applied curried functions (such as ((-) 1), ((flip (-)) 1),

and (glue_pairs (+))) can be used as functional arguments to map. This is a benefit of defining
multiple argument functions in curried form rather than tupled form. Sometimes we introduce
new curried functions because they are useful in generating functional arguments to higher-order
functions like map. For example, there is no prefix consing function in Ocaml((::) does not work),
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# map ((-) 1) [6;4;3;5;8;7;1];;

- : int list = [-5; -3; -2; -4; -7; -6; 0]

# map ((flip (-)) 1) [6;4;3;5;8;7;1];;

- : int list = [5; 3; 2; 4; 7; 6; 0]

# map (fun z -> (z mod 2) = 0) [6;4;3;5;8;7;1];;

- : bool list = [true; true; false; false; true; false; false]

# map (fun w -> (w, w*w)) [6;4;3;5;8;7;1];;

- : (int * int) list = [(6, 36); (4, 16); (3, 9); (5, 25); (8, 64); (7, 49); (1, 1)]

# map (fun ys -> 6::ys) [[7;2;4];[3];[];[1;5]];;

- : int list list = [[6; 7; 2; 4]; [6; 3]; [6]; [6; 1; 5]]

# map (glue_pairs (+)) [((1,2),(3,4)); ((8,5),(6,7))];;

- : (int * int) list = [(4, 6); (14, 12)]

# map app5 (map to_the [0;1;2;3;4]);;

- : int list = [1; 5; 25; 125; 625]

Figure 1: Examples of map.

so we define

# let cons x xs = x :: xs;;

val cons : ’a -> ’a list -> ’a list = <fun>

Now we can write

# let mapcons x ys = map (cons x) ys;;

val mapcons : ’a -> ’a list list -> ’a list list = <fun>

# mapcons 6 [[7;2;4];[3];[];[1;5]];;

- : int list list = [[6; 7; 2; 4]; [6; 3]; [6]; [6; 1; 5]]

Programmers new to the notion of higher-order functions make some predictable mistakes when
using higher order functions like map. Here’s an incorrect attempt to define a function that doubles
each numbe in a list that is often seen from such programmers:

let map_dbl xs = map (x * 2) xs (* INCORRECT DECLARATION *)

There are two main things wrong with this definition:

1. The variable x is not declared anywhere and so is undefined. Perhaps there is a naive expec-
tation that Ocaml will understand that x is intended to range over the elements of xs, but
it won’t. Instead, Ocaml will determine that x is a is a so-called free variable and will flag
it as an error.

2. Even in the case where x happens to be declared earlier to be an integer that’s available to
this definition, the expression (x * 2) would have type int. But the first argument to map
must have a type of the form ’a -> ’b – i.e., it must be a function. In map_dbl, it should
have type int -> int, not int.

Both problems can be fixed by introducing a function value using the fun syntax:
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let map_dbl xs = map (fun x -> x * 2) xs (* CORRECT DECLARATION *)

The fun x -> . . . introduces a parameter x that is bound in the body expression x * 2, so x is no
longer a free variable. And fun creates a value with function type, which resolves the type problem.
For beginners, a good strategy is start by using fun explicitly in any situation that requires a

functional argument or result. For example, it is always safe to invoke map using the template

map (fun x -> body) list

In this template, we think of x as being bound to each of the elements of list one by one to
compute body. The answers are then collected into the resulting list. Once a definition is cor-
rect, it can sometimes be made more concise by using eta reduction and/or partial applications
of curried functions to simplify the function parameter. For example, fun x -> x * 2 is equiva-
lent to fun x -> (( * ) 2) x3, which is equivalent to (( * ) 2), and the function declaration
let map_dbl xs = map (( * ) 2) xs is equivalent to let map_dbl = map (( * ) 2).
Sometimes it’s helpful to map over two lists at the same time. We accomplish this via map2:

let rec map2 f xs ys =

match (xs,ys) with

([], _) -> []

| (_, []) -> []

| (x::xs’,y::ys’) -> (f x y) :: map2 f xs’ ys’

For example:

# map2 (+) [1;2;3] [40;50;60];;

- : int list = [41; 52; 63]

# map2 (fun b x -> if b then x+1 else x*2) [true;false;false;true] [3;4;5;6];;

- : int list = [4; 8; 10; 7]

# map2 pair [1;2;3;4] [’a’;’b’;’c’];;

- : (int * char) list = [(1, ’a’); (2, ’b’); (3, ’c’)]

As illustrated in the last example, map2 ignores extra elements if one list is longer than the other.
This is not the only way to handle lists with unequal length. Ocamlprovides a List.map2 function
that instead raises an exception if the list have unequal length. Ocaml’s List.map function is the
same as the map defined above.
We can generalize the last example to the handy zip function:

# let zip (xs,ys) = map2 pair xs ys;;

val zip : ’a list * ’b list -> (’a * ’b) list = <fun>

2.2 List Transformation: Filtering

The map function is a list transformer: it takes a list as an input and returns another list as an
output. Another list transformation is filtering, in which a given list is processed into another list
that contains those elements from the input list that satisfy a given predicate (in the same relative
order). While mapping produces an output list that has the same length as the input, filtering
produces an output list whose lenght is less than or equal to the length of the input list.
As an example, consider the following evens procedure, which filters all the even elements from

a given list:

3We write ( * ) rather than (*) because the later would be misinterpreted by Ocaml as the beginning of a

comment!
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let rec evens xs =

match xs with

[] -> []

| x::xs’ -> if (x mod 2) = 0 then x::evens xs’ else evens xs’

This is an instance of a more general filtering idiom, in which a predicate p determines which
elements of the given list should be kept in the result:

# let rec filter p xs =

match xs with

[] -> []

| x :: xs’-> if p x then x :: filter p xs’ else filter p xs’

val filter : (’a -> bool) -> ’a list -> ’a list

For example:

# filter (fun x -> (x mod 2) = 0) [6;4;3;5;8;7;1];;

- : int list = [6; 4; 8]

# filter ((flip (>)) 4) [6;4;3;5;8;7;1];;

- : int list = [6; 5; 8; 7]

# filter (fun x -> (abs (x - 4)) >= 2) [6;4;3;5;8;7;1];;

- : int list = [6; 8; 7; 1]

The filter function is available in the Ocaml library as List.filter.

2.3 List Accumulation: Folding

2.3.1 foldr Encapsulates the Divide/Conquer/Glue Idiom on Lists

A common way to consume a list is to recursively accumulate a value from back to front starting
at the base case and combining each element with the result of processing the rest of the elements.
For example, here is an integer list summation function that uses this strategy:

# let rec sum xs =

match xs with

[] -> 0

| (x::xs’) -> x + sum xs’

val sum : int list -> int = <fun>

This pattern of list accumulation is captured by the foldr function:

# let rec foldr binop null xs =

match xs with

[] -> null

| x :: xs’ -> binop x (foldr binop null xs’)

val foldr : (’a -> ’b -> ’b) -> ’b -> ’a list -> ’b

Given a list of elements xs = x1, x2, . . . , xk, a binary operator b, and a null value n, foldr b n xs

yields the value (b x1 (b x2 (. . . (b xk n) . . .))). The name foldr comes from the fact that this
function folds (combines) the elements of the list from right to left.

foldr is “the mother of all list recursive functions” because it captures the idiom of the di-
vide/conquer/glue problem-solving strategy on lists. In the general case, foldr divides the list into
head and tail (x :: xs’), conquers the tail by recursively processing it (foldr binop null xs’),
and glues the head to the result for the tail via binop. It is also necessary to specify the result for
the empty case (null). Because divide/conque/glue is an incredibly effective strategy for process-
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ing lists, almost any list recursion can be expressed by supplying foldr with an appropriate binop
and null (although in some cases we’ll see that these can be rather complex).
A strategy for defining a list recursive function fcn in terms of foldr is to begin with the

template:

let fcn xs = foldr (fun x ans -> body) null xs

where null is the result of fcn [] and body needs to be fleshed out. For example to define a sum
function that sums the elements of a list, we begin with

let sum xs = foldr (fun x ans -> body) 0 xs.

In (fun x ans -> body), x stands for the current element being processed (the head of the
list) and ans stands for the result of recursively processing the tail of the list. For example, in
sums [7;3;6;4], the outermost x is 7 and the outermost ans is 3 + 6 + 4 = 13. We want to
combine these with + to yield 20. So the fleshed out definition is:

let sum xs = foldr (fun x ans -> x + ans) 0 xs.

In this case, we can write the definition more succinctly as:

let sum xs = foldr (+) 0 xs.

Consider another example: the function all_positive, which returns true if all elements of a
list are positive and false otherwise. Since all_positive [] is true (each of the zero numbers
in [] is positive), our template is:

let all_positive xs = foldr (fun x ans -> body) true xs.

In (fun x ans -> body), x will stand for an element of the list (a number) and ans will stand for
the result of processing the rest of the list (a boolean indicating if all the rest of the elements are
positive). The appropriate body to combine x and ans in this case is (x > 0) && ans, yielding
the definition:

let all_positive xs = foldr (fun x ans -> (x > 0) && ans) true xs.

Let’s do one more example: the list reversal function reverse. Since reverse [] is [], our
template is:

let reverse xs = foldr (fun x ans -> body) [] xs.

In our combining function, x will stand for an element of the list, and ans will stand for the result
of reversing the rest of the elements in the list. For example, in processing [1;2;3;4], x will be
1, and ans will be [4;3;2]. How do we combine these to yield the desired result [4;3;2;1]? Via
[4;3;2]@[1]. Generalizing this concrete example yields the final definition:

let reverse xs = foldr (fun x ans -> ans @ [x]) [] xs.

Figs. 2–3 show examples of using foldr to define a variety of other functions. Note how classical
list processing functions like append, flatten, and mapcons, and even higher-order list functions
like map and filter can be defined in terms of foldr.
We can make many of the definitions in Figs. 2–3 even shorter by using eta reduction to remove

the list argument. For example, rather than writing

let prod ns = foldr ( * ) 1 ns

we could instead write
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# let prod ns = foldr ( * ) 1 ns;;

val prod : int list -> int = <fun>

# prod [6;4;3;5;8;7;1];;

- : int = 20160

# let minlist ns = foldr min max_int ns;;

val minlist : int list -> int = <fun>

# minlist [6;4;3;5;8;7;1];;

- : int = 1

# let maxlist ns = foldr max min_int ns;;

val maxlist : int list -> int = <fun>

# maxlist [6;4;3;5;8;7;1];;

- : int = 8

# let all_even ns = foldr (fun x ans -> ((x mod 2) = 0) && ans) true ns;;

val all_even : int list -> bool = <fun>

# all_even [6;4;3;5;8;7;1];;

- : bool = false

# let exists_positive ns = foldr (fun x ans -> (x > 0) || ans) false ns;;

val exists_positive : int list -> bool = <fun>

# exists_positive [-3;-1;-2;-5];;

- : bool = false

# exists_positive [-3;-1;2;-5];;

- : bool = true

# let exists_even ns = foldr (fun x ans -> ((x mod 2) = 0) || ans) false ns;;

val exists_even : int list -> bool = <fun>

# exists_even [6;4;3;5;8;7;1];;

- : bool = true

Figure 2: foldr examples, part 1
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# let cons x xs = x :: xs;;

val cons : ’a -> ’a list -> ’a list = <fun>

# let append xs ys = foldr cons ys xs;;

val append : ’a list -> ’a list -> ’a list = <fun>

# append [7;2;4] [3;1;5];;

- : int list = [7; 2; 4; 3; 1; 5]

# let flatten xss = foldr append [] xss;; (* could also write foldr append (@) xss *)

val flatten : ’a list list -> ’a list = <fun>

# flatten [[7;2;4];[3];[];[1;5]];;

- : int list = [7; 2; 4; 3; 1; 5]

# let mapcons x yss = foldr (fun ys ans -> (x::ys) :: ans) [] yss;;

val mapcons : ’a -> ’a list list -> ’a list list = <fun>

# mapcons 6 [[7;2;4];[3];[];[1;5]];;

- : int list list = [[6; 7; 2; 4]; [6; 3]; [6]; [6; 1; 5]]

# let subsets xs = foldr (fun x ans -> ans @ (mapcons x ans)) [[]] xs;;

val subsets : ’a list -> ’a list list = <fun>

# subsets [1;2;3];;

- : int list list = [[]; [3]; [2]; [2; 3]; [1]; [1; 3]; [1; 2]; [1; 2; 3]]

# let map f xs = foldr (fun x ans -> (f x) :: ans) [] xs;;

val map : (’a -> ’b) -> ’a list -> ’b list = <fun>

# let filter p xs = foldr (fun x ans -> if p x then x :: ans else ans) [] xs;;

val filter : (’a -> bool) -> ’a list -> ’a list = <fun>

Figure 3: foldr examples, part 2
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let prod = foldr ( * ) 1

Unfortunately, in some cases eta reduction interacts badly with Ocaml’s type reconstruction.
For example, consider this alternative defintion of flatten from Fig. 3:

# let flatten’ = foldr (@) [];;

val flatten’ : ’_a list list -> ’_a list = <fun>

Note the presence of the type variable ’_a in place of the usual type variable ’a. This is a restricted
type variable that can denote exactly one type in the rest of the program. For instance, suppose
we first use flatten’ on an int list list:

# flatten’ [[7;2;4];[3];[];[1;5]];;

- : int list = [7; 2; 4; 3; 1; 5]

Now ’_a is bound to int list and flatten’ can only be applied to lists of integer lists. Any
other application is an error:

# flatten’ [[’a’;’b’;’c’];[’d’];[];[’e’;’f’]];;

Characters 11-14:

flatten’ [[’a’;’b’;’c’];[’d’];[];[’e’;’f’]];;

^^^

This expression has type char but is here used with type int

In cases where eta reduction introduces restricted type variables, we can often improve type recon-
struction by putting back in the extra argument:

# let flatten xss = foldr append [] xss;; (* could also write foldr append (@) xss *)

val flatten : ’a list list -> ’a list = <fun>

# flatten [[7;2;4];[3];[];[1;5]];;

- : int list = [7; 2; 4; 3; 1; 5]

# flatten [[’a’;’b’;’c’];[’d’];[];[’e’;’f’]];;

- : char list = [’a’; ’b’; ’c’; ’d’; ’e’; ’f’]

2.3.2 for all, exists, and some

The all/exists examples in Fig. 2 suggest some higher-order list functions for determining if all or
some elements in a list satsify a predicate. For example, the following for_all function determines
if all elements of a list satsify a predicate p:

# let for_all p xs = foldr (&&) true (map p xs)

val for_all : (’a -> bool) -> ’a list -> bool = <fun>

# let all_positive = for_all ((flip (>)) 0);;

val all_positive : int list -> bool = <fun>

# let all_even = for_all (fun x -> (x mod 2) == 0);;

val all_even : int list -> bool = <fun>

# all_positive [6;4;3;5;8;7;1];;

- : bool = true

# all_even [6;4;3;5;8;7;1];;

- : bool = false

The following exists function determines if at least one element of a given list satisfies a
predicate p:
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# let exists p xs = foldr (||) false (map p xs)

val exists : (’a -> bool) -> ’a list -> bool = <fun>

# let exists_positive = exists ((flip (>)) 0);;

val exists_positive : int list -> bool = <fun>

# exists_positive [-3;-1;2;-5];;

- : bool = true

# let exists_even = exists (fun x -> (x mod 2) == 0);;

val exists_even : int list -> bool = <fun>

# exists_even [7;1;3;9;5];;

- : bool = false

Sometimes we want the first value from a list that satisfies a predicte. Since a list may not
contain such a value, we need some way of expressing that there might not be any. The Ocaml

’a option type is used in situations like this. The Some constructor, with type ’a -> ’a option,
is used to inject a value into the option type, while the None constructor, with type ’a option, is
used to indicate that the option type has no value. Pattern matching is used to distinguish these
cases. For example:

# map (fun x -> match x with

Some(v) -> v*v

| None -> 0)

[Some 3; None; Some 5; Some 2; None];;

- : int list = [9; 0; 25; 4; 0]

Using the option type, we can declare a higher-order function that returns Some of the first
element of the list satisfying the predicate and None if there isn’t one:

# let some p = foldr (fun x ans -> if p x then Some x else ans) None;;

val some : (’a -> bool) -> ’a list -> ’a option = <fun>

# some ((flip (>)) 0) [-5; -2; -4; 3; -1];;

- : int option = Some 3

# some ((flip (>)) 0) [-5; -2; -4; -3; -1];;

- : int option = None

Just because we can define a list processing function in terms of foldr doesn’t mean that it’s
a good idea to do so. For example, the for_all, exists, and some functions given above aren’t
very efficient because they necessarily test the predicte on all elements of the list. For example, if
we apply exists_even to a thousand element list whose first element is even, it will still check all
other 999 elements to see if they’re even! In these cases, it’s better to hand-craft versions of these
functions that perform the minimum number of predicate tests:

let rec for_all p xs =

match xs with

[] -> true

| x::xs’ -> (p x) && for_all p xs’

let rec exists p xs =

match xs with

[] -> false

| x::xs’ -> (p x) || exists p xs’
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let rec some p xs =

match xs with

[] -> None

| x::xs’ -> if p x then Some x else some p xs’

2.3.3 More foldr Examples

Although almost any list processing function can be written in terms of foldr, it may take a fair
bit of cleverness to do this, and sometimes definitions can be rather complex. We illustrate this in
the context of a few more examples.

tails

Consider a tails function that returns a list of a given list and all of its successive tails:

# tails [1;2;3;4];;

- : int list list = [[1; 2; 3; 4]; [2; 3; 4]; [3; 4]; [4]; []]

# tails [];;

- : ’_a list list = [[]]

To define tails in terms of foldr, we can fill in the followingtemplate:

let tails2 xs = foldr (fun x ans -> body) [[]] xs

The null value of [[]] is determined by the expected answer for tails []. The rest of the template
is suggested by the structure of foldr. In (fun x ans -> body), x will be bound to the head
of the list and ans will be bound to the result of recursively processing the tail. For example,
when this function is applied to the first element of [1;2;3], x will be bound to 1, and ans

will be bound to [[2; 3]; [3]; [] (i.e., the result of processing [2;3]). How do we combine
1 with [[2; 3]; [3]; []] to produce [[1; 2; 3]; [2; 3]; [3]; []]? We need to create the
list [1;2;3] and prepend it to ans. We can create [1;2;3] by prepending 1 onto the first element
of ans. This leads to the following defintion:

let tails2 xs = foldr (fun x ans -> (x::List.hd ans)::ans) [[]] xs

isSorted

Need more discussion of isSorted
The isSorted determines if a list of elements is sorted from least to greatest according to

<=. E.g., isSorted [1;3;4;7;9] is true while oisSorted [1;3;7;4;9] is false. Can we define
isSorted using foldr and friends? Yup! Here is one such defintion:

let isSorted xs = snd (foldr (fun x (opt,ans) ->

match opt with

None -> (Some x, true)

| Some y -> (Some y, (x <= y) && ans))

(None, false)

xs)

But there are other strategies. For example, suppose that we zip the list together with its tail
to give a list of pairs:

# zip([1;3;7;4;9], List.tl [1;3;7;4;9])

- : (int * int) list = [(1, 3); (3, 7); (7, 4); (4, 9)]

Then a non-empty list is sorted if and only the first element of each pair is <= to the second.
Since we can’t take the tail of an empty list, we need to handle that case specially. The resulting
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definition is:4

let isSorted xs =

match xs with

[] -> true

| _ -> for_all (fun (a,b) -> (a <= b)) (zip (xs, List.tl xs))

We can replace (fun (a,b) -> (a <= b)) by uncurry (<=) if we introduce the following defini-
tion:

# let uncurry f (a,b) = f a b;;

val uncurry : (’a -> ’b -> ’c) -> ’a * ’b -> ’c = <fun>

insert

2.3.4 foldr’

Need discussion here.

let rec foldr’ ternop null xs =

match xs with

[] -> null

| x :: xs’ -> ternop x xs’ (foldr’ ternop null xs’)

val foldr’ : (’a -> ’a list -> ’b -> ’b) -> ’b -> ’a list -> ’b

let isSorted2 xs = foldr’ (fun x xs’ ans -> ans && (xs’ = [] || x < List.hd xs’)) true xs

2.3.5 foldr2 and Friends

Need discussion here.
A foldr-like function is available in the Ocaml List module via the name List.fold_right.

However, it differs from foldr in the order in which it takes its arguments. As shown by the
following type, it takes its arguments in the following order: (1) (curried) binary operator (2) list
to be folded and (3) null value:

# List.fold_right;;

- : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b = <fun>

The List module provides functions List.for_all and List.exists that are equivalent to the
for_all and exists defined above.

2.4 List Accumulation: foldl

There are situations where we want to accumulate the values in a list from left to right rather than
from right to left. This is accomplished by foldl:

# let rec foldl ans binop xs =

match xs with

[] -> ans

| x :: xs’ -> foldl (binop ans x) binop xs’

val foldl : ’a -> (’a -> ’b -> ’a) -> ’b list -> ’a

4The function List.tl extracts the tail of a list. Its companion List.hd extracts the head. Although it is always

possible to extract the head and tail by pattern matching, these are sometimes convenient.
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For associative and commutative operators like + and *, foldl calculates the same final answer as
a corresponding foldr, though the intermediate values may be different. But for other operators,
it behaves differently.

Need more discussion here.

2.5 List Generation: gen

In addition to transforming lists, there are useful abstractions for producing and consuming lists.
A handy abstraction for list generation is the following gen function:

# let rec gen next isDone seed =

if isDone seed then

[]

else

seed :: (gen next isDone (next seed))

val gen : (’a -> ’a) -> (’a -> bool) -> ’a -> ’a list

This function generates a sequence of values starting with an initial seed value, and uses the next
function to generate the next value in the sequence from the current one. Generation continues
until the isDone predicate is satisfied. At that point, all the elements in the sequence (except for
the one satisfying the isDone predicate) are returned in a list.
Here are some sample uses of gen:

# let range lo hi = gen ((+) 1) ((<) hi) lo ;;

val range : int -> int -> int list = <fun>

# range 7 19;;

- : int list = [7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19]

# gen ((flip (/)) 2) ((=) 0) 100;;

- : int list = [100; 50; 25; 12; 6; 3; 1]

# gen List.tl ((=) []) [1;2;3;4;5];; (* List.tl takes the tail of a list *)

- : int list list = [[1; 2; 3; 4; 5]; [2; 3; 4; 5]; [3; 4; 5]; [4; 5]; [5]]

The gen function can be viewed as an iteration abstraction that lists together all the interme-
diate states of an iteration. The next function indicates how to get from the current state to the
next state, and the isDone function indicates when the iteration is done. The following examples
show how iterative factorial and Fibonacci computations can be expressed with gen:

# let fact_states n = gen (fun (n,a) -> (n-1,n*a)) (fun (n,a) -> n = 0) (n,1)

val fact_states : int -> (int * int) list = <fun>

# fact_states 5;;

- : (int * int) list = [(5, 1); (4, 5); (3, 20); (2, 60); (1, 120)]

# let fibsTo n = gen (fun (a,b) -> (b,a+b)) (fun (a,b) -> a > n) (0,1)

val fibsTo : int -> (int * int) list = <fun>

# fibsTo 13;;

- : (int * int) list = [(0, 1); (1, 1); (1, 2); (2, 3); (3, 5); (5, 8); (8, 13)]

# map fst (fibsTo 100);;

- : int list = [0; 1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89]

The following iterate function is similar to gen but only returns the final state of an iteration
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rather than a list of all states:

let iterate next isDone state =

if isDone state then

state

else iterative next isDone (next state)

For example:

# let facti n = snd (iterate (fun (x,a) -> (x-1,x*a)) (fun (x,_) -> x = 0) (n,1))

val facti : int -> int = <fun>

# facti 5;;

- : int = 120

# let fibi n =

match iterate (fun (x,a,b) -> (x-1,b,a+b)) (fun (x,_,_) -> x = 0) (n,0,1) with

(_,ans,_) -> ans

val fibi : int -> int = <fun>

# fibi 10;;

- : int = 55

2.6 List Generation: ana

We can generalize gen into a more flexible function known as an anamorphism:

# let rec ana g seed =

match g seed with

None -> []

| Some(h,seed’) -> h:: ana g seed’

val ana : (’a -> (’b * ’a) option) -> ’a -> ’b list = <fun>

Need more discussion

19



3 Function Composition

Just as there are standard ways of combining two integers to yield another integer (e.g., + and *)
and standard ways of combining two booleans to yield a boolean (e.g., &&, ||), there are standard
ways of combining two functions to yield a another function. The most important of these is
function composition. In mathematics, if f and g are two functions, then the composition of f
and g, written f ◦ g, is defined as follows:

(f ◦ g)(x) = f(g(x))

If we depict functions as boxes that take their inputs from their left and produce their outputs to
the right, composition would be depicted as follows:

(

f
x f(x)

)

◦

(

g
y g(y)

)

= g f
x g(x) f(g(x))

Note that the left-to-right nature of the graphical depiction of the function boxes requires inverting
the order of the function boxes when they are composed. In contrast, the right-to-left nature of
the textual notation requires no inversion.
Composition is straightforward to define in Ocaml:

let o f g = fun x -> f (g x)

val o : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b = <fun>

Here we have defined o as a curried prefix composition operator. Not that we could have also
defined it without any explicit fun via let o f g x = f (g x). Here are some examples involving
composition:

# let inc = (+) 1;;

val inc : int -> int = <fun>

# let dbl = ( * ) 2;;

val dbl : int -> int = <fun>

# (o inc dbl) 10;;

- : int = 21

# (o dbl inc) 10;;

- : int = 22

Just as addition, multiplication, conjunction, and disjunction all have identity values (respec-
tively, 0, 1, true, and false), so too does composition have an identity value — the identity
function:

let id x = x

Graphically, the identity function is a function box that passes its argument unaltered:

x x

You should convince yourself that (o f id) and (o id f) are functions that are behaviorally
indistinguishable from f. This is easy to see from the graphical representation:

f
x f(x)

f
x f(x)
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It is common to compose functions with themselves. For example:

# let twice f = o f f;;

val twice : (’a -> ’a) -> ’a -> ’a = <fun>

(* (twice f) behaves like fun x -> f (f x) *)

# let thrice f = o f (twice f);;

val thrice : (’a -> ’a) -> ’a -> ’a = <fun>

(* (thrice f) behaves like fun x -> f (f (f x)) *)

Numerous examples involving twice and thrice are shown in Fig. 4.

# (twice inc) 10;; (* equivalent to inc (inc 10) *)

- : int = 12

# (twice dbl) 10;; (* equivalent to dbl (dbl 10) *)

- : int = 40

# (thrice inc) 10;; (* equivalent to inc (inc (inc 10)) *)

- : int = 13

# (thrice dbl) 10;; (* equivalent to dbl (dbl (dbl 10)) *)

- : int = 80

# (twice (twice inc)) 0;; (* equivalent to (twice inc) ((twice inc) 0) *)

- : int = 4

# (twice (thrice inc)) 0;; (* equivalent to (thrice inc) ((thrice inc) 0) *)

- : int = 6

# (thrice (twice inc)) 0;;

(* equivalent to (twice inc) ((twice inc) ((twice inc) 0)) *)

- : int = 6

# (thrice (thrice inc)) 0;;

(* equivalent to (thrice inc) ((thrice inc) ((thrice inc) 0)) *)

- : int = 9

# ((twice twice) inc) 0;; (* equivalent to (twice (twice inc)) 0 *)

- : int = 4

# ((twice thrice) inc) 0;; (* equivalent to (thrice (thrice inc)) 0 *)

- : int = 9

# ((thrice twice) inc) 0;; (* equivalent to (twice (twice (twice inc))) 0 *)

- : int = 8

# ((thrice thrice) inc) 0;; (* equivalent to (thrice (thrice (thrice inc))) 0 *)

- : int = 27

Figure 4: Examples involving the twice and thrice functions.

More generally, the n-fold composition of a function f , written f n, is the result of composing n

copies of f . (f 0, the zero-fold composition of f , is just the identity function.) Here is a graphical
depiction of fn :

f f · · · f
x f0(x) f1(x) f2(x) fn−1(x) fn(x)

In Ocaml,, n-fold composition can be expressed via the following n_fold function:
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let rec n_fold n f =

if n = 0 then

id

else

o f (n_fold (n-1) f)

For example:

# n_fold 5 inc 0;;

- : int = 5

# n_fold 3 dbl 1;;

- : int = 8

# n_fold 3 (fun x -> x * x) 2;;

- : int = 256

# n_fold 0 (fun x -> x * x) 17;;

- : int = 17

Note that the twice and thrice functions from above can be defined in terms of n_fold:

# let twice f = n_fold 2 f;;

val twice : (’a -> ’a) -> ’a -> ’a = <fun>

# let thrice f = n_fold 3 f;;

val thrice : (’a -> ’a) -> ’a -> ’a = <fun>

4 Church Numerals

The celebrated logician Alonzo Church (who invented the lambda calculus, a formal mathematical
system upon which functional programming is based) observed that n-fold composition functions
can be viewed as numerals in the sense that it is possible to perform arithmetic on them (e.g.
addition, multiplication, exponentiation, etc.). Such numerals are called Church numerals in his
honor. We shall use int2ch and ch2int to convert between Ocaml integers and church numerals:

# let int2ch = n_fold (* synonym for n_fold *)

val int2ch : int -> (’a -> ’a) -> ’a -> ’a = <fun>

# let ch2int c = c ((+) 1) 0

val ch2int : ((int -> int) -> int -> ’a) -> ’a = <fun>

ch2int finds the integer corresponding to an n-fold composition function by incrementing n times
starting at 0. For example:

# ((int2ch 17) inc) 10;;

- : int = 27

# ch2int (int2ch 17);;

- : int = 17

# ch2int twice;;

- : int = 2

# ch2int thrice;;

- : int = 3

# let nonce = fun f x -> x;;

val nonce : ’a -> ’b -> ’b = <fun>
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# ch2int nonce;;

- : int = 0

# let once = fun f x -> f x;;

val once : (’a -> ’b) -> ’a -> ’b = <fun>

# ch2int once;;

- : int = 1

As an example of arithmetic on Church numerals, consider the successor function succ that adds
one to a Church numeral. Since the Church numeral corresponding to n is the n-fold composition
function, applying succ to such a church numeral should yield an (n+1)-fold composition function.
Here’s one definition:

# let succ c = fun f -> o f (c f)

val succ : ((’a -> ’b) -> ’c -> ’a) -> (’a -> ’b) -> ’c -> ’b = <fun>

# ch2int (succ twice);;

- : int = 3

# ch2int (succ thrice);;

- : int = 4

# ch2int (succ nonce);;

- : int = 1

# ch2int (succ once);;

- : int = 2

# (succ thrice) dbl 1;;

- : int = 16

Note that an alternative definition of succ would be:

# let succ c = fun f -> o (c f) f;;

val succ : ((’a -> ’b) -> ’b -> ’c) -> (’a -> ’b) -> ’a -> ’c = <fun>

It is also possible to define a function plus that adds two Church numerals. One definition of
plus is based on the following observation: if c1 and c2 are Church numerals for n1 and n2, then
(c1 f) performs f n1 times, c2 performs f n2 times, and (o (c1 f) (c2 f)) performs f n1 + n2

times.

# let plus c1 c2 = fun f -> o (c1 f) (c2 f);;

val plus : (’a -> ’b -> ’c) -> (’a -> ’d -> ’b) -> ’a -> ’d -> ’c = <fun>

# (ch2int (plus once nonce));;

- : int = 1

# (ch2int (plus once nonce));;

- : int = 5

An alternative definition of plus is based on the observation that addition is repeated incre-
menting:

# let plus’ c1 c2 = ((c1 succ) c2);;

val plus’ :

((((’a -> ’b) -> ’c -> ’a) -> (’a -> ’b) -> ’c -> ’b) -> ’d -> ’e) ->

’d -> ’e = <fun>

# (ch2int (plus’ (int2ch 2) (int2ch 3)));;

- : int = 5

23



# (ch2int (plus’ (int2ch 1) (int2ch 0)));;

- : int = 1

In a similar manner, it is possible to define functions times and expt that perform multiplication
and exponentiation on Church numerals. 5 Example calls of these functions are shown below, but
their definition is left as an exercise. (Hints: (1) carefully study the twice/thrice examples from
above; (2) think in terms of the function box notation.)

# (ch2int (times (int2ch 2) (int2ch 3)));;

- : int = 6

# (ch2int (times (int2ch 3) (int2ch 2)));;

- : int = 6

# (ch2int (expt (int2ch 2) (int2ch 3)));;

- : int = 8

# (ch2int (expt (int2ch 3) (int2ch 2)));;

- : int = 9

It is also possible to define a pred function that decrements a Church numeral (and acts as the
identity on the Church numeral for 0):

# (ch2int (pred (int2ch 3));;

- : int = 2

# (ch2int (pred (int2ch 0));;

- : int = 0

5These functions can be defined without using int2ch, ch2int, n fold, or any recursively defined Ocaml functions.
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