
CS251 Programming Languages Handout # 32

Prof. Lyn Turbak April 22, 2004

Wellesley College

Haskell and HUGS

Haskell is a lazy, statically scoped, purely functional programming language. Like Ocaml,
it is statically typed, but most types are automatically deduced by type reconstruction. We will
explore Haskell in the context of HUGS, a Haskell interpreter. HUGS is only one of many
Haskell implementations; visit www.haskell.org for more information on the language and its
implementations.

1 Launching HUGS

The HUGS system is launched in Linux by executing hugs at the Linux prompt. When HUGS is
launched, it displays the following herald:

[lyn@jaguar private] hugs

__ __ __ __ ____ ___ ___

|| || || || || || ||__ Hugs 98: Based on the Haskell 98 standard

||___|| ||__|| ||__|| __|| Copyright (c) 1994-2001

||---|| ___|| World Wide Web: http://haskell.org/hugs

|| || Report bugs to: hugs-bugs@haskell.org

|| || Version: December 2001 ___

Haskell 98 mode: Restart with command line option -98 to enable extensions

Reading file "/usr/share/hugs/lib/Prelude.hs":

Hugs session for:

/usr/share/hugs/lib/Prelude.hs

Type :? for help

Prelude>

By default, HUGS loads a large set of Haskell libraries, known as the “prelude”. These libraries
are defined in the file /usr/share/hugs/lib/Prelude.hs, which you are encouraged to skim. Lots
of standard functions are defined in this file, including common list utilities like map, filter,
length, foldr, foldr, zip, unzip, take, and drop. The prompt Prelude> indicates that any
expressions typed in will be evaluated in the context of the Preludemodule containing the standard
library functions.

2 Quitting HUGS

You can quit out of HUGS in one of two ways:

1. Execute the :quit directive within the HUGS interpreter.

2. Type C-d (i.e., “Control-d”).

1

3 Interacting with HUGS

You interact with the HUGS interpreter in one of two ways:

1. By typing a Haskell expression to be evaluated. In this case, HUGS displays the value of
the expression. See Fig. 1 for some examples. Unlike the Ocaml interpreter, HUGS does
not display the type of the expression.

Prelude> 2*(3+4)

14

Prelude> head [1,2,3,4]

1

Prelude> tail [1,2,3,4]

[2,3,4]

Prelude> map (2*) [1,2,3,4]

[2,4,6,8]

Prelude> take 2 [10,20,30,40,50]

[10,20]

Prelude> drop 2 [10,20,30,40,50]

[30,40,50]

Prelude> foldr (+) 0 [1,2,3,4]

10

Prelude> zip [1,2,3] [10,20,30,40]

[(1,10),(2,20),(3,30)]

Prelude> unzip [(1,10),(2,20),(3,30)]

([1,2,3],[10,20,30])

Prelude> fst (1,2)

1

Prelude> snd (1,2)

2

Figure 1: Sample expressions evaluated in HUGS.

2. By typing a HUGS directive, along with its arguments. All directives begin with a colon.
For example, the :cd directive changes the current working directory to a given directory.
For example, if you execute

Prelude> :cd /students/your-username/cs251/ps7

then HUGS will interpret all following filenames relative to this directory.

Another important directive is the :type directive, which can be abbreviated :t. This dis-
plays the type of a Haskell expression. For example:

Prelude> :type map

2

map :: (a -> b) -> [a] -> [b]

Prelude> :type foldr

foldr :: (a -> b -> b) -> b -> [a] -> bw2

Prelude> :type zip

zip :: [a] -> [b] -> [(a,b)]

Prelude> :type unzip

unzip :: [(a,b)] -> ([a],[b])

Prelude> :type "foo"

"foo" :: String

Prelude> :type "foo" == "bar"

"foo" == "bar" :: Bool

Prelude> :type 1+2

1 + 2 :: Num a => a

Prelude> :type [1,2,3]

[1,2,3] :: Num a => [a]

Prelude> :type 1 == 2

1 == 2 :: Num a => Bool

In the last three :type examples, the type begins with Num a => This is a so-called
qualified type. It turns out that Haskell has many kinds of numeric types, and integers
can have any of these types. A qualified type of the form Num a => t specifies a type t that
is parameterized over any numeric type a.

By far the most important directive is the :load directive, which can be abbreviated :l. This
loads the Haskell declarations in the specified file. For example,

Prelude> :l Test.hs

loads the declarations in the file Test.hs. Note that the filename need not be delimited by
double quotes, although they are allowed. The :reload directive, abbreviated :r, re-executes
the most recent :load directive. For example, if Test.hs has been loaded as shown above,
then :r will load the contents of Test.hs again. The :reload directive is commonly used
after editing a file to add or fix a declaration.

The :quit directive exits the HUGS interpreter. The :? displays a list of all directives.

4 Haskell Declarations

Unlike in the Ocaml and MIT-Scheme interpreters, in HUGS it is not possible to enter a decla-
ration directly to the interpreter. Instead, all declarations must be written in files, and the :load
and :reload directives are used to communicate these declarations to the HUGS interpreter.

Fig. 2 shows some representative Haskell declarations, which we can imagine are in the file
Test.hs. We will discuss these declarations in the context of some sample expressions that will be
evaluated in HUGS after executing the directive :load Test.hs. Because the file Test.hs does

3

not have any module declarations, the declarations in the file are interpreted relative to the default
Main module.

Prelude> :load Test.hs

Reading file "Test.hs":

Hugs session for:

/usr/share/hugs/lib/Prelude.hs

Test.hs

Main>

A line comment in Haskell is introduced via the double dashes, --, and goes until the end of
the line. Various comments are sprinkled throught Test.hs in Fig. 2.

In Haskell, a name may be attached to any value via the syntax I = E, as in a = 2 + 3.
Because Haskell is a lazy language, the definition expression E (in this case, 2 + 3 is not evaluated
until the the name I is required later (if ever). If it is evaluated later, the value is memoized so
that it will be computed at most once. Evaluating a variable in the HUGS interpreter forces its
value to be computed in order to print the value.

Main> a

5

The Haskell syntax for abstractions is \ Iformal -> Ebody , where the slash mark \ was chosen
because it resembles a Greek λ symbol. So \ x -> x*x is the Haskell notation for a squaring
function. The notation

\ I1 . . . In -> Ebody

is sugar for the curried function

\ I1 -> \ I2 -> . . . \ In -> Ebody .

The declaration

Iname I1 . . . In = Ebody

is syntactic sugar for the curried function declaration

Iname = \ I1 -> \ I2 -> . . . \ In -> Ebody

For example,

avg x y = x+y/2

is syntactic sugar for

avg = \ x -> \ y -> (x+y)/2

Function application is denoted by juxtaposition of function and argument(s). For example,
sq a denotes the result of applying the squaring function to the value of a. Function application
is left-associative, which is consistent with curried functions. For example, avg 3 8 is parsed as
(avg 3) 8.

Main> sq a

25

Main> avg 3 8

5.5

4

a = 2 + 3 -- declare variable a

sq = \ x -> x * x -- sugared form: sq x = x * x

fact 0 = 1 -- Recursive factorial

fact n = n * fact (n-1)

factIter n = loop n 1 -- Iterative factorial

where loop 0 ans = ans

loop num ans = loop (num-1) (num*ans)

isEven 0 = True -- Mutually recursive functions isEven and isOdd

isEven m = isOdd (m - 1)

isOdd 0 = False

isOdd n = isEven (n - 1)

sumList = foldr (+) 0 -- list summation function

nats = 0 : (map (1+) nats) -- infinite list of natural numbers

twos = 1 : (map (2*) twos) -- infinite list of powers of two

fibs = 0 : 1 : (zipWith (+) fibs (tail fibs)) -- infinite list of Fibonacci numbers

data Tree a = Leaf | Node (Tree a, a, Tree a) -- tree datatype declaration

deriving (Show, Eq) -- show and equality (==) functions on trees

testTree = Node(Node(Node(Leaf, 4, Leaf),

1,

Node(Node(Leaf,5,Leaf),

2,

Leaf)),

6,

Node(Leaf, 3, Node(Leaf, 7, Leaf)))

value (Node(_,v,_)) = v -- accessor functions for tree nodes

left (Node(l,_,_)) = l

right (Node(_,_,r)) = r

height Leaf = 0

height (Node(l,_,r)) = 1 + max (height l) (height r)

treeSum Leaf = 0

treeSum (Node(l,v,r)) = (treeSum l) + v + (treeSum r)

treeMap f Leaf = Leaf

treeMap f (Node(l,v,r)) = Node(treeMap f l, f v, treeMap f r)

-- infinite tree of integers in which every node has

-- its binary address as its value.

intTree = makeTree 0

where makeTree n = Node(makeTree (2*n), n, makeTree ((2*n)+1))

Figure 2: Sample HUGS declarations in the file Test.hs.

5

Like Ocaml, Haskell has a case-based pattern-matching construct, which has the form:

case Ediscriminant of

P1 -> E1

...

Pn -> En

As an example, here is the definition of a swapList function that swaps the first two elements of
a list with at least two elements:

swapList = \ xs -> case xs of

[] -> []

[x] -> [x]

x:y:zs -> y:x:zs

Note that the clauses of the case construct are not separated by any sort of syntax (like the vertical
bar that separates match clauses in Ocaml). This is because Haskell, unlike almost every other
modern language, actually uses indedentation and whitespace to as a disambiguation aid in parsing.

It is rare to see explicit case constructs in Haskell programs, because they are usually written
in a sugared form as a sequence of function definitions with different patterns in the parameter
position(s). For example, the sugared form of the above swapList function is:

swapList [] = []

swapList [x] = [x]

swapList (x:y:zs) = (y:x:zs)

All names declared in a file are defined in a single recursive scope. In Fig. 2, fact is an example
of a recursive function definition, isEven and isOdd are mutually recursive functions, and nats,
twos, and fibs are recursively defined infinite lists. Mutually recursive definitions – especially of
non-function values – are much easier to handle in a lazy language than in a strict one. Local
recursive bindings are introduced in Haskell via the where clause, which appears in the factIter
and intTree declarations in Fig. 2. The where clause is Haskell’s version of Scheme’s letrec,
Ocaml’s let rec, and Hoilic’s bindrec. Interestingly, the concrete syntax of where has the local
declarations following the body rather then preceding it.

Main> fact 5

120

Main> factIter 6

720

Main> isEven 10

True

Main> isOdd 10

False

Main> sumList [1,2,3, 4]

10

Main> take 20 nats

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]

Main> take 15 fibs

[0,1,1,2,3,5,8,13,21,34,55,89,144,233,377]

6

The portions after this point are still under construction!
Haskell supports Ocaml-like sum-of-product data types via the data declaration. Here is a

binary tree data type:

data Tree a = Leaf | Node (Tree a, a, Tree a)

deriving (Show, Eq)

There are two tree constructors: the nullary Leaf constructor, and the unary Node constructor,
which takes a triple of the left subtree, the root value, and the right subtree. The declaration
deriving (Show, Eq) tells Haskell that string representations of trees (via the show function)
and equality on trees (via the == function) should be automatically defined in a structural way.
Here is a sample tree:

testTree = Node(Node(Node(Leaf, 4, Leaf),

1,

Node(Node(Leaf,5,Leaf),

2,

Leaf)),

6,

Node(Leaf, 3, Node(Leaf, 7, Leaf)))

Tree operations can be defined via pattern matching. For example, we can define functions that
access the three parts of a tree node:

value (Node(_,v,_)) = v -- accessor functions for tree nodes

left (Node(l,_,_)) = l

right (Node(_,_,r)) = r

For example:

Main> testTree

Node (Node (Node (Leaf,4,Leaf),1,Node (Node (Leaf,5,Leaf),2,Leaf)),6,Node (Leaf,3,Node (Leaf,7,Leaf)))

Main> value testTree

6

Main> left testTree

Node (Node (Leaf,4,Leaf),1,Node (Node (Leaf,5,Leaf),2,Leaf))

Main> right testTree

Node (Leaf,3,Node (Leaf,7,Leaf))

Main> height testTree

0

Main> :r

Reading file "Test.hs":

Hugs session for:

/usr/share/hugs/lib/Prelude.hs

Test.hs

Main> height testTree

4

Main> treeSum testTree

28

7

Main> treeSum (treeMap (2*) testTree)

56

Main>

8

