
CS251 Programming Languages Handout # 15
Prof. Lyn Turbak February 12, 2004
Wellesley College Revised February 19, 2004

Data Types and Data Abstraction in Ocaml

1 Sum-of-Product Datatypes

1.1 Geometric Figures

Every general-purpose programming language must allow the processing of values with different
structure that are nevertheless considered to have the same “type”. For example, in the processing
of simple geometric figures, we want a notion of a “figure type” that includes circles with a radius,
rectangles with a width and height, and triangles with three sides. Abstractly, figure values might
be depicted as shown below:

Circle

1.0

Rect

2.0 3.0

Tri

4.0 5.0 6.0

The name in the oval is a tag that indicates which kind of figure the value is, and the branches
leading down from the oval indicate the components of the value. Such types are known as sum-
of-product data types because they consist of a sum of tagged types, each of which holds on to
a product of components.

In Ocaml we can declare a new figure type that represents these sorts of geometric figures as
follows:

type figure =

Circ of float (* radius *)

| Rect of float * float (* width, height *)

| Tri of float * float * float (* side1, side2, side3 *)

Such a declaration is known as a data type declaration. It consists of a series of |-separated
clauses of the form

constructor-name of component-types ,

where constructor-name must be capitalized. The names Circ, Rect, and Tri are the constructors
of the figure type. Each serves as a function-like entity that turns components of the appopriate
type into a value of type figure. For example, we can make a list of the three figures depicted
above:

let figs = [Circ 1.; Rect (2.,3.); Tri(4.,5.,6.)];; (* List of sample figures *)

val figs : figure list = [Circ 1.; Rect (2., 3.); Tri (4., 5., 6.)]

It turns out that constructors are not functions and cannot be manipulated in a first-class way.
For example, we cannot write

List.map Circ [7.;8.;9.] (* Does not work, since Circ is not a function *)

However, we can always embed a constructor in a function when we need to. For example, the
following does work:

List.map (fun r -> Circ r) [7.;8.;9.] (* This works *)

1

We manipulate a value of the figure type by using the Ocaml match construct to perform a
case analysis on the value and name its components. For example, Fig. 1 shows how to calculate
figure perimiters and scale figures.

let pi = 3.14159;;

val pi : float = 3.14159

(* Use pattern matching to define functions on sum-of-products datatype values *)

let perim fig = (* Calculate perimeter of figure *)

match fig with

Circ r -> 2.*.pi*.r

| Rect (w,h) -> 2.*.(w+.h)

| Tri (s1,s2,s3) -> s1+.s2+.s3;;

val perim : figure -> float = <fun>

List.map perim figs;;

- : float list = [6.28318; 10.; 15.]

let scale n fig = (* Scale figure by factor n *)

match fig with

Circ r -> Circ (n*.r)

| Rect (w,h) -> Rect (n*.w, n*.h)

| Tri (s1,s2,s3) -> Tri (n*.s1, n*.s2, n*.s3);;

val scale : float -> figure -> figure = <fun>

List.map (scale 3.) figs;;

- : figure list = [Circ 3.; Rect (6., 9.); Tri (12., 15., 18.)]

List.map (FunUtils.o perim (scale 3.)) figs;;

- : float list = [18.84954; 30.; 45.]

Figure 1: Manipulations of figure values.

1.2 Binary Trees

(* Binary tree datatype abstracted over type of node value *)

type ’a bintree =

Leaf

| Node of ’a bintree * ’a * ’a bintree (* left subtree, value, right subtree *)

(* Sample tree of integers *)

let int_tree =

Node(Node(Leaf, 2, Leaf),

4,

Node(Node(Leaf, 1, Node(Leaf, 5, Leaf)),

6,

Node(Leaf, 3, Leaf)));;

val int_tree : int bintree =

Node (Node (Leaf, 2, Leaf), 4,

Node (Node (Leaf, 1, Node (Leaf, 5, Leaf)), 6, Node (Leaf, 3, Leaf)))

2

Node

Node

Leaf 2 Leaf

4 Node

Node

Leaf 1 Node

Leaf 5 Leaf

6 Node

Leaf 3 Leaf

4

2 6

1

5

3

(* Sample tree of strings *)

let string_tree =

Node(Node(Leaf, "like", Leaf),

"green",

Node(Node(Leaf, "eggs", Leaf),

"and",

Node(Leaf, "ham", Leaf)));;

val string_tree : string bintree =

Node (Node (Leaf, "like", Leaf), "green",

Node (Node (Leaf, "eggs", Leaf), "and", Node (Leaf, "ham", Leaf)))

green

like and

eggs ham

let rec nodes tr = (* Returns number of nodes in tree *)

match tr with

Leaf -> 0

| Node(l,v,r) -> 1 + (nodes l) + (nodes r);;

val nodes : ’a bintree -> int = <fun>

nodes int_tree;;

- : int = 6

nodes string_tree;;

- : int = 5

3

let rec height tr = (* Returns height of tree *)

match tr with

Leaf -> 0

| Node(l,v,r) -> 1 + max (height l) (height r);;

val height : ’a bintree -> int = <fun>

height int_tree;;

- : int = 4

height string_tree;;

- : int = 3

let rec sum tr = (* Returns sum of nodes in tree of integers *)

match tr with

Leaf -> 0

| Node(l,v,r) -> v + (sum l) + (sum r);;

val sum : int bintree -> int = <fun>

sum int_tree;;

- : int = 21

let rec prelist tr = (* Returns pre-order list of leaves *)

match tr with

Leaf -> []

| Node(l,v,r) -> v :: (prelist l) @ (prelist r);;

val prelist : ’a bintree -> ’a list = <fun>

prelist int_tree;;

- : int list = [4; 2; 6; 1; 5; 3]

prelist string_tree;;

- : string list = ["green"; "like"; "and"; "eggs"; "ham"]

let rec inlist tr = (* Returns in-order list of leaves *)

match tr with

Leaf -> []

| Node(l,v,r) -> (inlist l) @ [v] @ (inlist r);;

val inlist : ’a bintree -> ’a list = <fun>

inlist int_tree;;

- : int list = [2; 4; 1; 5; 6; 3]

inlist string_tree;;

- : string list = ["like"; "green"; "eggs"; "and"; "ham"]

4

(* Returns post-order list of leaves *)

let rec postlist tr =

match tr with

Leaf -> []

| Node(l,v,r) -> (postlist l) @ (postlist r) @ [v];;

val postlist : ’a bintree -> ’a list = <fun>

postlist int_tree;;

- : int list = [2; 5; 1; 3; 6; 4]

postlist string_tree;;

- : string list = ["like"; "eggs"; "ham"; "and"; "green"]

let rec map f tr = (* Map a function over every value in a tree *)

match tr with

Leaf -> Leaf

| Node(l,v,r) -> Node(map f l, f v, map f r);;

val map : (’a -> ’b) -> ’a bintree -> ’b bintree = <fun>

map ((*) 10) int_tree;;

- : int bintree =

Node (Node (Leaf, 20, Leaf), 40,

Node (Node (Leaf, 10, Node (Leaf, 50, Leaf)), 60, Node (Leaf, 30, Leaf)))

map String.uppercase string_tree;;

- : string bintree =

Node (Node (Leaf, "LIKE", Leaf), "GREEN",

Node (Node (Leaf, "EGGS", Leaf), "AND", Node (Leaf, "HAM", Leaf)))

map String.length string_tree;;

- : int bintree =

Node (Node (Leaf, 4, Leaf), 5,

Node (Node (Leaf, 4, Leaf), 3, Node (Leaf, 3, Leaf)))

map ((flip String.get) 0) string_tree;;

- : char bintree =

Node (Node (Leaf, ’l’, Leaf), ’g’,

Node (Node (Leaf, ’e’, Leaf), ’a’, Node (Leaf, ’h’, Leaf)))

5

let rec fold glue lfval tr = (* Divide/conquer/glue on trees *)

match tr with

Leaf -> lfval

| Node(l,v,r) -> glue (fold glue lfval l) v (fold glue lfval r);;

val fold : (’a -> ’b -> ’a -> ’a) -> ’a -> ’b bintree -> ’a = <fun>

let sumlist = fold (fun l v r -> l + v + r) 0;; (* Alternative definition *)

val sumlist : int bintree -> int = <fun>

(* can define nodes, height similarly *)

let prelist tr = fold (fun l v r -> v :: l @ r) [] tr;; (* Alternative definition *)

val prelist : ’a bintree -> ’a list = <fun>

(* can define inlist, postlist similarly *)

let toString valToString tr =

fold (fun l v r -> "(" ^ l ^ " " ^ (valToString v) ^ " " ^ r ^ ")")

"*"

tr;;

val toString : (’a -> string) -> ’a bintree -> string = <fun>

toString string_of_int int_tree;;

- : string = "((* 2 *) 4 ((* 1 (* 5 *)) 6 (* 3 *)))"

toString FunUtils.id string_tree;;

- : string = "((* like *) green ((* eggs *) and (* ham *)))"

1.3 Other Simple Data Types

type ’a myOption = None | Some of ’a;;

type ’a myList = Nil | Cons of ’a * ’a myList

2 S-Expressions

2.1 Overview

A symbolic expression (s-expression for short) is a simple notation for representing tree struc-
tures using linear text strings containing matched pairs of parentheses. Each leaf of a tree is
a symbolic tokens, which (to first approximation) is any sequence of characters that does not
contain a left parenthesis (‘(’), a right parenthesis (‘)’), or a whitespace character (space, tab, new-
line, etc.).1 Examples of symbolic tokens include x, this-is-a-token, anotherKindOfToken, 17,
3.14159, 4/3*pi*r^2, a.b[2]%3, ’Q’, and "a (string) token". A node in a tree is represented
by a pair of parentheses surrounding zero or more s-expressions that represent the node’s subtrees.
For example, the s-expression

((this is) an ((example) (s-expression tree)))

1But as we shall see, string and character literals can contain parentheses and whitespace characters.

6

this is

an

example s-expression tree

Figure 2: Viewing ((this is) an ((example) (s-expression tree))) as a tree.

designates the structure depicted in Fig. 2. Whitespace is necessary for separating symbolic tokens
that appear next to each other, but can be used liberally to enhance (or obscure!) the readability
of the structure. Thus, the above s-expression could also be written as

((this is)

an

((example)

(s-expression

tree)))

or (less readably) as

(

(this

is) an ((example

) (

s-expression tree)

)

)

without changing the structure of the tree.
S-expressions were pioneered in Lisp as a notation for data as well as programs (which we

have seen are just particular kinds of tree-shaped data!). We shall see that s-expressions are an
exceptionally simple and elegant way of solving the parsing problem.2 For this reason, the mini-
languages we study will (at least initially) have a concrete syntax based on s-expressions.

The fact that Lisp dialects (including Scheme) have a built-in primitive for parsing s-expressions
(read) and treating them as literals (quote) makes them particularly good for manipulating pro-
grams (in any language) written with s-expressions. It is not quite as convenient to manipulate
s-expression program syntax in other languages, such as Ocaml, but we shall see that it is still far
easier than solving the parsing problem for more general notations.

2.2 S-Expression Representations of Sum-of-Product Trees

The abstract syntax trees we are trying to model (such as the one in Fig. 3) don’t quite have the
tree structure for s-expressions depicted above. In particular, ASTs are sum-of-product trees in
which each node is labeled with a tag indicating the summand represented by the node, while the
simplest way of interpreting s-expressions involves label-less nodes.

2There are detractors who hate s-expressions and claim that Lisp stands for Lots of Irritating Silly Parenthesis.

Apparently such people lack a critical aesthetic gene that prevents them from appreciating beautiful designs.

Strangely, many such people seem to prefer the far more verbose encoding of trees in XML notation discussed

later. Go figure!

7

Pgm

1

numargs

BinApp

body

Div

rator

BinApp

rand1

Mul

rator

BinApp

rand1

Sub

rator

Arg

rand1

1

Lit

rand2

32

value

Lit

rand2

5

value

Lit

rand2

9

value

Figure 3: AST for the Fahrenheit-to-Celsius converter.

But this difference is easy to address. To model sum-of-product trees with s-expressions, we
adopt the simple prefix convention in which the first s-expression in a parenthesized sequence is
a token that is the summand node label and the remaining s-expressions are arbitrary s-expressions
that represent the product components. For example, using this convention with our conversion
program yields the following s-expression:

(pgm 1

(binapp div

(binapp mul

(binapp sub (arg 1) (lit 32))

(lit 5))

(lit 9)))

This is still more verbose than we’d like, so we’ll use some tricks to make the notation more
concise/readable:

• If we assume that numbers stand for themselves, we can avoid the explicit lit tag. Thus, we
will shorten (lit 32) to 32.

• Since we must be able to distinguish argument references from integer literals, we cannot

similarly shorten (arg 1) to 1. But we can use a shorter tag name, such as $, in which case
(arg 1) becomes ($ 1).

• The only non-leaf node is a binary application, so we can dispense with the binapp tag with-
out introducing ambiguity. Using traditional operator symbols (+, -, *, /, %) in place of names
(add, sub, mul, div, rem) further shortens the notation. For example, (binapp sub ($ 1) 32)

becomes (- ($ 1) 32).

• To distinguish Intex program from other programs in other mini-languages we will study, we
replace pgm by intex. This is not shorter, but helps to disambiguate programs from different
languages.

The result of applying all of the above tricks is

8

(intex 1 (/ (* (- ($ 1) 32) 5) 9),

which is significantly shorter that the Ocaml notation or the unoptimized s-expression notation.
This is the s-expression notation that we will adopt for Intex. We will make similar abbreviations
in other languages. Note that the syntax of Lisp dialects is effectively determined by this process
– prefix tags are used everywhere except for literals (e.g., numbers, booleans, strings, characters)
and for applications (which are written without an explicit apply tag, as in (fact 5) rather than
(apply fact 5)).

It is worth noting that there are other common notations for representing sum-of-product trees.
The most popular of these are the XML and XML document description languages. In these
languages, summand tags appear in begin/end markups and product components are encoded both
in the association lists of markups as well as in components nested within the begin/end markups.
For instance, Fig. 4 shows how the Fahrenheit-to-Celsius expression might be encoded in XML.
The reader is left to ponder why XML, which at one level is a verbose encoding of s-expressions,
is a far more popular standard for expressing structured data than s-expressions.

<arithop>

<op name="/"/>

<rand1>

<arithop>

<op name="*"/>

<rand1>

<lit num=5/>

</rand1>

<rand2>

<arithop>

<op name="-"/>

<rand1>

<arg index=1/>

</rand1>

<rand2>

<lit num=32/>

</rand2>

</arithop>

</rand2>

</arithop>

</rand1>

<rand2>

<lit num=9/>

</rand2>

</arithop>

Figure 4: The Fahrenheit-to-Celsius expression in XML notation.

2.3 Representing S-Expressions in Ocaml

As with any other kind of tree-shaped data, s-expressions can be represented in Ocaml as values
of an appropriate datatype. The Ocaml datatype representing s-expression trees is presented in
Fig. 5.

Recall that the leaves of s-expression trees are symbolic tokens. There are five kinds of symbolic
tokens, distinguished by type:

9

type sexp =

Int of int

| Flt of float

| Str of string

| Chr of char

| Sym of string

| Seq of sexp list

Figure 5: Ocaml s-expression datatype.

1. integer literals (constructed via Int);

2. floating point literals (constructed via Flt);

3. string literals (constructed via Str);

4. character literals (constructed via Chr); and

5. symbols (i.e. name tokens, constructed via Sym);

The nodes of s-expression trees are represented via the Seq constructor, whose sexp list argument
denotes any number of s-expression subtrees.

For example, the s-expression given by the concrete notation

(stuff (17 3.14159) ("foo" ’c’ bar))

would be expressed in Ocaml as:

Seq [Sym("stuff");

Seq [Int(17); Flt(3.14159)];

Seq [Str("foo"); Chr(’c’); Sym("bar")]]

As another example, the s-expression notation for the Fahrenheit-to-Celsius Intex program,

(intex 1 (/ (* (- ($ 1) 32) 5) 9),

would be expressed in Ocaml as:

Seq [Sym("intex");

Int(1);

Seq [Sym("/");

Seq [Sym("*");

Seq [Sym("-");

Seq [Sym("$"); Int(1)]

Int(32)]

Int(5)]

Int(9)]

3 Modules

Why modules?

• Program structure: divide big program into smaller parts.

• Data abstraction: separate specification of data abstraction (signature) from implementation
(structure); allow multiple implementations of same signature.

10

• Name control: e.g.List.map vs. Bintree.map; export key values but hide internal auxiliary
values.

• Allow abstracting one module over another (functors).

3.1 Structures

We can collect related declarations into a module using the notation:

struct module-declarations end

This creates a an entity called a structure, which is Ocaml’s terminology for a module. A
structure can be named via the notation:

module module-name = structure

For example, Fig. 6 shows a structure named Bintree that collects together the binary tree decla-
rations studied earlier in Sec. 1.2.

Ocaml uses so-called qualified names of the form module-name.component-name (“dot no-
tation”) to extract module components from a module via their name. For example, here is an
expression that can be written outside the Bintree module:

Bintree.Node(Bintree.Leaf, 17, Bintree.map ((+) 1) Bintree.int_tree);;

- : int Bintree.bintree =

Bintree.Node (Bintree.Leaf, 17,

Bintree.Node (Bintree.Node (Bintree.Leaf, 3, Bintree.Leaf), 5,

Bintree.Node

(Bintree.Node (Bintree.Leaf, 2,

Bintree.Node (Bintree.Leaf, 6, Bintree.Leaf)),

7, Bintree.Node (Bintree.Leaf, 4, Bintree.Leaf))))

Note how Ocaml uses qualified names in the type reconstructed for the expression as well as in
the printed value of the expression.

Qualified names are important for distinguishing values that have the same component name in
two different modules. For example, we can use List.map and Bintree.map in the same expression:

List.map ((*) 2) (Bintree.prelist (Bintree.map ((+) 1) Bintree.int_tree));;

- : int list = [10; 6; 14; 4; 12; 8]

Using qualified names everywhere can be cumbersome. The Ocaml open declaration “opens
up” a module and permits its components to be used with their unqualified names. The open

declaration can be used in the top-level interpreter or inside a structure. For example, here is
sample top-level use:

open Bintree;;

Node(Leaf, 17, map ((+) 1) int_tree);;

- : int Bintree.bintree =

Node (Leaf, 17,

Node (Node (Leaf, 3, Leaf), 5,

Node (Node (Leaf, 2, Node (Leaf, 6, Leaf)), 7, Node (Leaf, 4, Leaf))))

Note that Ocaml still tracks the module name in the reconstructed type (int Bintree.bintree),
but drops it from constructors in the printed representation of the tree value.

As an example of using open within a structure, consider:

11

module Bintree = struct

(* Binary tree datatype abstracted over type of node value *)

type ’a bintree =

Leaf

| Node of ’a bintree * ’a * ’a bintree (* left subtree, value, right subtree *)

(* Sample tree of integers *)

let int_tree =

Node(Node(Leaf, 2, Leaf),

4,

Node(Node(Leaf, 1, Node(Leaf, 5, Leaf)),

6,

Node(Leaf, 3, Leaf)));;

(* Sample tree of strings *)

let string_tree =

Node(Node(Leaf, "like", Leaf),

"green",

Node(Node(Leaf, "eggs", Leaf),

"and",

Node(Leaf, "ham", Leaf)));;

(* Map a function over every value in a tree *)

let rec map f tr =

match tr with

Leaf -> Leaf

| Node(l,v,r) -> Node(map f l, f v, map f r)

(* Divide/conquer/glue on trees *)

let rec fold glue lfval tr =

match tr with

Leaf -> lfval

| Node(l,v,r) -> glue (fold glue lfval l) v (fold glue lfval r)

let nodes tr = fold (fun l v r -> 1 + l + r) 0 tr

let height tr = fold (fun l v r -> 1 + (max l r)) 0 tr

let sum tr = fold (fun l v r -> l + v + r) 0 tr

let prelist tr = fold (fun l v r -> v :: l @ r) [] tr

let inlist tr = fold (fun l v r -> l @ [v] @ r) [] tr

let postlist tr = fold (fun l v r -> l @ r @ [v]) [] tr

let toString valToString tr =

fold (fun l v r -> "(" ^ l ^ " " ^ (valToString v) ^ " " ^ r ^ ")") "*" tr

end

Figure 6: A Bintree module.

12

module Test1 = struct

open Bintree

let f x y = List.map ((*) x) (prelist (map ((+) y) int_tree))

let g z = map ((^) z) string_tree

end

In this case, the open declaration permits the use of unqualified names from the Bintree module
in the remainder of the body of BintreeTest1.

It is possible to open multiple modules within a structure declaration. If two modules export
the same name, the unqualified name refers to the component from the module opened last. For
example:

module Test2 = struct

open Bintree

open List

let f x y = map ((*) x) (prelist (Bintree.map ((+) y) int_tree))

let g z s = Bintree.map ((^) z) s

end

Note how the first map is List.map, since List was opened after Bintree. However, the other
occurrences of map must be explicitly qualified to distinguish them from List.map.

The module declaration can be used to introduce synonyms for structure names within another
structure. In the following module, the Bintree and List modules are not opened but are given
one-letter abbreviations that makes the explicitly qualified names more concise.

module Test3 = struct

module B = Bintree

module L = List

let f x y = L.map ((*) x) (B.prelist (B.map ((+) y) B.int_tree))

let g z s = B.map ((^) z) s

end

The Ocaml module system has a sophisticated type analysis that is able to track types through
open and module renamings. For example, Test1.g, Test2.g, and Test3.g all have the type

string -> string Bintree.bintree -> string Bintree.bintree.

Indeed, we can use them all together:

Test1.g "a" (Test2.g "b" (Test3.g "c" Bintree.string_tree));;

- : string Bintree.bintree =

Node (Node (Leaf, "abclike", Leaf), "abcgreen",

Node (Node (Leaf, "abceggs", Leaf), "abcand", Node (Leaf, "abcham", Leaf)))

We may also use one module declaration within another to define nested structures. An example
of this is shown in Fig. 7. A sequence of module qualifications can be used to extract the innermost
components:

Nested.Funs.f2 (Nested.Funs.f1 1 Nested.Data.t2);;

- : int = 12

An Ocaml structure is somewhat like records/structs/objects in other languages. For example,
dot notation is used to extract record components in Pascal, struct components in C, and object
components in Java. There are two key differences between Ocaml structures and traditional
record values:

1. Ocaml structures can include type components as well as value components. For example,

13

module Nested = struct

open Bintree

module Data = struct

let t1 = Node(Leaf, 1, Leaf)

let t2 = Node(t1, 2, t1)

end

module Funs = struct

let f1 x = map ((+) x)

let f2 = fold (fun l v r -> l * v * r) 1

end

end

Figure 7: An example of nested structures.

the Bintree module in Fig. 6 include the definition of the bintree data type. It turns out
that handling modules with type components requires a sophisticated type system.

2. Unlike traditional record values, structures are second-class entities in Ocaml – they can
be manipulated only in limited ways. For instance, structures cannot be named with a
let, passed as arguments to functions, returned from functions as results, or stored in data
structures.3 This limitation is imposed to simplify the type system.

3.2 Signatures

If the structure in Fig. 6 is stored in the file Bintree.ml, then we can load it into the top-level
interpreter as follows:

#use "Bintree.ml";;

module Bintree :

sig

type ’a bintree = Leaf | Node of ’a bintree * ’a * ’a bintree

val int_tree : int bintree

val string_tree : string bintree

val map : (’a -> ’b) -> ’a bintree -> ’b bintree

val fold : (’a -> ’b -> ’a -> ’a) -> ’a -> ’b bintree -> ’a

val nodes : ’a bintree -> int

val height : ’a bintree -> int

val sum : int bintree -> int

val prelist : ’a bintree -> ’a list

val inlist : ’a bintree -> ’a list

val postlist : ’a bintree -> ’a list

val toString : (’a -> string) -> ’a bintree -> string

end

A module has a type, which is called its signature. A signature consists of a collection of dec-
laration types between keywords sig and end. Note how the signature of Bintree includes the
parameterized bintree datatype declaration as well as the declarations of all the values in the
structure.

3
Ocaml also provides traditional record structures that are first class.

14

It is possible to name signatures and to declare that structures have a signature. For instance,
we can modify the file Bintree.ml as shown in Fig. 8. The notation

module type signature-name = signature

introduces a named signature. We can declare that a structure has a particular signature by writing

module module-name : signature = structure ,

where signature is either a signature name, or an explicit signature of the form sig . . . end.

module type BINTREE = sig

type ’a bintree = Leaf | Node of ’a bintree * ’a * ’a bintree

val map : (’a -> ’b) -> ’a bintree -> ’b bintree

val fold : (’a -> ’b -> ’a -> ’a) -> ’a -> ’b bintree -> ’a

val nodes : ’a bintree -> int

val height : ’a bintree -> int

val sum : int bintree -> int

val prelist : ’a bintree -> ’a list

val inlist : ’a bintree -> ’a list

val postlist : ’a bintree -> ’a list

val toString : (’a -> string) -> ’a bintree -> string

end

module Bintree : BINTREE = struct

same declarations as above

end

Figure 8: Modified Bintree.ml file containing both signature and structure.

When we load the modified Bintree.ml into the top-level interpreter, we see the following:

#use "Bintree.ml";;

module type BINTREE =

sig

type ’a bintree = Leaf | Node of ’a bintree * ’a * ’a bintree

val int_tree : int bintree

val string_tree : string bintree

val map : (’a -> ’b) -> ’a bintree -> ’b bintree

val fold : (’a -> ’b -> ’a -> ’a) -> ’a -> ’b bintree -> ’a

val nodes : ’a bintree -> int

val height : ’a bintree -> int

val sum : int bintree -> int

val prelist : ’a bintree -> ’a list

val inlist : ’a bintree -> ’a list

val postlist : ’a bintree -> ’a list

val toString : (’a -> string) -> ’a bintree -> string

end

module Bintree : BINTREE

Note how the notation module Bintree : BINTREE is used to declare that the Bintree structure
has the BINTREE signature. There is no need to put signatures and structures into the same file;
we can store them in separate files if we wish.

Signatures can be used to hide module components. When a module is given an explicit signa-
ture, only the names mentioned in the signature are exported from the module; not other names
can be extracted from the module. For example, we can defined a restricted version BT of the

15

Bintree module as follows:

module BT : sig type ’a bintree = Leaf | Node of ’a bintree * ’a * ’a bintree

val height : ’a bintree -> int

end

= Bintree

The BT module exports only the bintree type, the constructors BT.Leaf and BT.Node, and the
function BT.height. Other functions are not exported. For example, we cannot use BT.fold even
though fold is used internally to to define height.

3.3 Abstract Data Types

The hiding feature of signatures can be used to hide the implementation of a type. For example,
consider the module declaration:

module BT2 : sig type ’a bintree

val int_tree : int bintree

val string_tree : string bintree

val map : (’a -> ’b) -> ’a bintree -> ’b bintree

val fold : (’a -> ’b -> ’a -> ’a) -> ’a -> ’b bintree -> ’a end

= Bintree

BT2 is a version of Bintree that exports only the bintree type, the functions map and fold, and
the trees int_tree and string_tree. The declaration type ’a bintree says that BT2 exports a
parameterized bintree type without giving the definition of this type. Such a type is said to be
an abstract type because its representation is not known outside the module.

The top-level intepreter will not divulge any details about the representation of the abstract
binary trees in BT2:

BT2.map ((+) 1) BT2.int_tree;;

- : int BT2.bintree = <abstr>

In contrast, it will give details on the concrete binary trees in Bintree:

Bintree.map ((+) 1) Bintree.int_tree;;

- : int Bintree.bintree =

Node (Node (Leaf, 3, Leaf), 5,

Node (Node (Leaf, 2, Node (Leaf, 6, Leaf)), 7, Node (Leaf, 4, Leaf)))

Since BT2 does not export the Leaf and Node constructors, it is not possible to make arbitrary
new trees using the BT2module. The only way to create a new tree is to use the BT2.map operator on
an existing tree (BT2.int_tree or BT2.string_tree. The types BT2.intree and Bintree.intree

are considered to be different, so we can’t try to pass a tree constructed with Bintree to a BT2

function. For example, the expression BT2.map ((+) 1) Bintree.Leaf is not well-typed.
The hiding feature provided by Ocaml modules is ideal for realizing an abstract data type

(ADT), in which a contract serves as an abstraction barrier that separates the client and imple-
menter of a collection of functions that manipulate an abstract value. A classic example of an ADT
is a set. From the client’s perspective, a set is an abstract collection of values that contains each
value at most once and which supports operations like membership testing, insertion, deletion, and
the union, intersection, and difference of sets. An implementer can use any concrete data repre-
sentation and algorithms to implement the set as long as the set operations work as expected. For
example, the implementation may involve collections of elements potentially containing duplicate
entries as long as the set functions make it appear as though the set contains exactly one occurrence

16

of each element.
In Ocaml an ADT contract is represented as a signature and an ADT implementation is a

module satisfying that signature. For example, Fig. 9 shows the signature for a set ADT. Each
type declaration in the signature is accompanied by an English description specifying the meaning of
the declared operation or value. By not giving a concrete definition of the set type, the declaration
type ’a set guarantees that the ADT is truly abstract. A client can only use the operations in
the signature to create and manipulate sets. The type system prevents any attempt by the client to
manipulate whatever the underlying concrete representation type of the set might be. For instance,
if sets are represented as lists, then any attempt by the client to perform list operations directly on
a set will fail.

module type SET = sig

type ’a set

val empty : ’a set (* the empty set *)

val singleton : ’a -> ’a set (* a set with one element *)

val insert : ’a -> ’a set -> ’a set (* insert elt into given set *)

val delete : ’a -> ’a set -> ’a set (* delete elt from given set *)

val member : ’a -> ’a set -> bool (* is elt a member of given set? *)

val union: ’a set -> ’a set -> ’a set (* union of two sets *)

val intersection: ’a set -> ’a set -> ’a set (* intersection of two sets *)

val difference: ’a set -> ’a set -> ’a set (* difference of two sets *)

val fromList : ’a list -> ’a set (* create a set from a list *)

val toList : ’a set -> ’a list (* list all set elts, sorted low to high *)

val toSexp : (’a -> Sexp.sexp)

-> ’a set -> Sexp.sexp (* return an s-expression rep. of a list *)

val fromSexp : (Sexp.sexp -> ’a)

-> Sexp.sexp -> ’a set (* return an s-expression rep. of a list *)

val toString : (’a -> string)

-> ’a set -> string (* string representation of the set *)

end

Figure 9: A signature for a set abstract data type (ADT).

The signature gives great latitude for an implementer to choose a representation for the ADT.
In the case of sets, a simple representation for a set is a list of elements without duplicates sorted
from low to high. For the ordering criteria, we use the built-in ordering that Ocaml provide for any
type. A handy collection of functions for manipulating such lists is provided in the ListSetUtils
module (Fig. 10), whose signature is:

module type LIST_SET_UTILS = sig

val member: ’a -> ’a list -> bool

val insert: ’a -> ’a list -> ’a list

val delete: ’a -> ’a list -> ’a list

val union: ’a list -> ’a list -> ’a list

val intersection: ’a list -> ’a list -> ’a list

val difference: ’a list -> ’a list -> ’a list

end

let fromList xs = xs

because the list xs might contain elements out of order or contain duplicate elements.
A set implementation using these functions is the SortedListSet module presented in Fig. 11.

17

module ListSetUtils : LIST_SET_UTILS = struct

let rec member x ys =

match ys with

[] -> false

| y::ys’ -> (x = y) || ((x > y) && (member x ys’))

(* Insert an element into a sorted list *)

let rec insert x ys =

match ys with

[] -> [x]

| y::ys’ -> if x < y then x::ys

else if x = y then ys

else y::(insert x ys’)

(* Delete an element from a sorted list *)

let rec delete x ys =

match ys with

[] -> []

| y::ys’ -> if x = y then ys’

else if x < y then ys

else y::(delete x ys’)

(* Merge two sorted lists, removing duplicates *)

let rec union xs ys =

match (xs, ys) with

([], _) -> ys

| (_, []) -> xs

| (x::xs’,y::ys’) -> if x = y then x::(union xs’ ys’)

else if x < y then x::(union xs’ ys)

else y::(union xs ys’)

(* Intersection of two sorted lists *)

let rec intersection xs ys =

match (xs, ys) with

([], _) -> []

| (_, []) -> []

| (x::xs’,y::ys’) -> if x = y then x::(intersection xs’ ys’)

else if x < y then intersection xs’ ys

else intersection xs ys’

(* Difference of two sorted lists *)

let rec difference xs ys =

match (xs, ys) with

([], _) -> []

| (_, []) -> xs

| (x::xs’,y::ys’) -> if x = y then difference xs’ ys

else if x < y then x::(difference xs’ ys)

else difference xs ys’

end

Figure 10: Utilities used to process sorted lists.

18

Of particular interest is the fromList function, which uses insert to insert all elements of the
given list into the resulting set. This preserves the invariant that the set must be a sorted list
without duplicates. It would be incorrect to defined fromList as

module SortedListSet : SET = struct

module LSU = ListSetUtils (* Abbreviation for list set utilities *)

type ’a set = ’a list

let empty = []

let singleton x = [x]

let insert x s = LSU.insert x s

let delete x s = LSU.delete x s

let member x s = LSU.member x s

let union s1 s2 = LSU.union s1 s2

let intersection s1 s2 = LSU.intersection s1 s2

let difference s1 s2 = LSU.difference s1 s2

let toList s = s

let fromList xs = List.fold_right insert xs empty

let fromSexp eltFromSexp sexp =

match sexp with

Sexp.Seq elts -> List.map eltFromSexp elts

| _ -> raise (Failure "unrecognized s-expression")

let toSexp eltToSexp xs = Sexp.Seq(List.map eltToSexp xs)

let toString eltToString s = StringUtils.listToString eltToString s

end

Figure 11: An implementation of the set ADT using sorted lists.

Of course, the SortedListSet module is only one possible implementation of the set ADT.
There are many other possible implementations, particularly variants of binary search trees
(BSTs) – binary trees of elements in which all elements in the left subtree of each node are strictly
less than the element value of that node, and all elements in the right subtree of each node are
strictly greater than the element value of that node.

The Ocaml type system is sophisticated enough to allow several implementations of the same
ADT to be used in the same program. The hard part about this is that it must be a type error for
the operations of one implementation to be used on a value created by another implementation.
For instance, suppose we have a BSTSet module implementing the SET signature in addition to the
SortedListSet module, and we make the following two sets:

19

let sls = SortedListSet.fromList [1;2;3];;

val sls : int SortedListSet.set = <abstr>

let bst = BSTSet.fromList [2;3;4];;

val bst : int BSTSet.set = <abstr>

Then it should be a type error to use a SortedListSet operation on bst or to use a BSTSet

operation on sls. And indeed it is:

SortedListSet.insert 1 bst;;

Characters 23-26:

SortedListSet.insert 1 bst;;

^^^

This expression has type int BSTSet.set but is here used with type

int SortedListSet.set

BSTSet.union sls bst;;

Characters 13-16:

BSTSet.union sls bst;;

^^^

This expression has type int SortedListSet.set but is here used with type

’a BSTSet.set

Ocaml is able to determine this by keeping track of which module the sets come from. In this
case, sls has type int SortedListSet.set, while bst has type int BSTSet.set, and these types
are considered distinct by the type system.

3.4 Functors

There are many situations where we would like to abstract over the particular structure that is
used to implement a given signature. For example, we want to be able to write testing code for
a set implementation that gives us confidence that the implementation is implemented corrected.
Because we only care about the abstract behavior of sets in our testing code, we would like to be able
to use the same testing code with any set implementation, regardless of its concrete representation.

Since structures are second-class entities in Ocaml, we cannot use functions to abstract over
them. However, Ocaml supplies us with a function-like entity called a functor that is able to
abstract over structures. In order to provide type safety guarantees, Ocaml makes functors more
restrictive than functions – they can only be declared and used in limited ways. Nevertheless,
functors are still a powerful way to abstract over the details of particular structures.

As a simple example of a functor, consider the set-testing functor SimpleSetTest shown in
Fig. 12. SimpleSetTest is a functor that takes as its single argument any structure Set satisfying
the SET signature. As its result, it returns a structure with the single declaration for a testing
function named test. This test function uses operations in the the Set structure to manipulate
sets of the type int Set.set. It returns a triple of (1) a set containing the elements 1,2,4,5,6; (2)
a list of integer lists showing the results of various set operations; and (3) a list of string lists that
shows the results of some other set operations.

We can load SimpleSetTest into the top-level interpreter as follows:

#use "../sets/SimpleSetTest.ml";;

module SimpleSetTest :

functor (Set : SET) ->

sig val test : unit -> int Set.set * int list list * string list end

20

module SimpleSetTest =

functor (Set: SET) -> struct

let test () =

let s1 = Set.fromList [5;2;6;1;4]

and s2 = Set.fromList [2;8;6;3]

in (s1,

[Set.toList s1;

Set.toList s2;

Set.toList (Set.insert 3 s1);

Set.toList (Set.delete 5 s1);

Set.toList (Set.union s1 s2);

Set.toList (Set.intersection s1 s2);

Set.toList (Set.difference s1 s2)],

[Set.toString string_of_int s1;

Sexp.sexpToString(Set.toSexp (fun x -> Sexp.Int x) s1)]

)

end

Figure 12: A simple set-testing functor.

Note how the first component of the returned triple refers to the Set argument given to the functor.
A type in which result types depend on argument types is known as a dependent type.

We can now give SimpleSetTest a spin on different set structures:

module SLST = SimpleSetTest(SortedListSet);;

module SLST :

sig

val test : unit -> int SortedListSet.set * int list list * string list

end

SLST.test();;

- : int SortedListSet.set * int list list * string list =

(<abstr>,

[[1; 2; 4; 5; 6]; [2; 3; 6; 8]; [1; 2; 3; 4; 5; 6]; [1; 2; 4; 6];

[1; 2; 3; 4; 5; 6; 8]; [2; 6]; [1; 4; 5]],

["[1,2,4,5,6]"; "(1 2 4 5 6)"])

module BSTST = SimpleSetTest(BSTSet);;

module BSTST :

sig val test : unit -> int BSTSet.set * int list list * string list end

BSTST.test();;

- : int BSTSet.set * int list list * string list =

(<abstr>,

[[1; 2; 4; 5; 6]; [2; 3; 6; 8]; [1; 2; 3; 4; 5; 6]; [1; 2; 4; 6];

[1; 2; 3; 4; 5; 6; 8]; [2; 6]; [1; 4; 5]],

["((* 1 (* 2 *)) 4 ((* 5 *) 6 *))"; "((1 (2)) 4 ((5) 6))"])

By using the printed representation <abstr>, Ocaml hides the implementation details of the given
set structure. However, the toSexp and toString functions expose the details of which structure
is used in this example. This is not a failure of the Ocaml module system; it just reflects that

21

these two operations are defined in an ambiguous way that allows them to return different results
for different implementations.

22

