
CS251 Programming Languages Handout # 11
Prof. Lyn Turbak January 28, 2004
Wellesley College

Problem Set 1
Due: 6pm Thursday, February 5

Overview:
The purpose of this assignment is to give you practice writing list recursions in Ocaml. Since

learning a new programming language and programming environment takes time, it is strongly
recommended that you (1) start early and (2) work with a partner. Allocate time over several days
to work on the problems; it is very unwise to start the assignment only a day or two before it is
due. Don’t hesitate to ask for help if you hit a roadblock.

Reading:

• Handouts #1 – #10 (only Chapters 1–5 of Handout #8 (Introduction to Ocaml)).

Submission:
Each team should turn in a single hardcopy submission packet for all problems by slipping it

under Lyn’s office door by 6pm on the due date. The packet should include:

1. a team header sheet (see the end of this assignment for the header sheet) indicating the time
that you (and your partner, if you are working with one) spent on the parts of the assignment.

2. your final version of ps1.ml.

Each team should also submit a single softcopy (consisting of your final ps1 directory) to the
drop directory ~cs251/drop/ps1/username, where username is the username of one of the team
members (indicate which drop folder you used on your hardcopy header sheet). To do this, execute
the following commands in Linux in the account of the team member being used to store the code.

cd /students/username/cs251

cp -R ps1 ~cs251/drop/ps1/username/

Problem 0: Getting Started

a. : Linux

You should begin this assignment by learning (or reminding yourself) how to use Linux. See the
information in Handouts #3 and #4 on using Linux/Unix.

b. : Emacs

Next you should learn (or remind yourself) how to use Emacs. See the information in Handouts
#3 and #5 on using Emacs. Learning to execute all cursor-motion and editing commands via
keystrokes (rather than via mouse and menus) is an important skill that will save you lots of time
over the semester. It will also make it easier for you to work remotely via telnet/ssh. A good
way to begin learning the keystroke commands is taking the online interactive Emacs tutorial
(see Handout #3 for how to do this).

1

c. : CVS

To do the rest of the problems on this assignment, you will need to use several files that are in
the CVS-controlled CS251 repository. Follow the directions in Handout #7 for how to install
your local CVS filesystem. You only need to install it once.

Once you have installed your local CVS filesystem, you can access all CVS-controlled files by
executing the following in a Linux shell:

cd ~/cs251

cvs update -d

Indeed, every time you log in to a Linux machine to work on a CS251 assignment, you should
execute the above commands to ensure that you have the most up-to-date versions of the problem
set materials.

On this assignment, executing the above commands will create the local directory ~/cs251/ps1

containing three files:

1. ps1.ml: This file contains skeletons for each of the Ocaml functions you are asked to define.
You should flesh out each of the skeletons as you do the problems. In many of the problems
it will also be helpful to define additional auxiliary functions. You are welcome to use any
functions defined in class, as well as any other functions you need.

2. ps1-test.ml: This file contains code for testing each of your functions on some simple test
cases. You can test the function in problem n by evaluating the function invocation testn()
in the Ocaml interpreter. You can test all the functions on the assignment by evaluating
the function invocation testall(). Note that even if your function passes all the test cases,
it is not guaranteed to be correct; you are encouraged to extend the test cases in the testing
file.

3. load-ps1.ml: This file is used to load the other two files into the Ocaml interpreter. (See
below.)

d. : Ocaml Interpreter

To start working on the rest of the problems on this assignment, you will need to launch the
Ocaml interpreter. There are several ways to do this; see Handout #9. It is recommended that
you choose one of the ways to work within Emacs, since this simplifies many interactions.

Within the Ocaml interpreter, execute the following to load the PS1 code:

#cd "/students/username/cs251/ps1";;

#use "load-ps1.ml";;

Note that the hash mark (#) is part of the command name and is not the prompt of the
Ocaml interpreter. For some reason, Ocaml does not understand the abbreviation ~ for
/students/username, so you must write out the long form. After making any change to ps1.ml
or ps1-test.ml you should re-execute

#use "load-ps1.ml";;

to inform the Ocaml interpreter of your changes.

2

Below are the specifications for nine functions. Write definitions for each of the nine functions.
Thinking carefully about your strategy before you start coding will save you lots of time! The
divide-conquer-and-glue strategy you are familiar with from CS111 and CS230 can be use to solve
all problems.

Problem 1 [10] val sum_multiples_of_3_or_5 : int * int -> int

sum_multiples_of_3_or_5 (m,n) returns the sum of all integers from m up to n (inclusive) that
are multiples of 3 and/or 5. For example:

sum_multiples_of_3_or_5 (0,10);;

- : int = 33 (* 3 + 5 + 6 + 9 + 10 *)

sum_multiples_of_3_or_5 (-9,12);;

- : int = 22

sum_multiples_of_3_or_5 (18,18);;

- : int = 18

sum_multiples_of_3_or_5 (10,0);;

- : int = 0 (* The range "10 up to 0" is empty. *)

Problem 2 [5] val contains_multiple : int * int list -> bool

contains_multiple (n,ns) returns true if n evenly divides at least one element of the integer list
ns; otherwise it returns false. Use the infix mod function to determine divisibility. E.g. 17 mod 5

denotes 2.

contains_multiple (5, [8;10;14]);;

- : bool = true

contains_multiple (3, [8;10;14]);;

- : bool = false

contains_multiple (5, []);;

- : bool = false

Problem 3 [5] val all_contain_multiple : int * int list list -> bool

all_contain_multiple (n,nss) returns true if each list of integers in nss contains at least one
integer that is a multiple of n; otherwise it returns false.

all_contain_multiple (5, [[17;10;12]; [25]; [3;7;5]]);;

- : bool = true

all_contain_multiple (3, [[17;10;12]; [25]; [3;7;5]]);;

- : bool = false

all_contain_multiple (3, []);;

- : bool = true

Problem 4 [10] val merge : ’a list * ’a list -> ’a list

Assume that xs and ys are both lists ordered from small to large by <. Then merge (xs,ys)

returns a list containing all the elements of xs and ys in sorted order.

merge ([1;4;5;7], [2;3;5;9]);;

- : int list = [1; 2; 3; 4; 5; 5; 7; 9]

merge ([’a’;’d’;’f’], [’b’; ’c’; ’e’]);;

- : char list = [’a’; ’b’; ’c’; ’d’; ’e’; ’f’]

merge ([], []);;

- : ’_a list = []

3

Problem 5 [15] val alts : ’a list -> ’a list * ’a list

Assume that the elements of a list are indexed starting with 1. alts xs returns a pair of lists, the
first of which has all the odd-indexed elements (in the same relative order as in xs) and the second
of which has all the even-indexed elements (in the same relative order as in xs).

alts [7;5;4;6;9;2;8;3];;

- : int list * int list = ([7; 4; 9; 8], [5; 6; 2; 3])

alts [7;5;4;6;9;2;8];;

- : int list * int list = ([7; 4; 9; 8], [5; 6; 2])

alts [7];;

- : int list * int list = ([7], [])

alts [];;

- : ’_a list * ’_a list = ([], [])

Problem 6 [15] val cartesian_product : ’a list * ’b list -> (’a * ’b) list

cartesian_product (xs,ys) returns a list of all pairs (x,y) where x ranges over the elements
of xs and y ranges over the elements of ys. The pairs should be sorted first by the x entry (relative
to the order in xs) and then by the y entry (relative to the order in ys).

cartesian_product ([1; 2], [’a’; ’b’; ’c’]);;

- : (int * char) list =

[(1, ’a’); (1, ’b’); (1, ’c’); (2, ’a’); (2, ’b’); (2, ’c’)]

cartesian_product ([2; 1], [’a’; ’b’; ’c’]);;

- : (int * char) list =

[(2, ’a’); (2, ’b’); (2, ’c’); (1, ’a’); (1, ’b’); (1, ’c’)]

cartesian_product ([’c’; ’a’; ’b’], [2; 1]);;

- : (char * int) list =

[(’c’, 2); (’c’, 1); (’a’, 2); (’a’, 1); (’b’, 2); (’b’, 1)]

cartesian_product ([1], [’a’]);;

- : (int * char) list = [(1, ’a’)]

cartesian_product ([], [’a’; ’b’; ’c’]);;

- : (’_a * char) list = []

Problem 7 [10] val bits : int -> int list

bits n returns a list of the bits (0s and 1s) in the binary representation of n.

bits 5;;

- : int list = [1; 0; 1]

bits 10;;

- : int list = [1; 0; 1; 0]

bits 11;;

- : int list = [1; 0; 1; 1]

bits 22;;

- : int list = [1; 0; 1; 1; 0]

bits 23;;

- : int list = [1; 0; 1; 1; 1]

bits 46;;

- : int list = [1; 0; 1; 1; 1; 0]

4

Problem 8 [15] val inserts : ’a * ’a list -> ’a list list

Assume that ys is a list with n elements. insert (x,ys) returns a n+1-length list of lists showing
all ways to insert a single copy of x into xs.

inserts (3, [5;7;1]);;

- : int list list = [[3; 5; 7; 1]; [5; 3; 7; 1]; [5; 7; 3; 1]; [5; 7; 1; 3]]

inserts (3, [5;3;1]);;

- : int list list = [[3; 5; 3; 1]; [5; 3; 3; 1]; [5; 3; 3; 1]; [5; 3; 1; 3]]

inserts (3, []);;

- : int list list = [[3]]

Problem 9 [15] val permutations : ’a list -> ’a list list

Assume that xs is a list of distinct elements (i.e., no duplicates). permutations xs returns a list
of all the permutations of the elements of xs. The order of the permutations does not matter.

permutations [];;

- : ’_a list list = [[]]

permutations [1];;

- : int list list = [[1]]

permutations [1;2];;

- : int list list = [[1; 2]; [2; 1]]

permutations [1;2;3];;

- : int list list =

[[1; 2; 3]; [2; 1; 3]; [2; 3; 1]; [1; 3; 2]; [3; 1; 2]; [3; 2; 1]]

permutations [1;2;3;4];;

- : int list list =

[[1; 2; 3; 4]; [2; 1; 3; 4]; [2; 3; 1; 4]; [2; 3; 4; 1]; [1; 3; 2; 4];

[3; 1; 2; 4]; [3; 2; 1; 4]; [3; 2; 4; 1]; [1; 3; 4; 2]; [3; 1; 4; 2];

[3; 4; 1; 2]; [3; 4; 2; 1]; [1; 2; 4; 3]; [2; 1; 4; 3]; [2; 4; 1; 3];

[2; 4; 3; 1]; [1; 4; 2; 3]; [4; 1; 2; 3]; [4; 2; 1; 3]; [4; 2; 3; 1];

[1; 4; 3; 2]; [4; 1; 3; 2]; [4; 3; 1; 2]; [4; 3; 2; 1]]

5

Problem Set Header Page

Please make this the first page of your hardcopy submission.

CS251 Problem Set 1
Due 6pm Thursday, February 5

Names of Team Members:

Date & Time Submitted:

Collaborators (anyone you or your team collaborated with on the problem

set):

In the Time column, please estimate the time you or your team spent on the parts of this problem

set. Team members should be working closely together, so it will be assumed that the time reported

is the time for each team member. Please try to be as accurate as possible; this information will

help me design future problem sets. I will fill out the Score column when grading you problem set.

Part Time Score

General Reading

Problem 1 [10]

Problem 2 [5]

Problem 3 [5]

Problem 4 [10]

Problem 5 [15]

Problem 6 [15]

Problem 7 [10]

Problem 8 [15]

Problem 9 [15]

Total

6

