
CS251 Programming Languages Handout # 26
Prof. Lyn Turbak Monday, April 5, 2004
Wellesley College Revised Friday, April 9, 2004

Problem Set 6
Due: 6pm Friday, April 16

Revisions:

This is the final draft of PS6, which includes Problems 3, 4, and 5.

Overview:
The purpose of this assignment is to give you practice with reasoning about state in the context of
Hoilec, Hoilic, Java, and Scheme. You will also get some practice programming in Scheme.

Reading:

• Skim R5RS.

• Reading sections 3.1–3.3 of Abelson & Sussman’s Structure and Interpretation of Computer

Programs is strongly recommended. This is a good way to learn about Scheme, especially in
the context of its imperative features and environment diagrams.

Working Together:
If you worked with a partner on a previous problem set and want to work with a partner on this
assignment, you are encourage to choose a different partner. However, you may also work with
someone you worked with in the first half of the semester.

Submission:
Each team should turn in a single hardcopy submission packet for all problems by slipping it under
Lyn’s office door by 6pm on the due date. The packet should include:

1. a team header sheet (see the end of this assignment for the header sheet) indicating the time
that you (and your partner, if you are working with one) spent on the parts of the assignment.

2. the pencil-and-paper diagrams and answers to Problem 1

3. the pencil-and-paper diagrams and answers to Problem 2a and your final version of Counters.java
for Problem 2b.

4. for Problem 3, the final versions of Hoilic.ml and HoilicEnvInterp.ml for parts (a) and
(b) and cell.def for part (c). You should also include the evaluation answers for part (b).

5. the final version of int-table.scm for Problem 4.

6. the final version of memoize.scm for Problem 5.

Each team should also submit a single softcopy (consisting of your final ps6 directory) to the
drop directory ~cs251/drop/ps6/username, where username is the username of one of the team
members (indicate which drop folder you used on your hardcopy header sheet). To do this, execute
the following commands in Linux in the account of the team member being used to store the code.

cd /students/username/cs251

cp -R ps6 ~cs251/drop/ps6/username/

1

Problem 1 [15]: Safe Transformations
A transformation that rewrites one expression to another is said to be safe if performing the

transformation anywhere in a program will not change the behavior of the program . For each
of the following transformations, indicate whether it is safe in (i) Hofl and (ii) Hoilec. For
each transformation you specify as unsafe, give an example whose behavior is changed by the
transformation. Changes in behavior include:

• the program returns different values before and after the transformation.

• the program loops infinitely before the transformation, but returns a value after the trans-
formation.

• the program returns a value before the transformation, but loops infinitely after the trans-
formation.

In each expression, I stands for a variable reference and E stands for an expression. You may
assume that all subexpressions of an application are evaluated in left-to-right order.

a. (+ I I) =⇒ (* 2 I)

b. (+ E E) =⇒ (* 2 E)

c. (+ E1 E2) =⇒ (+ E2 E1)

d. (+ E1 E2) =⇒ (bind x E1 (+ x E2))

e. (+ E1 E2) =⇒ (bindpar ((x (fun () E1))

(y (fun () E2)))

(+ (x) (y)))

f. (if true E1 E2) =⇒ E1

g. (if E1 E2 E2) =⇒ E2

h. (if (if E1 E2 E3) E4 E5) =⇒ (if E1 (if E2 E4 E5) (if E3 E4 E5))

Problem 2 [25]: Counters
Recall that in Hoilic (1) every variable name is bound to an implicit cell; (2) references to a

variable implicitly dereference (return the contents of) the cell; and (3) a variable v can be assigned
a new value via the assignment construct (<- v E), which changes the contents of the implicit
cell associated with v to the value of E.

a. [15]

Consider the Hoilic functions in Fig. 1. For each of the following expressions, (1) give the value
of the expression and (2) draw an environment diagram that justifies why the expression has that
value. You should assume that all operands are evaluated in left-to-right order.

• (test-counter make-counter1)

• (test-counter make-counter2)

• (test-counter make-counter3)

2

(def make-counter1

(bind count 0

(fun ()

(fun ()

(begin (<- count (+ count 1))

count)))))

(def make-counter2

(fun ()

(bind count 0

(fun ()

(begin (<- count (+ count 1))

count)))))

(def make-counter3

(fun ()

(fun ()

(bind count 0

(begin (<- count (+ count 1))

count)))))

(def test-counter

(fun (make-counter)

(bindseq ((a (make-counter))

(b (make-counter)))

(list (a) (b) (a)))))

Figure 1: Hoilic counter functions.

3

b. [10]

Let x range over the numbers {1,2,3,}. Then each of the Hoilic functions make-counterx can
be modeled in Java by an instance of class Counterx that implements the following interface:

interface Counter {

public int invoke();

}

In addition to its single nullay instance method invoke, each class Counterx should have a single
class, instance, or local variable named count. TheHoilic test expression (test-counter make-counterx)

can be modeled by the Java statement:

Counters.testCounters(new Counterx(), new Counterx());

where testCounters is a class method of the Counters class with the following definition:

public static void testCounters (Counter a, Counter b) {
return IL.prepend(a.invoke(),

IL.prepend(b.invoke(),

IL.prepend(a.invoke(),

IL.empty())));

}

Here IL. is a prefix for operations manipulating integer lists.

In this subproblem your task is to flesh out the definitions of the Counterx classes in the file
Counters.java so that they correctly model make-counterx .

Problem 3 [30]: Hoilic Extensions
In this problem, you will add three extensions to the Hoilic interpreter. This interpreter can

be found in the files Hoilic.ml and HoilicEnvInterp.ml in the ps6 directory. It can be loaded
into Ocaml via #use "load-hoilic.ml". In addition to the usual imperative features of Hoilic,
this version of Hoilic supports strings and the string operations from PS5 (strlen, strlt, str+,
and to-string). It also supports a string equality operator str=.

a. [10]: Mutable Lists

In the version of Hoilic you are given, lists are immutable; there is no way to change the head or
tail component of a list node. In this suproblem, your task is to make the Hoilic lists mutable,
like those in Scheme. In particular, you should add the following two primitive operators to
Hoilic:

(set-head! list new-head)
Changes the head component of list to be new-head. Returns the old head component.
Signals an error if list is empty or if list is not a list.

(set-tail! list new-tail)
Changes the head component of list to be the list new-tail. Returns the old tail list. Signals
an error if list is empty or if list or new-tail are not lists.

Make whatever changes are necessary to Hoilic.ml and HoilicEnvInterp.ml to implement
mutable lists. Note that you may have to change the way some existing list operations are
handled.

4

HoilicEnvInterp.repl();;

hoilic> (def lst (list 1 2 3))

hoilic> lst

{1,2,3}

hoilic> (head lst)

1

hoilic> (set-head! lst 4)

1

hoilic> (head lst)

4

hoilic> lst

{4,2,3}

hoilic> (tail lst)

{2,3}

hoilic> (set-tail! lst (list 5 6 7))

{2,3}

hoilic> (tail lst)

{5,6,7}

hoilic> lst

{4,5,6,7}

Figure 2: Mutable list examples in the Hoilic Read/Eval/Print loop.

5

b. [10]: fluid-bind

Renowned naming expert Dan Emmet Schoop has hired you to implement in Hoilic a new
binding construct he calls fluid-bind. Here is Dan’s specification for his construct:

(fluid-bind I Edef Ebody)
Temporarily assigns to I the value of Edef during the evaluation of Ebody and then resets I

to its original value. Returns the value of Ebody . Signals an error if I is not already bound
in the enclosing lexical context.

1. Dan claims that fluid-bind gives much of the behavior associated with dynamic scoping
within a statically-scoped language like Hoilic. What are the values of the following two
Hoilic expressions?

(bind a 1

(bind f (abs x (+ x a))

(+ (fluid-bind a 20 (f 300))

(f 4000))))

(bind a 1

(+ (fluid-bind a 20

(begin

(<- a (+ a 300))

a))

a))

2. fluid-bind can be implemented in Hoilic via desugaring. Extend the desugaring rules
of Hoilic to implement fluid-bind. Show that your desugaring-based implementation of
fluid-bind yields the values you predicted for the above expressions.

Notes:

• You can test your implementation on the examples via (#load "fluid.def"). This defines
the name fluid1 to be the value of the first expression and fluid2 to be the value of the
second expression.

• MIT Scheme has a construct called fluid-let that is similar to the fluid-bind construct
described above.

c. [10]: Explicit mutable cells

Hoilic does not support the explicit mutable cells of Hoilec. However, it is possible for a
Hoilic user (not just the language implementer) to add these to Hoilic by defining the user-
level functions cell, $, and $=. Show this by creating a Hoilic file cell.def that defines these
three functions using the syntax (def I E) for each definition. Show that your functions behave
as expected – e.g., by trying the examples in Fig. 3.

Notes:

• Hint: Consider the message-passing approach to implementing stateful objects covered in
class and in Problem 4 on this assignment.

• Unlike the Hoilec $= construct, your Hoilic $= function will be curried. I.e., ($= a 5) is
equivalent to (($= a) 5).

6

hoilic> (#load "cell.def")

Loading cell.def

Done loading cell.def

hoilic> (def c1 (cell 5))

hoilic> (def c2 (cell 17))

hoilic> ($ c1)

5

hoilic> ($ c2)

17

hoilic> ($= c1 (+ ($ c1) 1))

5

hoilic> ($ c1)

6

hoilic> ($ c2)

17

hoilic> ($= c1 ($= c2 ($ c1)))

6

hoilic> ($ c1)

17

hoilic> ($ c2)

6

Figure 3: Examples involving explicit cells in Hoilic.

7

Problem 4 [20]: Mutable Tables in Scheme
Fig. 4 shows a Scheme implementation of mutable tables in which keys and values may be of any

type. In this implementation, the key/value bindings are represented as a so-called association list
(alist for short) of binding pairs of the form (key . value). The order of the bindings depends
on the insertion order, not the order of the keys. The assoc function performs a linear lookup of
a key k in a list of binding pairs and returns the first binding pair whose key is equal? to k. If no
such binding pair is found, assoc returns #f.
A table returned by the invocation (new-alist-table) is a stateful message-passing procedure

that responds to the messages ’insert and ’lookup. The ’insert message returns a procedure
that takes a key and value and inserts them into the table. The ’lookup message returns a
procedure that looks up a key in the table. If the key is found, the associated value is returned;
otherwise the distinguished none value is return, as defined below:

(define none ’(*none*))

(define none? (lambda (x) (eq? x none)))

Here is a transcript showing these tables in action:

(define t (new-alist-table))

;Value: t

((t ’insert) ’foo 1)

;Value: inserted

((t ’lookup) ’foo)

;Value: 1

((t ’lookup) ’bar)

;Value 4: (*none*)

((t ’insert) 2 ’baz)

;Value: inserted

((t ’insert) "quux" #t)

;Value: inserted

((t ’insert) 2 #\c)

;Value: inserted

((t ’lookup) ’foo)

;Value: 1

((t ’lookup) 2)

;Value: #\c

((t ’lookup) "quux")

;Value: #t

((t ’lookup) "foo")

;Value 4: (*none*)

((t ’lookup) ’bar)

;Value 4: (*none*)

8

(define new-alist-table

(lambda ()

(let ((alist ’()))

;; Create message dispatcher named SELF (like THIS in Java)

(define self

(lambda (msg)

(cond

((eq? msg ’lookup)

(lambda (key)

(let ((probe (assoc key alist)))

(if probe

(cdr probe)

none))))

((eq? msg ’insert)

(lambda (key val)

(let ((probe (assoc key alist)))

(begin

(if probe

(set-cdr! probe val)

;; Didn’t find pair; add new pair to front.

(set! alist (cons (cons key val) alist)))

’inserted))))

(else (error "Unrecognized message" msg))

))) ; end of DEFINE SELF ...

;; Return message dispatcher

self)))

Figure 4: Scheme implementation of mutable tables as association lists of mutable pairs.

9

a. [5]: Environment/Box-and-Pointer Diagram

Draw a diagram showing the state of the table t at the end of the above transcript. Your diagram
should include any closures and environments needed to show the final state of the table, but not
any intermediate closures and frames created in the process of creating the table. Use standard
box-and-pointer diagrams to represent lists and pairs.

b. [15]: An Efficient Integer Table

Because it uses linear search, the above table representation is not particularly efficient. This
can be shown using the testing procedures in Fig. 5. The test-table procedure 1 takes a table-
making function and a non-negative integer n and creates a table whose bindings are (i . 2i)

for the integers i between 0 and n. The timed procedure2 takes any n-ary function f and
returns another n-ary function that, when called on n arguments, returns the 2-element list
(time result), where result is the result of calling f on the n arguments and time is the time
in seconds to compute result.

(define test-table

(lambda (table-maker n)

(let ((table (table-maker)))

(let insert-loop ((i 0))

(if (<= i n)

(begin ((table ’insert) i (* 2 i))

(insert-loop (+ i 1)))

(let lookup-rec ((j 0))

(if (> j n)

’()

(cons (cons j ((table ’lookup) j))

(lookup-rec (+ j 1))))))))))

(define timed

(lambda (f)

(lambda args ;; args is bound to list of all arguments

(let* ((start (system-clock)) ; Initial clock

(result (apply f args))

(stop (system-clock))) ; Final clock

;; Return a 2-elements list of (1) time taken and (2) function result

(list (- stop start) result)))))

Figure 5: Scheme procedures for testing the table implementation.

1In the body of test-table, the recursion-defining sugar (let I ((I1 E1) ...) Ebody) is used twice. See R5RS

for details.
2In the notation (lambda args ...), the name args is bound to the list of all the parameters. This is how

procedures of arbitrary numbers of arguments are defined in Scheme; see R5RS for details. The system-clock

timing procedure is specific to MIT Scheme.

10

For example, consider the following:3

(map (lambda (n) (list n (car ((timed test-table) new-alist-table n))))

’(100 200 400 800 1600 3200 6400 12800))

;Value 19: ((100 1.0000000000005116e-2)

(200 3.0000000000001137e-2)

(400 .09000000000000341)

(800 .3100000000000023)

(1600 1.1400000000000006)

(3200 4.439999999999998)

(6400 18.840000000000003)

(12800 90.47))

Doubling the input size cause the time to increase by a factor of about 4, a feature of an algorithm
that is quadratic.

In this problem your task is to implement an (amortized) linear-time table for the special case
where keys are non-negative integers. Your implementation should represent a collection of
key/value bindings as a vector (i.e., a Scheme array) in which indices are the (implicit) keys and
the value at index i is the value associated with key i. If there is no binding for a given key i,
then slot i of the vector should contain the distinguished none value.

As with Java arrays, Scheme vectors have fixed size, so some accomodation must be made to
handle the insertion of a value for key i when i is ≥ the length len of the vector. You should
implement the following strategy:

• if len ≤ i < 2·len, then make a new vector of size 2·len, and copy the contents of the original
vector into the first half of the new vector.

• if i ≥ 2·len, then make a new vector of size i, and copy the contents of the original vector
into the first len slots of the new vector.

Your table-creating procedure should be named new-int-table. As with new-alist-table, the
table itself should be a stateful message-passing procedure responding to the messages ’insert
and ’lookup. Additionally, it should respond to the following two messages:

• ’capacity: returns the length of the underlying vector.

• ’embiggen: returns a procedure of one argument, n. If n is greater than the length len of
the underlying vector, installs a new underlying vector whose length is n and whose first len

slots are filled from the original vector. Otherwise does nothing.

Notes:

• Write your definition of new-int-table in the file int-table.scm.

• Use (load "load-tables.scm") to load into Scheme the table procedures and associated
utility and testing procedures.4

• Test your definition using (test-table new-int-table n) and

(map (lambda (n) (list n (car ((timed test-table) new-int-table n))))

’(100 200 400 800 1600 3200 6400 12800))

For the latter test, you should see a marked improvement over the timings for the alist table.

3The notation ne-2 means n×10−2.
4If this complains that the file is not found, you may have to first execute the following in Scheme to set the

current directory to be correct: (cd "/students/your-username/cs251/ps6")

11

Problem 5 [10]: Function Memoization in Scheme
Consider the standard recursive definition of a Scheme Fibonacci function:

(define fib

(lambda (n)

(if (< n 2)

n

(+ (fib (- n 1))

(fib (- n 2))))))

Such a definition is extremely inefficient (exponential time) due to the repeated calculation of
subcomputations. Indeed, while Scheme’s big integers can easily express the 100th Fibonacci
number, calculating (fib 100) would take more time than our sun is expected to “live”.
The running time of the above fib function can be dramatically improved by a simple strategy

known as memoization. The idea is to save the result of (fib n) in a table the first time we
compute it, and then simply look up the answer on every subsequent invocation of (fib n).
This strategy can be captured in memoize! procedure that takes as its input a procedure of a

single integer argument and returns a memoized version of that procedure. The above Fibonacci
function can be memoized as follows:

(define fib

(memoize!

(lambda (n)

(if (< n 2)

n

(+ (fib (- n 1))

(fib (- n 2)))))))

If we use the fast integer tables from Problem 4, it is easy to compute the 100th, and even the
1000th, Fibonacci numbers in less than a second:

((timed fib) 100)

;Value 20: (.01999999999998181 354224848179261915075)

((timed fib) 1000)

;Value 21: (.13999999999998636 4346655768693745643568852767504062580256466051737178040

24817290895365554179490518904038798400792551692959225930803226347752096896232398733224

71161642996440906533187938298969649928516003704476137795166849228875)

Your task is to define the memoize! procedure in Scheme.

Notes:

• Write your definition in the file memoize.scm, which initially contains the unmemoized version
of fib.

• Use (load "load-memoize.scm") to load "memoize.scm" and other files on which it depends.

• You may use either alist tables or the fast integer tables from Problem 4.

• The definition of memoize! can be very short (mine is 10 lines). Draw environment diagrams
to help you design the memoize! procedure.

• Test your memoize! function by redefinining fib to be a memoized function and using
(timed fib) as shown above.

12

Problem Set Header Page

Please make this the first page of your hardcopy submission.

CS251 Problem Set 6
Due 6pm Friday, April 16

Names of Team Members:

Date & Time Submitted:

Collaborators (anyone you or your team collaborated with):

By signing below, I/we attest that I/we have followed the collaboration policy
as specified in the Course Information handout.

Signature(s):

In the Time column, please estimate the time you or your team spent on the parts of this problem

set. Team members should be working closely together, so it will be assumed that the time reported

is the time for each team member. Please try to be as accurate as possible; this information will

help me design future problem sets. I will fill out the Score column when grading your problem set.

Part Time Score

General Reading

Problem 1 [15]

Problem 2 [25]

Problem 3 [30]

Problem 4 [20]

Problem 5 [10]

Total

13

