CS251 Programming Languages Handout # 28
Prof. Lyn Turbak March 7, 2005
Wellesley College Revised March 9, 2005

Bindex: An Introduction to Naming

Revisions: Mar 9: Fleshed out the remainder of the handout.

1 Local Binding Expressions

Studying the INTEX language is able to give us insight into fundamental programming processes
like interpretation and program analysis. But INTEX is missing many important features of real
programming languages. Our goal is to explore various programming language dimensions by
incrementally extending INTEX with simple versions of various features, and then to explore the
design space associated with such features.

The first feature we shall explore is the ability to name values. We shall do this in the context
of a new language, BINDEX, that is an extension to INTEX in which:

1. Program arguments are referenced by name rather than by position. For example, in BINDEX,
the averaging program can be written as:

(bindex (x y) (/ (+ x y) 2))

The program inputs ((x y) in this case) are called the formal parameters of the program
and each use of such a parameter in the program is called a variable reference.
2. There is a new kind of expression that has the form!

(bind Iname Edefn Frody)

Intuitively, a bind expression is evaluated as follows:

(a) The definition expression F., is evaluated to an integer value Viep,.

(b) The body expression Ey,g, is evaluated in such a way that each variable reference
Iame denotes Viepp.

(c) The integer value of Ey,g, is returned as the value of the bind expression.

Here is a simple example of a BINDEX program using bind to calculate the value szgz

(bindex (a b)
(bind a_sq (* a a)
(bind b_sq (* b b)
(bind numer (+ a_sq b_sq)
(bind denom (- a_sq b_sq)
(/ numer denom))))))

Constructs like bind in BINDEX, let in OCAML and in SCHEME, and type varname = exp;
in JAvVA and C are known as local binding expressions or local variable declarations. local
binding expression introduces a name for the result of a definition expression that can be used in
some part of the program (in the case of bind, the body of the bind expression). Local binding
expressions are used for three main purposes in a program:

!We shall use (potentially subscripted) occurrences of the metavariable I to stand for names (a.k.a. identifiers) in
a language and (potentially subscripted) occurrences of the metavariable E to stand for expressoins.

1. Naming the result of evaluating a definition expression can avoid the cost of recalculating the
value of that expression. For instance, in the above example, naming the result of (* a a)
means that the multiplication needs to be performed only once; it would need to be performed
twice if the result were not named. In the case of a simple expression like (¥ a a), it is not
clear that any time is saved by avoiding recalculation. However, for expensive calculations, the
time saved by avoiding recalculation can be considerable. In the context of recursion, naming
the result of a recursive call can often change the asymptotic complexity of an algorithm.

2. In programs where values can have a time-varying state (think Java objects), it is essential
to name values so that the same value can be referenced more than once. Since it is stateless,
this is not important in BINDEX, but it will be important for later extensions to BINDEX that
support stateful values.

3. Even when a result is not used more than once, naming the result of an intermediate expression
can make a program easier to read. For instance, in the above example, numer and denom
do not make the calculation any more efficient, but some programmers might find the code
more readable than without the names. Such naming can be especially handy for breaking
down deeply nested expressions into more manageable subexpressions.

2 BINDEX Syntax
The abstract syntax for BINDEX (Fig. 1) is the same as that for INTEX except for three changes:

1. The program form Pgm replaces the number of program arguments by a list of formal param-
eter names.

2. The argument reference form Arg of int is replaced by the variable reference form Var of var,
where var is a synonym for string.

3. There is a new form, Bind of var * exp * exp, that represents the bind expression. The
var component is the bound variable, while the two subexpressions, in order, are the
definition (whose value is bound to the variable) and the body in which the bound variable
may be used.

type var = string
type pgm = Pgm of string list * exp (* param names, body *)

and exp =
Lit of int (* integer literal with value *)
| Var of var (* variable reference *)
| BinApp of binop * exp * exp (* binary operator application with rator, rands *)
| Bind of var * exp * exp (* bind name to value of defn in body *)

and binop =
| Add | Sub | Mul | Div | Rem (* binary arithmetic ops *)

Figure 1: Abstract syntax for BINDEX expresssed in OCAML.

A bind expression may be used anywhere an expression is expected, including the rand positions
of a binary application and the definition of another bind expression. For example, here is a sample
program illustrating the flexibility of bind expressions (Fig. 2 shows its AST):

(bindex (x y)
(+ (bind a (/ y x)
(bind b (- a y)
(* a b)))
(bind ¢ (bind d (+ x y) (x d y))
(/ cx))))

The let expressions in OCAML and SCHEME have similar flexibility. But variable declarations
in JAvA and C are much more restricted. In JAVA, variable declarations are statements, a syntactic
phrase denoting an action that cannot occur inside an expression (which denotes a value). In C,
variable declarations are even more restricted — they can only appear at the beginning of statement
blocks (which are delimited by squiggly braces).

Like INTEX, BINDEX supports a fold function that can express arbitrary divide/conquer/glue
functions over BINDEX ASTs.

(* val fold : (int -> ’a) -> (* litfun *)
(var -> ’a) -> (* varfun *)
(binop -> ’a -> ’a -> ’a) (* appfun *)
(var -=> ’a -> ’a -> ’a) -> (* bindfun *)
-> exp -> ’a %)
let rec fold litfun varfun appfun bindfun exp =
match exp with
Lit i -> litfun i
| Var s -> varfun s
| BinApp(rator, randl, rand2) ->
appfun rator
(fold litfun varfun appfun bindfun randl)
(fold litfun varfun appfun bindfun rand2)
| Bind(name,defn,body) ->
bindfun name
(fold litfun varfun appfun bindfun defn)

(fold litfun varfun appfun bindfun body)

However, when fold functions get this complext, we tend to use use explicit pattern matching with
recursion to process such ASTs.

The Bindex module contains the definition of the BINDEX abstract syntax along with various
utilities for manipulating the syntax. These include the following parsing and unparsing functions:

val sexpToPgm : Sexp.sexp -> Bindex.pgm
val sexpToExp : Sexp.sexp -> Bindex.exp
val stringToPgm : string -> Bindex.pgm
val stringToExp : string -> Bindex.exp
val pgmToSexp : Bindex.pgm -> Sexp.sexp
val expToSexp : Bindex.exp —-> Sexp.sexp
val pgmToString : Bindex.pgm -> string

val expToString : Bindex.exp —> string

To treat BINDEX as an extension to INTEX, the sexpToPgm function parses a representation of
an INTEX program with n parameters to a BINDEX programs by using $1 ...$n as the parameter
names and treating each argument reference as if it were the variable reference $i. For instance, an
INTEX averaging program is parsed as if it were written

(bindex ($1 $2) (/ (+ $1 $2) 2))

This translation is sound as long as no local variable names have the form $i.

Pgm

formals body
[x;]
rator randl and2
Add
name defn body name defn body
a” | BinApp c BinApp
rator randl\rand2ame defn body name defn body rator rand1\rand2
|Div| [Var| [Var] b7 |BinApp BinApp d” |BinApp BinApp| [Div| [Var| [Var|
name| name| rator rand1 \rand2rator rand1 \rand2 rator rand1 \rand2rator, rand1 \rand2 name [name
y | Sub | | Var | | Var | | Mul | | Var | | Var | | Add | | Var | | Var | | Mul | | Var | | Var | ¢ X
name| name name| name name| name) name| name|
a a b X d

Figure 2: Abstract syntax trees for the sample BINDEX program.

3 General Naming Issues

Before we study how the bind construct is evaluated, we first consider some general concepts and
issues related to naming in programming languages and mathematics.

3.1 Declarations and Scope

Programming languages and mathematical languages almost always have constructs that introduce
names for the kinds of entities that are manipulated by the language. Such constructs are known
as declarations or binding constructs. Figure 3 shows some examples of declarations from
programming and mathematics with which you are probably familiar.

Every declaration construct has a binding occurrence that introduces the declared name,
and reference occurrences that refer to declared name. For example, in the OCAML abstraction
fun x -> x * x, the first x is the binding occurrence, and the second and third xs are reference
occurrences. Typically, the binding occurrence and reference occurrences have the same syntax;
they are distinguished by their positions within the declaration construct. So in fun, for instance,
the name following the fun keyword is the the binding occurrence, and the uses of this name in the
body are reference occurrences.

Once declared, a name can usually only be used within a restricted part of the program. The
region of a program in which it is possible to reference a declared name is called the scope of the
declared name. In so-called statically scoped languages, languages, the scope of declared names
can be shown via nested boxes called lexical contours. For example, Fig. 4 shows the lexical
contours for the sample BINDEX program. The scope of the formal parameter names x and y is
the entire body of the program (contour Cp). The scope of a local name introduced by a bind
encompasses the body of the bind expression but does not include the definition expression. This
can be seen by the contours for a (C1), b (C1), ¢ (C3), and ¢ (Cy).

When contours are nested, a name declared in an outer contour may be used within an inner
contour unless the inner contour declares the same name as the outer contour. For example, the
names which may be used in contex Cy are x, y, a, and b. However, suppose we rename b to x so
that the first bind becomes

(bind a (/ y x)
(bind x (- a y)
(* a x)))
In this case, the x that is referenced in Cy refers to the local name x declared in Cs, not the
program paramter x declared in Cj. So the program parameter x declared in Cy may be references
everywhere in the program except in C5. The inner declaration of x is said to shadow the outer
one, and the contours of the inner declaration is said to be a hole in the scope of the outer
declaration.

3.2 Free Variables

In a given program phrase, a reference occurrence of a name for which there is no binding occurrence
is called a free variable or unbound variable; otherwise it is said to be a bound variable. For
instance:

e in the BINDEX expression (+ a b), a and b are free variables.

e in the BINDEX expression (bind b (¥ 2 3) (+ a b)), a is a free variable, but b is bound.

Language

Construct

Example

OcAML fun I -> Epygy fun x -> x * X
and y = 6 * 7 in
let z =y / x in
x x (y + 2)
SCHEME (lambda (I;...1,) Epogy) (lambda (a b)
(lambda (c)
(b (+ac)H)
SCHEME (let (U; Ep) ... Un En)) Epoay) (let ((x (+ 2 3))
(y (x 6 7))
(let ((z (quotient y x)))
(xx (+y2))))
SCHEME (define I; Eyoay) (define a (+ 2 3))
(define square
(lambda (x) (* x x)))
(define a-squared (square a))
JAVA Troturn—typo Lyarname = Edefn; int x = 2 + 3;
int y =6 % 7;
int z =y / x;
BINDEX (bind Iname Edefn Epody) (bind x (+ 2 3)
(bind y (* 6 7)
(bind z (/ y %)
(xx (+y2)))))
Math Zi’;i:Elo Ebodya Hi’;i:Elo Ebody 22121 (1—[;:1(Z +])>
Logic VIar-Evody, 3var-Epody Vedy.(z+1) =y)
Calculus Ens fol z- ([ydy)de

E, Ebody Al yar

Figure 3: Examples of declarations in programming and mathematics.

(bindex (x y)

(+ [(bind a |(/ y %)

(bind b | (- a y)

(x a b)) e g

(bind c (bind d |[(+ x y)

(xdy)) o

(/ ¢c %)) G |))

Co

Figure 4: Contours for the sample BINDEX program.

e in the BINDEX expression (bind a (- 8 1) (bind b (x 2 3) (*x a b))), both a and b are
bound.

Note that some occurrences of a name in an expression can be free while other occurrence
of the same name may be bound. Consider the following expression, in which different reference
occurrences of a and b are distinguished by subscript:

(bind a (- aj by)
(bind b (* ay by)
(+ az b3))

The variable references a1, by, and by are free while as, a3, and bg are bound.

The free variables of a program phrase is the set of all variable names that occur free in that
phrase. Fig. 5 shows functions in the Bindex module that calculate free variables in BINDEX. The
functor invocation Set.Make(String) uses the standard OCAML set making functor to make a
module for manipulating sets of strings. Here are some examples of the free variable functions:

open Bindex;;

setToList (freeVarsExp (stringToExp "(+ a (* b b))"));;
- : Bindex.S.elt list = ["a"; "b"]
setToList (freeVarsExp (stringToExp "(bind b (x a c) (+ a (* b b)))"));;
- : Bindex.S.elt list = ["a"; "c"]
setTolList (freeVarsExp
(stringToExp "(bind a (- b ¢) (bind b (*x a c) (+ a (*x b b))))"));;
- : Bindex.S.elt list = ["b"; "c"]

setTolList (freeVarsPgm

(stringToPgm

"(bindex (b ¢) (bind a (- b c) (bind b (* ac) (+ a (* bDb)))))"));;
- : Bindex.S.elt list = []

module S = Set.Make(String) (* String Sets *)

(x val 1istToSet : S.elt list -> S.t *)
let listToSet strs = foldr S.add S.empty strs

(* val setToListList : S.t -> S.elt list *)
let setTolList set = S.elements set

(* val freeVarsPgm : pgm -> S.t *)

(* Returns the free variables of a program *)

let rec freeVarsPgm (Pgm(fmls,body)) =
S.diff (freeVarsExp body) (1listToSet fmls)

(*x val freeVarsExp : exp -> S.t *)
(* Returns the free variables of an expression *)
(* direct version *)
and freeVarsExp e =
match e with
Lit i -> S.empty
| Var s -> S.singleton s
| BinApp(_,r1,r2) -> S.union (freeVarsExp rl) (freeVarsExp r2)
| Bind(name,defn,body) ->
S.union (freeVarsExp defn)
(S.diff (freeVarsExp body)
(S.singleton name))

(* val freeVarsExps : exp list -> S.t *)
(* Returns the free variables of a list of expressions *)
(* direct version *)
and freeVarsExps es =
foldr S.union S.empty (map freeVarsExp es)

(* val varCheck : pgm -> unit *)
and varCheck pgm =
let unbounds = freeVarsPgm pgm
in if S.is_empty unbounds then
() (x OK *)
else
raise (Unbound (setToList unbounds))

Figure 5: Functions for determining free variables in BINDEX.

A program phrase with no free variables is said to be closed. All BINDEX programs should be
closed since a free variable in a program would have no meaning. The varCheck function in Fig. 5
statically checks a program to ensure that it is closed. If it is, it returns the unit value (). But
if there are unbound variables, it raises an Unbound exception with the set of free variables. The
varCheck function is the analog in BINDEX of INTEX’s argCheck function.

3.3 oa-Renaming

In a statically scoped language, it is always possible to consistently rename a binding occurrence
and its corresponding reference occurrences without changing the meaning of a program. Consistent
renaming that maintains program meaning is known as a-renaming. For example, in

(bind b (* a a)
(bind ¢ (+ b a)
(bind a (* b c)

(/ (+ac) (-ab))))
we can rename b to x, ¢ to y, and the bound a to z to yield
(bind x (* a a)
(bind y (+ x a)
(bind z (* x y)
(/ (+zx) (-2 y))))

Note that the free occurrences of a are not renamed.

There is one restriction on the renaming of bound variables. We cannot rename a bound variable
to another variable that is free in its scope: this would cause variable capture. For example,
we cannot rename b to a above, since the free reference to a in the expression (+ b a) within the
body of (bind b ...) would be “captured” and become bound to the renamed binding occurrence
of b.

When renaming a bound variable, it may be necessary to additionally rename other bound
variables in its scope to avoid variable capture. For example, we can rename c to a in our example
as long as we also rename the bind-bound a (say to a.2):

(bind b (* a a)
(bind a (+ b a)
(bind a.2 (x b a)
(/ (+ a.2a) (-a.2b)))))

As a more complex of a-renaming, we reconsider the sample BINDEX program from earlier:

(bindex (x y)
(+ (bind a (/ y %)
(bind b (- a y)
(* a b)))
(bind ¢ (bind d (+ x y) (x d y))

/ cx))N
It is possible to rename a, b, c, and d to one of x or y without changing the meaning of the program:
(bindex (x y)
(+ (bind x (/ y %)
(bind y (- x y)
(x xy)))
(bind y (bind x (+ x y) (* x y))
 y)N

The renamed program may be very difficult for human beings to understand, but because it has
the same wiring diagram as the original program, it is indistinguishable from the orginal program
for the purposes of program manipulation.

The Bindex module provides two renaming functions:

1. val renamel : var -> var -> exp -> exp

renamel oldName newName e returns a copy of the expression e in which all free occurrences
of oldName have been renamed to newName.

2. renameAll : var list -> var list -> exp —-> exp
Assume that oldNames and newNames are string lists with the same length. Then the
invocation renameAll oldNames newNames e returns a copy of the expression e in which all
free occurrences of names in oldNames have been renamed to the corresponding name (by
position) in newNames.

We will see in the next section how these functions are implemented. Note that both functions
rename only the free occurrences of a variable in an expression. Program manipulation functions
should not refer to the bound occurrences of variables by name because their behavior should not
changed if the bound variables are a-renamed.

Below are some sample invocations of these functions:?

renamel "a" "b"
(BinApp(Add, Var "a",
Bind("b", BinApp(Mul, Var "a", Var "a"),
BinApp(Add, Var "a", Var "b"))));;
- : Bindex.exp =
BinApp (Add, Var "b",
Bind ("b.10", BinApp (Mul, Var "b", Var "b"),
BinApp (Add, Var "b", Var "b.10")))

Note that the bind-bound occurrences of b have been automatically renamed (to b.10) to avoid
variable capture involving the renamed b.

renamel "a" "z"
(BinApp(Add, Var "a",
Bind("b", BinApp(Mul, Var "a", Var "a"),
BinApp(Add, Var "a", Var "b"))));;
- : Bindex.exp =
BinApp (Add, Var "z",
Bind ("b.11", BinApp (Mul, Var "z", Var "z"),
BinApp (Add, Var "z", Var "b.11")))

Here the bind-bound b has been renamed (to b.11) even though there is no threat of variable
capture. This is an artifact of the way that renamel is implemented — it automatically renames
all bind-bound names to avoid any possibility of variable capture, regardless of whether or not
variable capture will actually occur.

renamel "a" "z"

(BinApp(Add, Var "a",
Bind("a", BinApp(Mul, Var "a", Var "a"),
BinApp(Add, Var "a", Var "a"))));;
- : Bindex.exp =
BinApp (Add, Var "z",
Bind ("a.12", BinApp (Mul, Var "z", Var "z"),
BinApp (Add, Var "a.12", Var "a.12")))

This example shows that only the free occurrence of a are renamed to z. The bound occurrences
of a are renamed to a.12 as an artifact of the way renamel is implemented.

2Some of the results have been manually reformatted to make them easier to read.

10

renameAll ["a";"b"] ["b";"a"] (BinApp(Add, Var "a", Var "b"));;
- : Bindex.exp = BinApp (Add, Var "b", Var "a")

In this example, note that the renamings are performed simultaneously. This simultaneous renam-
ing cannot be simulated by any ordering of two calls to renamel.

renameAll ["a";"b"] ["b";"a"]
(Bind("a", BinApp(Add, Var "a", Var "b"),
Bind("b", BinApp(Sub, Var "a", Var "b"),
BinApp(Mul, Var "a" , Var "b"))));;
- : Bindex.exp =
Bind ("a.13", BinApp (Add, Var "b", Var "a"),
Bind ("b.15", BinApp (Sub, Var "a.13", Var "a"),
BinApp (Mul, Var "a.13", Var "b.15")))

We will use the StringUtils.fresh function to automatically generate “fresh” variable names
as needed in our program manipulation functions. This function simply adds a dot followed by
a unique number to the given variable name. It is assumed that the original user program does
not contain such dotted variable names; they are only introduced by the program manipulation
process. For example:

StringUtils.fresh "foo";;
- : string = "foo0.0"

StringUtils.fresh "foo";;
- : string = "foo.1"

StringUtils.fresh "bar";;
- : string = "bar.2"

StringUtils.fresh "foo.0";;
- : string = "foo0.3"

The final example shows that when fresh is called on names generated by fresh, only the “root”
of the name (before the dot) is used. Thus, fresh "foo.0" yields "foo.3" rather than "foo.0.3".
This convention helps to make programs more readable.

We will say that a program is uniquely named if all logically distinct variables in the program
have different names. Fig. 6 presents a functions uniquifyPgm and uniquifyExp that transform
BINDEX programs and expressions, respectively, to uniquely named form. This is achieved by
using fresh and renamel to give a unique name to every bind-bound name. The program formal
parameters are not renamed; it is assumed that these are all distinct, and renaming the bind-bound
names will make them all different from the formal parameters. For example:

11

let rec uniquifyPgm pgm =
match pgm with
Pgm(args,body) -> Pgm(args,uniquifyExp body)

and uniquifyExp exp =
match exp with
Lit 1 -> exp
| Var v -> exp
| BinApp(op,rl,r2) -> BinApp(op, uniquifyExp rl, uniquifyExp r2)
| Bind(name,defn,body) ->
(* rename every bind-bound name to a fresh name *)
let name’ = StringUtils.fresh name in
Bind(name’, uniquifyExp defn, uniquifyExp (renamel name name’ body))

Figure 6: Functions that transform BINDEX programs and expressions to uniquely named form.

print_string
(pgmToString
(uniquifyPgm
(stringToPgm
"(bindex (x y)
(+ (bind x (/ y %)
(bind y (- x y)
(* x y)))
(bind y (bind x (+ x y) (* x y))
/ y x)))"))s5;
(bindex (x y)
(+ (bind x.5 (/ y %)
(bind y.7 (- x.5 y) (* x.5 y.7)))
(bind y.3 (bind x.4 (+ x y) (* x.4 y))
(/ y.3x))))- : unit =)

3.4 Substitution

Renaming is a special case of a more general program form of program manipulation called substi-
tution. In substitution, all free occurrences of a variable name are replaced by a given expression.
For example, substituting (+ b ¢) for ain (x a a) yields (* (+ b ¢) (+ b ¢)). If we view ex-
pressions as trees, then substitution replaces certain leaves (those with the specified name) by new
subtrees. For example, substituting the tree

for a in the tree

12

yields the tree

As in renaming, substitution must avoid variable capture to preserve the “naming wiring struc-
ture” of expressions. In particular:

e When substituting for a variable I, we will never perform substitutions on I within the scope of
a bind expression that binds I. For example, substituting (+ b c) forain (bind a (* a a) (- a 3))
yields:3

(bind a (* (+ b c) (+ bc)) (- a 3))

Here the free occurrences of a have been replaced by (+ b c), but the bound occurrences
have not been changed.

e bind-bound variables may be renamed to avoid variable capture with free variables in the
expression being substituted for the variable. For example, substituting (+ b ¢) for a in

(+ (bind b (+ 1 a) (x a b))
(bind ¢ (* 2 a) (+ a c)))

yields

(+ (bind b.1 (+ 1 (+ b c)) (x (+ b c) b.1))
(bind ¢.2 (* 2 (+ b c)) (+ (+ b c) c.2)))

Here is is necessary to rename the bind-bound b and ¢ to avoid capturing the free variables
band cin (+ b ¢).

Substitution is an important tool for program manipulation. We have already encountered sub-
stitution in the context of the substitution model for the evaluation of OCAML programs, where
function application was explained by substituting the argument values for the formal parameters
in the function body. Later, we will present a similar substitution model for BINDEX evaluation.

3In the BINDEX implementation of substitution, the bound a will be renamed to a fresh variable in this example.

13

We will now develop a substitution function for BINDEX that we will be able to use later
for manipulating BINDEX programs. The substitution function will allow us to simultaneously
substitute expressions for any number of variables. To specify the association between the variable
names and the expressions to be substituted for them, we will use environments having the ENV
signature in Fig. 7. This is similar to the MENV signature presented in the Modules handout (#21),
except that ENV provides a bindAll function but does not provide a merge function.

module type ENV = sig
type ’a env

val empty: ’a env (* returns the empty env *)

val bind : string -> ’a -> ’a env -> ’a env
(* bind <name> <value> <env> returns a new env containing a binding
of <name> to <value> in addition to all the bindings of <env>. *)

val bindAll : string list -> ’a list -> ’a env -> ’a env
(* bind <names> <values> <env> returns a new env containing bindings
of <names> to <values> in addition to all the bindings of <env>. *)

val make : string list -> ’a list -> ’a env
(* make <names> <values> <env> returns a new env containing bindings
of <names> to <values>. *)

val lookup : string -> ’a env -> ’a option
(* lookup <name> <env> returns Some <value> if <name> is bound to <value>
in <env>; otherwise it returns None. *)

end

Figure 7: An environment signature.

Fig. 8 defines the following subst function:

val subst: exp -> exp Env.env -> exp
subst exp env returns a copy of the expression exp in which all free occurrences
of names bound in the environment env have been replaced by their associated
expresssions. Bound variables in exp may be a-renamed in order to avoid variable
capture.

The subst function works by performing a near-copy of the given BINDEX abstract syntax tree.
There are two places where it does not perform an exact copy:

1. For a variable reference, if the variable name appears in the environment env, the variable
reference is replaced by the expression bound to the variable name in env. Otherwise, the
variable reference is copied.

2. For a bind expression, the bound variable of the bind is always a-renamed to a fresh variable
before substitution is performed on its body. In many cases this does more renaming than
is strictly necessary, but it is a simple way to avoid all variable capture problems and makes
it unnecessary to check if the bind-bound name is bound in env. It is possible to write a
cleverer version of subst that (1) renames variables only when absolutely necessary and (2)
performs the renaming and substitution on the bind body in a single tree walk rather than
two separate tree walks. This is left as an exercise for the reader.

14

(* val subst : exp -> exp Env.env -> exp *)
let rec subst exp env =
match exp with
Lit 1 -> exp
| Var v -> (match Env.lookup v env with
Some e -> e
| None -> exp)
| BinApp(op,rl,r2) -> BinApp(op, subst rl env, subst r2 env)
| Bind(name,defn,body) ->
(* Take the simple approach of renaming every name.
With more work, we could avoid renaming unless absolutely necessary. *)
let name’ = StringUtils.fresh name in
Bind(name’, subst defn env, subst (renamel name name’ body) env)
(* note: could be cleverer and do a single substitution/renaming *)

x (* val substl : exp -> var -> exp -> exp *)
(* substl <exp> <var> <exp’> substitutes <exp> for <var> in <exp’> *)
and substl newexp name exp = subst exp (Env.make [name] [newexp])

(* val substAll: exp list -> var list -> exp -> exp *)
(* subst <exps> <vars> <exp> substitutes <exps> for <vars> in <exp> *)
and substAll newexps names exp = subst exp (Env.make names newexps)

(* val renamel : var -> var -> exp -> exp *)
(* rename <oldName> <newName> <exp> renames <oldName> to <newName> in <exp> *)
and renamel oldname newname exp = substl (Var newname) oldname exp

(* val renameAll : string list -> var list -> exp -> exp *)
* rename <oldNames> <newNames> <exp> renames <oldNames> to <newNames> in <exp> *)
and renameAll oldnames newnames exp =

substAll (List.map (fun s -> Var s) newnames) oldnames exp

Figure 8: Substitution and renaming functions for BINDEX.

15

Fig. 8 also defines two auxiliary substitution functions:

val substl: exp -> var -> exp -> exp
substl exp var exp’ returns a copy of the expression exp’ in which all free occur-
rences of var have been replaced by exp.

val substAll: exp list -> var list -> exp -> exp
Assume that exps and vars are equal-length lists of expressions and strings, re-
spectively. Then substAll exps vars exp returns a copy of the expression exp in
which all free occurrences of names in vars have been replaced by the corresponding
expression in exps.

For example:

let testSubstl e v e’ =
print_string(expToString(substl (stringToExp e) v (stringToExp e’)));;
val testSubstl : string -> Bindex.var -> string -> unit = <fun>

testSubstl "(+ b c)" "a" "(bind a (*x a a) (- a 3))";;
(bind a.17 (x (+ b c) (+ b c)) (- a.17 3))- : unit =)

testSubstl "(+ b c)" "a" "(+ (bind b (+ 1 a) (* a b)) (bind ¢ (* 2 a) (+ a ¢)))";;
(+ (bind .19 (+ 1 (+ b c)) (*x (+ b c) b.19))
(bind ¢.18 (x 2 (+ b c)) (+ (+ b c) c.18))

)- : unit = ()
let testSubstAll es vs e’ =

print_string(expToString(substAll (List.map stringToExp es) vs (stringToExp e’)));;
val testSubstAll : string list -> string list -> string -> unit = <fun>

testSubstAll ["(+ b c)"; "(x a b)"] ["a";"b"]
"(+ (bind a (/ a2 b) (- a b)) (bind b (/ b a) (- b a)))";;
(+ (bind a.21 (/ (+ bc) (x ab)) (- a.21 (*x a b))
(bind .20 (/ (x ab) (+ bc)) (- b.20 (+ b c)))
)- : unit = O

Note that in Fig. 8, the renamel and renameAll functions introduced in Sec. 3.3 are easily
defined in terms of substl and substAll. The fact that these are defined in terms of the general
subst function and that renamel is used in the definition of subst may seem unsettling at first.
But note that the call to renamel in subst is called on a strictly smaller subexpression than the
expression argument to subst. Since subst of the whole expression is being defined in terms of
the value of subst on smaller subexpression, the recursion is well-defined.

4 A Substitution Model Interpreter for BINDEX

With a substitution function in hand, we can implement a substitution model interpreter for BINDEX
(Fig. 9). This is similar to the INTEX interpreter except:

e Rather than passing the argument list as an argument to eval, the argument integers are sub-
stituted for the formal parameters using substAll. Note that the integers must be converted
to expressions (via the Lit constructor) before the substitutions can take place.

e The eval function does not need any argument other than the expression being evaluated,
so it has type exp -> int.

16

module BindexSubstInterp = struct

open Bindex
open List

exception EvalError of string

(* val run : Bindex.pgm -> int list -> int *)
let rec run (Pgm(fmls,body)) ints =
let flen = length fmls
and ilen = length ints
in
if flen = ilen then
eval (substAll (map (fun i -> Lit i) ints) fmls body)
else
raise (EvalError ("Program expected " ~ (string_of_int flen)
~ " arguments but got " ~ (string_of_int ilen)))

(* val eval : Bindex.exp -> int *)
and eval exp =
match exp with
Lit 1 -> 1
| Var name -> raise (EvalError("Unbound variable: " ~ name))
| BinApp(rator,randl,rand2) ->
binApply rator (eval randl) (eval rand2)
| Bind(name,defn,body) ->
eval (substl (Lit (eval defn)) name body)

(* val binApply : Bindex.binop -> int -> int -> int *)
and binApply op x y =
match op with
| Add > x + ¥y
| Sub -> x - y
| Mul -> x * y
| Div => if y = 0 then
raise (EvalError ("Division by 0:
" (string_of_int x)))

else
x/y
| Rem -> if y = 0 then
raise (EvalError ("Remainder by 0: "
" (string_of_int x)))
else
x mod y

(* A function for running programs expressed as strings *)
let runString pgmString args =
run (sexpToPgm (Sexp.stringToSexp pgmString)) args

end

Figure 9: A substitution model BINDEX interpreter.

17

e A bind node is evaluated by (1) first evaluating the definition expression to an integer and
then (2) evaluating the result of substituting this integer for the bind-bound variable name
in the body of the bind expression.

e How is a variable reference node evaluated? In the BINDEX substitution model, all variable
references should be replaced by integer literals before they are encountered by eval. If a
variable reference is encountered by eval, it must be the case that it is a free variable in the
program — i.e., it is an unbound variable error.

5 An Environment Model Interpreter for BINDEX

An alternative interpretation strategy for BINDEX expressions is the environment model. In
this strategy, substitutions of integers for variables are not performed eagerly but are delayed by
remembering them in environments. The eval function is modified to accept a second argument
that is an environment of all delayed substitutions, and the substitutions are only performed when
a variable reference is reached.

An interpreter based on this strategy is presented in Fig. 10. Like the argument list in the INTEX
interpreter, an initial environment associating the formal parameter names and the actual integer
arguments is passed down the abstract syntax tree of the program body as part of evaluation.
Unlike the INTEX argument list, however, the BINDEX environment is modified as it “flows” down
the tree at every bind node, which adds a new binding to the environment used for the body of
the bind.

18

module BindexEnvInterp = struct

open Bindex
open List

exception EvalError of string

(* val run : Bindex.pgm -> int list -> int *)
let rec run (Pgm(fmls,body)) ints =
let flen = length fmls
and ilen = length ints
in
if flen = ilen then
eval body (Env.make fmls ints)
else
raise (EvalError ("Program expected " ~ (string_of_int flen)
~ " arguments but got " ~ (string_of_int ilen)))

(* val eval : Bindex.exp -> int Env.env -> int *)
and eval exp env =
match exp with
Lit 1 -> 1
| Var name ->
(match Env.lookup name env with
Some(i) -> i
| None -> raise (EvalError("Unbound variable: "
| Bind(name,defn,body) ->
eval body (Env.bind name (eval defn env) env)
| BinApp(rator,randl,rand2) ->
binApply rator (eval randl env) (eval rand2 env)

name)))

(* val binApply : Bindex.binop -> int -> int -> int *)
and binApply op x y =
match op with

| Add > x + ¥y
| Sub -> x - y
| Mul -> x * y
|

Div -> if y = O then
raise (EvalError ("Division by 0:
(string_of_int x)))

else
x/y
| Rem -> if y = O then
raise (EvalError ("Remainder by O:
(string_of_int x)))

else
x mod y

(* A function for running programs expressed as strings *)
let runString pgmString args =
run (sexpToPgm (Sexp.stringToSexp pgmString)) args

end

Figure 10: A environment model BINDEX interpreter.

19

