
CS251 Programming Languages Handout # 35

Prof. Lyn Turbak April 14, 2005

Wellesley College Revised April 24, 2005

FOFL and FOBS: First-Order Functions

Revisions: Apr 24 : In the interpreters for Fofl and Fobs in figures 2 and 3, the apply functions
were missing checks that the number of formals equal the number of actuals.
We have seen the power of first-class higher-order functions in Ocaml, and have seen how

they can be implemented in the mini-language Hofl. The functions in most real programming
languages (including C, Pascal, and Fortran) are much more limited than those in Ocaml and
Hofl. In this handout, we explore two mini-languages with more limited kinds of functions:

1. Fofl (First-Order Functional Language) extends Valex with first-order second-class global
functions. Functions in Fofl are similar to those in C1.

2. Fobs (First-Order Block-Structure Language) extends Fofl with block structure – the ability
to declare functions inside of other functions. Functions in Fobs are similar to those in
Pascal2.

1 Fofl

1.1 Syntax of Fofl

Fofl extends Valex with globally-defined functions. The full grammar of Fofl is presented in
Fig. 1. The key new features that Fofl adds to Ibex are:

• Global Function Declarations In addition to the program parameters and body expression,
Fofl programs include an arbitrary number of mutually recursive global function declarations
of the form (def (Fname Iformal1

...Iformaln
) Ebody). (Here, F is a meta-variable that ranges

over function names. These are a different class of names than the variable names ranged
over by the identifier meta-variable I.) These functions are declared in the top-level fofl
program construct.

The function declaration syntax has been chosen so that Fofl programs have the form of
restricted Hofl programs. Whereas top-level defs desugar into bindrec in Hofl, they are
kernel forms in Fofl.

• Function Applications A globally declared function can be applied in a function application
expression (funapp) that has the form (Frator Erand1

. . . Erandn
). Here, Frator is the name of

the function being applied and Erand1
. . . Erandn are the expressions denoting its arguments.

Here are the standard factorial and Fibonacci functions expressed in Fofl:

(fofl (x) (fact x)

(def (fact n)

(if (= n 0)

1

(* n (fact (- n 1)))))

)

1Csupports a limited form of first-class functions in the form of function pointers; this important feature is not

modeled in Fofl.
2Pascalallows functions to be passed as arguments but not returned as results; this important feature is not

modeled in Fobs.

1

P ∈ Program

P → (fofl (Iformal1
...Iformaln

) Ebody FD1 . . . FDk) Program

FD ∈ Function Declaration

FD → (def (Fname Iformal1
...Iformaln

) Ebody) Function Declaration

E ∈ Expression

Kernel Expressions:
E → L Literal
E → I Variable Reference
E → (if Etest Ethen Eelse) Conditional
E → (bind Iname Edefn Ebody) Local Binding
E → (Orator Erand1

. . . Erandn
) Primitive Application

E → (Frator Erand1
. . . Erandn

) Function Application

Sugar Expressions:
E → (&& E1 E2) Short-Circuit And
E → (|| E1 E2) Short-Circuit Or
E → (cond (Etest1 Ebody1

) . . . (Etestn
Ebodyn

) (else Edefault)) Multi-branch Conditional
E → (bindseq ((Iname1

Edefn1
) . . . (Inamen

Edefnn
)) Ebody) Sequential Binding

E → (bindpar ((Iname1
Edefn1

) . . . (Inamen
Edefnn

)) Ebody) Parallel Binding
E → (list E1 . . . En) List
E → (quote S) Quoted Expression

S ∈ S-expression

S → N S-expression Integer
S → C S-expression Character
S → R S-expression String
S → I S-expression Symbol
S → (S1 . . . Sn) S-expression List

L ∈ Literal

L → N Numeric Literal
L → B Boolean Literal
L → C Character Literal
L → R String Literal
L → (sym I) Symbolic Literal
L → #e Empty List Literal

O ∈ Primitive Operator: e.g., +, <=, and, not, prep
F ∈ Function Name: e.g., f, sqr, +-and-*
I ∈ Identifier: e.g., a, captain, fib_n-2
N ∈ Integer: e.g., 3, -17
B ∈ Boolean: #t and #f

C ∈ Character: ’a’, ’B’, ’7’, ’\n’, ’´’’\\’
R ∈ String : "foo", "Hello there!", "The string \"bar\""

Figure 1: Grammar for the Fofl langauge.

2

(fofl (x) (fib x)

(def (fib n)

(if (<= n 1)

n

(+ (fib (- n 1))

(fib (- n 2)))))

)

The globally declared functions in a Fofl program are mutually recursive:

(fofl (n) (list (even? n) (odd? n))

(def (even? x)

(if (= x 0)

#t

(odd? (- x 1))))

(def (odd? y)

(if (= y 0)

#f

(even? (- y 1))))

)

Here is a simple example of list processing in Fofl:

(fofl (a b) (sum (map-square (filter-even (range a b))))

(def (sum ns)

(if (empty? ns)

0

(+ (head ns)

(sum (tail ns)))))

(def (map-square ns)

(if (empty? ns)

#e

(prep (* (head ns) (head ns))

(map-square (tail ns)))))

(def (filter-even ns)

(if (empty? ns)

#e

(if (even? (head ns))

(prep (head ns) (filter-even (tail ns)))

(filter-even (tail ns)))))

(def (range lo hi)

(if (> lo hi)

#e

(prep lo (range (+ lo 1)) hi)))

(def (even? n) (= 0 (% n 2)))

)

Functions in Fofl are second-class. Although they can be named by function declarations,
they cannot be passed as arguments to other functions, returned as values from functions, stored
in lists, or created anywhere other than in a top-level function declaration.

3

1.2 Namespaces

A programming language may have several different categories of names. Each such category is
called a namespace. For example, Java has distinct namespaces for packages, classes, methods,
instance variables, class variables, and method parameters/local variables.
In a language with multiple namespaces, the same name can simultaneously be used in different

namespaces without any kind of naming conflict. For example, consider the following Java class
declaration:

public class Circle {

// Instance variable of a Circle object.

public double radius;

// Constructor method for creating Circle objects.

public Circle (double r) {
this.radius = r;

}

// Instance method for scaling Circles.

public Circle scale (double factor) {
return new Circle(factor * this.radius);

}

}

It turns out that we can rename every one of the names appearing in the above program to radius
(as shown below) and the class will have the same meaning!

public class radius {

// Instance variable of a circle object.

public double radius;

// Constructor method for creating Circle objects.

public radius (double radius) {
this.radius = radius;

}

// Instance method for scaling Circles.

public radius radius (double radius) {
return new radius(radius * this.radius);

}

}

Of course, in order to use the renamed class, we would need to change uses of the original class
consistently. For instance, the expression (new Circle(10)).scale(2).radius would have to be
renamed to (new radius(10)).radius(2).radius.
Although using the name radius to stand for entities in four different namespaces (class, instance

variable, instance variable name, parameter name) would make the program very difficult for a
human program to read, the Java compiler and Java bytecode interpreter treat the renamed
program identically to the original.

Java has an unusually high number of namespaces. But many languages have at least two
namespaces: one for functions, and one for variables. For instance, in this category are Pascal

and Common Lisp, as well as the mini-languages Fofl and Fobs that we are studying. In

4

contrast, many functional languages, such as Scheme, ML, and Haskell (as well as the mini-
language Hofl) have a single namespace for functions and variables. This is parsimonious with
the first-classness of functions, which allows functions to be named like any other values.
As a somewhat silly example, consider the following working definition of a factorial function

in Fofl:

(def (fact fact)

(if (= fact 0)

1

(* fact (fact (- fact 1)))))

In this example, there are two distinct entities named fact: the factorial function (in the function
namespace) and the formal parameter of the factorial function (in the variable namespace). Because
the namespaces are distinct, there is no confusion between the entities. If the same experiment
were tried in Hofl, Ocaml, Scheme, or C, however, the function would encounter an error when
applied to a number because all occurrences of fact in the body — including the one in the operator
position — would refer to a number.

1.3 Evaluation and Scope in Fofl

A complete environment model evaluator for Fofl is presented in Fig. 2. Highlights of the evaluator
include:

• There are three environments:

1. The function environment fenv represents the function namespace. Function names
are looked up here in the apply function.

2. The value environment venv represents the value namespace that binds program
parameters, function parameters, and bind names. Variable names are looked up here
in the Var clause of eval.

3. The global environment genv is that portion of the value environment that binds only
the program parameters.

• Just as in Hofl, Fofl has scoping mechanisms that determine the meaning of a free vari-
able in a function. env-run is parameterized over a scope parameter that determines the
parent environment of the application frame created by a function application. The parent
environment is determined from genv and venv. This supports the two traditional forms of
scoping:

– static: The parent environment is genv.

– dynamic: The parent environment is venv.

It also allows for some non-traditional forms of scoping:

– empty: The parent environment is the empty environment.

– merged: The parent environment is the result of merging genv and venv.

Note that another option is to make the parent environment the result of merging venv and
genv; but this is equivalent to dynamic scope.

5

(* Model a Fofl scoping mechanism as a way of combining global and local environments *)

type scoping = valu Env.env (* global parameter environment *)

* valu Env.env (* local parameter environment *)

-> valu Env.env

(* val run : scoping -> Fofl.pgm -> int list -> valu *)

(* This function is an example of block structure *)

let rec run scope (Pgm(fmls,body,fcns)) ints =

let flen = length fmls

and ilen = length ints

in if flen <> ilen then

raise (EvalError ("Program expected " ^ (string_of_int flen)

^ " arguments but got " ^ (string_of_int ilen)))

else

let genv = Env.make fmls (map (fun i -> Int i) ints) (* global param env *)

and fenv = Env.make (map fcnName fcns) fcns (* function env *)

in let rec eval exp venv (* current variable env *) =

match exp with

Lit v -> v

| Var name ->

(match Env.lookup name venv with

Some(i) -> i

| None -> raise (EvalError("Unbound variable: " ^ name)))

| PrimApp(op, rands) -> (primopFunction op) (map (flip eval venv) rands)

| If(tst, thn, els) ->

(match eval tst venv with

Bool true -> eval thn venv

| Bool false -> eval els venv

| v -> raise (EvalError ("Non-boolean test value " ^ (valuToString v)

^ " in if expression")))

| Bind(name, defn, body) -> eval body (Env.bind name (eval defn venv) venv)

| App(fname, rands) -> apply fname (map (flip eval venv) rands) venv

and apply fname actuals venv =

match Env.lookup fname fenv with

None -> raise (EvalError ("unknown function " ^ fname))

| Some (Fcn(name,formals,body)) ->

let flen = length formals and alen = length actuals

in if flen <> alen then

raise (EvalError ("Function " ^ name ^ " expected "

^ (string_of_int flen) ^ " arguments but got "

^ (string_of_int alen)))

else eval body (Env.bindAll formals actuals (scope genv venv))

in eval body genv

(* Scoping mechanisms *)

let static = fun genv venv -> genv

let dynamic = fun genv venv -> venv

(* "weird" scopes *)

let empty = fun genv venv -> Env.empty

let merged = fun genv venv -> Env.merge genv venv

(* Note that Env.merge venv genv is equivalent to dynamic scope *)

Figure 2: An environment model evaluator for Fofl parameterized over the scoping mechanism
(scope) for free value variables in a function.

6

As examples of Fofl scoping, consider running the following two programs on the argument
list [3] under the four different scoping mechanisms:

; Program 1

(fofl (y) (try 100)

(def (add-y z) (+ x y))

(def (try y) (add-y (* 2 y)))

)

; Program 2

(fofl (a) (test (* 100 a) (* 10 a))

(def (linear x) (+ (* a x) b))

(def (test a b) (linear 2))

)

Scope Value in Program 1 Value in Program 2

static

dynamic

empty

merged

2 Fobs

Fobs extends Fofl with block structure – the ability to locally declare within functions any
kind of declaration that can be made at top-level. In particular, since Fofl supports top-level
function declarations, Fobs allows functions to be declared within functions. Here we first explore
block structure in the context of Hofl, and then discuss block structure in Fofl.

2.1 Block Structure in Hofl

Block structure in Hofl is realized via two constructs:

• Hofl’s abs construct allows creating functions anywhere in a program, even within other
functions.

• Hofl’s bindrec construct allows creating collections of mutually recursive functions any-
where in a program, even within other functions.

Recall that Hofl’s fun construct desugars into nested instances of abs and that top-level Hofl

declarations of the form

(def (Iname Iformal1
. . . Iformaln

) Ebody)

desugar into a bindrec of funs.
As a simple example of block structure, consider the following Hofl function declaration:

7

(def (index-bs x xs)

(bindrec ((loop (fun (i ys)

(if (empty? ys)

-1

(if (= x (head ys))

i

(loop (+ i 1) (tail ys)))))))

(loop 1 xs)))

Note how the local loop function can refer to the parameter x of the enclosing function declaration
even though it is not passed as an explicit parameter.
The above program can be expressed without block structure by passing x as an explicit pa-

rameter to the index-loop function:

(def (index-no-bs x xs)

(index-loop 1 x xs))

(def (loop i ys x)

(if (empty? ys)

-1

(if (= x (head ys))

i

(loop (+ i 1) (tail ys) x))))

As another example of block structure, consider a block-structured version of a function calcu-
lating cartesian products:

(def (cartesian-product-bs xs ys)

(bindrec ((prod (fun (zs)

(if (empty? zs)

#e

(bind x (head zs)

(bindrec ((map-duple (fun (ws)

(if (empty? ws)

#e

(prep (list x (head ws))

(map-duple (tail ws)))))))

(append (map-duple ys) ; Assume APPEND defined elsewhere

(prod (tail zs)))))))))

(prod xs)))

The same program can be expressed without block structure by passing an extra list argument
ys to the prod function and an extra x argument to the map-duple function:

8

(def (cartesian-product-no-bs xs ys)

(prod xs ys))

(def (prod zs ys)

(if (empty? zs)

#e

(bind x (head zs)

(append (map-duple ys x)

(prod (tail zs) ys)))))

(def (map-duple ws x)

(if (empty? ws)

#e

(prep (list x (head ws))

(map-duple (tail ws) x))))

The ability to refer to names in enclosing scopes without passing them explicitly as parameters
is a key advantage of block structure. This advantage may not seem so important in the context
of simple examples like those above. A much more convincing example of the importance of block
structure is the local definitions of the functions eval and apply within the run function in Fig. 2.
In the block-structured version, eval takes only a single argument venv. Without block structure,
it would be necessary for cdeval to take three arguments: venv, fenv, and genv. Changing every
invocation of eval to pass two extra arguments would make it significantly more complex and
harder to understand without changing its meaning.
Another advantage of block structure is that it helps to indicate which functions are used where

in a program. A locally defined function that is not used in a first-class way can only be used in
the region of the program delimited by scope in which it is created.

2.2 The Syntax of Fobs

Fobs adds block structure to Fofl via local recursive function declarations that have the following
form:

(funrec Ebody FD1 . . . FDk)

As in Fofl, each Fobs function declaration FD has the form

(def (Fname Iformal1
...Iformaln

) Ebody)

As in Fofl, Fobs functions are second-class, and function names are in a different namespace from
values. The function declarations in a funrec are mutually recursive; any function in the funrec
may call any other function in the funrec in its body. The result of a funrec expression is the
result of evaluating the final body expression Ebody in a context where all the functions declared in
the funrec are in scope.
The grammar of Fobs is exactly the same as the grammar of Fofl except for the addition of the

the funrec expression. Unlike Fofl, Fobs does not need to handle top-level function declarations
specially, since these can be desugared into funrec.
Here is a version of the cartesian product example expressed in Fobs:

9

(fobs (a b)

(funrec (bindpar ((xs (range 1 a))

(ys (range 1 b)))

(funrec (prod xs)

(def (prod zs)

(if (empty? zs)

#e

(bind x (head zs)

(append (funrec (map-duple ys)

(def (map-duple ws)

(if (empty? ws)

#e

(prep (list x (head ws))

(map-duple (tail ws))))))

(prod (tail zs))))))))

(def (append xs ys)

(if (empty? xs)

ys

(prep (head xs)

(append (tail xs) ys))))

(def (range lo hi)

(if (> lo hi)

#e

(prep lo (range (+ lo 1) hi))))))

2.3 Evaluation and Scope in Fobs

An environment model evaluator for fobs is presented in Fig. 3. The env-run function is parame-
terized over two scoping mechanisms: one for variable names (vscope) and one for function names
(fscope). Each of these two scopes can independently be chosen to be static or dynamic via the
following functions:

let static = fun senv denv -> senv

let dynamic = fun senv denv -> denv

We can also model “weird” scoping mechanisms if we so desire:

let empty = fun senv denv -> Env.empty

let merged1 = fun senv denv -> Env.merge senv denv

let merged2 = fun senv denv -> Env.merge denv senv

Similar to Hofl, static scoping in Fobs requires that a function be represented via a closure
that associates a function with the environment in which it was created. A Fobs closure must be
closed over both the variable environment and function environment in which it was created.
As examples of scoping in Fobs, consider the result of running each of the four programs in

Fig. 4 on the argument list [2; 1; 4] using each possible combination of static and dynamic scope
for vscope and fscope.

10

(* Model a Fobs scoping mechanism as a way to combine static and dynamic environments *)

type ’a scoping = ’a Env.env (* static *) * ’a Env.env (* dynamic *) -> ’a Env.env

type closure = Clo of fcn * valu Env.env * closure Env.env (* function closures *)

(* val run : scoping -> scoping -> Fobs.pgm -> int list -> valu *)

(* vscope is variable scope and fscope is function scope *)

let rec run vscope fscope (Pgm(fmls,body)) ints =

let flen = length fmls and ilen = length ints

in if flen <> ilen then

raise (EvalError ("Program expected " ^ (string_of_int flen)

^ " arguments but got " ^ (string_of_int ilen)))

else

let rec eval exp venv (* current var. env. *) fenv (* current fun. env. *) =

match exp with

Lit v -> v

| Var name ->

(match Env.lookup name venv with

Some(i) -> i

| None -> raise (EvalError("Unbound variable: " ^ name)))

| PrimApp(op, rands) -> (primopFunction op) (evalExps rands venv fenv)

| If(tst, thn, els) ->

(match eval tst venv fenv with

Bool true -> eval thn venv fenv

| Bool false -> eval els venv fenv

| v -> raise (EvalError ("Non-boolean test value " ^ (valuToString v)

^ " in if expression")))

| Bind(name, defn, body) ->

eval body (Env.bind name (eval defn venv fenv) venv) fenv

| App(fname, rands) -> apply fname (evalExps rands venv fenv) venv fenv

| Funrec(body, fcns) ->

eval body venv

(Env.fix

(fun fe -> Env.bindAllThunks (map fcnName fcns)

(map (fun fcn ->

(fun () -> Clo(fcn, venv, fe)))

fcns)

fenv))

and evalExps exps venv fenv = map (fun e -> eval e venv fenv) exps

and apply fname actuals dvenv dfenv =

match Env.lookup fname dfenv with

None -> raise (EvalError ("unknown function " ^ fname))

| Some (Clo(Fcn(name,formals,body), svenv, sfenv)) ->

let flen = length formals and alen = length actuals

in if flen <> alen then

raise (EvalError ("Function " ^ name ^ " expected "

^ (string_of_int flen) ^ " arguments but got "

^ (string_of_int alen)))

else eval body (Env.bindAll formals actuals (vscope svenv dvenv))

(fscope sfenv dfenv)

in eval body

(Env.make fmls (map (fun i -> Int i) ints)) (* initial venv *)

Env.empty (* initial fenv *)

Figure 3: An environment model evaluator for Fobs parameterized over two scoping mechanisms:
one (fscope) for the function namespace and one (vscope) for the value namespace.

11

; Program 1

(fobs (n lo hi)

(funrec (sum-loop lo 0)

(def (multiple? x) (= 0 (rem x)))

(def (rem y) (% y n))

(def (sum-loop i sum)

(if (> i hi)

sum

(sum-loop (+ i 1)

(if (multiple? i) (+ i sum) sum))))))

; Program 2 (adds nested FUNREC)

(fobs (n lo hi)

(funrec (sum-loop lo 0)

(def (multiple? x) (= 0 (rem x)))

(def (rem y) (% y n))

(def (sum-loop i sum)

(funrec (if (> i hi)

sum

(sum-loop (+ i 1) (new-sum i)))

(def (new-sum z) (if (multiple? z) (inc z) sum))

(def (inc w) (+ sum w))))))

; Program 3 (renames Z to N in Program 2)

(fobs (n lo hi)

(funrec (sum-loop lo 0)

(def (multiple? x) (= 0 (rem x)))

(def (rem y) (% y n))

(def (sum-loop i sum)

(funrec (if (> i hi)

sum

(sum-loop (+ i 1) (new-sum i)))

(def (new-sum n) (if (multiple? n) (inc n) sum))

(def (inc w) (+ sum w))))))

; Program 4 (renames INC to REM in Program 4)

(fobs (n lo hi)

(funrec (sum-loop lo 0)

(def (multiple? x) (= 0 (rem x)))

(def (rem y) (% y n))

(def (sum-loop i sum)

(funrec (if (> i hi)

sum

(sum-loop (+ i 1) (new-sum i)))

(def (new-sum z) (if (multiple? z) (rem z) sum))

(def (rem w) (+ sum w))))))

Figure 4: Examples illustrating scoping for both variable and function environments in Fobs.

12

