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First-Class Functions

Data and procedures and the values they amass,

Higher-order functions to combine and mix and match,

Objects with their local state, the messages they pass,

A property, a package, a control point for a catch —

In the Lambda Order they are all first-class.

One Thing to name them all, One Thing to define them,

One Thing to place them in environments and bind them,

In the Lambda Order they are all first-class.

–Abstract for the Revised4 Report on the Algorithmic Language Scheme,
MIT Artificial Intelligence Lab Memo 848b, November 1991

1 Functions as First-Class Values

The key feature that sets the functional programming paradigm apart from other paradigms is its
treatment of functions as first-class values. A value is said to be first-class if it can be:

1. named by a variable;

2. passed as an argument to a function;

3. returned as the result of a function;

4. stored in a data structure;

5. created in any context.

You can tell a lot about a programming language by what its first-class values are. For example,
integers are first-class in almost every language. But compound structures like records and arrays
do not always satisfy all four first-class properties. For example, early versions of Fortran did
not allow arrays to be stored in other arrays. Early versions of Pascal allowed records and arrays
to be passed to a function as a value but not to be returned from a function as a result. Modern
versions of C do not allow arrays to be passed as arguments or returned as results from functions,
though they do allow pointers to arrays to be passed in this fashion. When combined with the fact
that the lifetime of a local array ends when the procedure it was declared in is exited, this leads to
numerous subtle bugs that plague C programmers.

In Pascal, functions and procedures satisfy the properties 2 and 5 but not the others. C functions
(more precisely, C function pointers) satisfy properties 1 through 4, but do not satisfy property 5,
since all functions must be declared at top level.

Functions in Ocaml (as well as in Scheme and Haskell) satisfy all five first-class properties.
Unlike C functions, they can be created anywhere in a program by a fun expression. This is
a source of tremendous power; it is hard to overemphasize the importance of fun and first-class
functions. Functions that take other functions as arguments or return them as results are known
as higher-order functions. We will see many examples of the power of higher-order functions in
this course.
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1.1 Naming Functions

By the naming property of first-class functions, we can attach a name to the averaging function
using let:

# let avg = fun (a,b) -> (a+b)/2;;

val avg : int * int -> int = <fun>

# avg (8,10);;

⇒ (fun (a,b) -> (a+b)/2) (8,10)

⇒ (8+10)/2

⇒ 9
- : int = 9

Note that let does not create a function, it just names one. Rather, it is fun that creates the
function. This fact is unfortunately obscured by the fact that Ocaml supports syntactic sugar for
function definition that hides the fun. That is, the above definition can also be written as:

# let avg (a,b) = (a+b)/2;;

val avg : int * int -> int = <fun>

Even though the fun is not explicit in the sugared form of definition, it is important to remember
that it is still there!

The fact that functions are values implies that the operator position of a function call can be
an arbitrary expression. E.g. the expression

(if n = 0 then avg else fun (x,y) -> x + y) (3,7)

returns 5 if n evaluates to 0 and otherwise returns 10.

1.2 Passing Functions as Arguments

Functions can be used as arguments to other functions. Consider the following expressions:

# let app_3_5’ = fun f -> f (3,5);;

(* Top-level environment now contains binding
app_3_5’ 7→ (fun f -> f (3,5)) *)

# app_3_5’ (fun (x,y) -> x + y);;

⇒ (fun f -> f (3,5)) (fun (x,y) -> x + y)

⇒ (fun (x,y) -> x + y) (3,5)

⇒ 3 + 5
⇒ 8

# app_3_5’ (fun (x,y) -> x * y);;

⇒ (fun f -> f (3,5)) (fun (x,y) -> x * y)

⇒ (fun (x,y) -> x * y) (3,5)

⇒ 3 * 5
⇒ 15
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# app_3_5’ avg

⇒ (fun f -> f (3,5)) (fun (a,b) -> (a+b)/2)

⇒ (fun (a,b) -> (a + b) / 2) (3,5)

⇒ (3 + 5) / 2

⇒ 8 / 2
⇒ 4

# app_3_5’ (fun (a,b) -> a)

⇒ (fun f -> f (3,5)) (fun (a,b) -> a)

⇒ (fun (a,b) -> a) (3,5)
⇒ 3

# app_3_5’ (fun (a,b) -> b)

⇒ (fun f -> f (3,5)) (fun (a,b) -> b)

⇒ (fun (a,b) -> b) (3,5)
⇒ 5

1.3 Returning Functions as Results

Functions can be returned as results from other functions. For example, suppose that expt is an
exponentiation function — i.e., expt(b,p) returns the result of raising the base b to the power p.

# let to_the = fun p -> (fun b -> expt(b,p))

(* Top-level environment now contains binding
to_the 7→ fun p -> (fun b -> expt(b,p)) *)

# let sq = to_the 2

⇒ let sq = (fun p -> (fun b -> expt(b,p))) 2

⇒ let sq = (fun b -> expt(b,2))

(* Top-level environment now contains binding
sq 7→ (fun b -> expt(b,2)) *)

# sq 5

⇒ (fun b -> expt(b,2)) 5

⇒ expt(5,2)
⇒ 25

# (to_the 3) 5

⇒ ((fun p -> (fun b -> expt(b,p))) 3) 5

⇒ (fun b -> expt(b,3)) 5

⇒ expt(5,3)
⇒ 125
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Note that the function resulting from a call to to_the must somehow “remember” the value of
power that to_the was called with. As shown above, this “memory” is completely explained by
the substitution model, in which to_the returns a specialized copy of (fun b -> expt(b,p)) in
which p is a particular integer.

Observe that the to_the function effectively takes two arguments (power p and base b), but
rather than taking them in a single tuple, it takes them “one at a time”. That is, to_the takes
the power p and returns a function that takes the base b and returns the result of raising b to p.
Functions that take their arguments one at a time in this fashion are know as curried1 functions.

The type of to_the is int -> (int -> int), which can also be written int -> int -> int,
since -> is treated as a right-associative operator. An uncurried (which we will also call “tupled”)
version of to_the would have type int * int -> int. In Ocaml libraries like the List module,
most multi-argument functions are written in a curried style rather than a tupled style. This is
because the result of applying a curried function to one argument yields another function, and
such a function is likely to be useful as an argument to a higher-order function. For example, if
app5 is the function (fun f -> f 5), then the application app5 (to_the 2) makes sense but the
application app5 (expt 2) does not. (We would have to write app5 (fun b -> expt(b,2)).)

As an example of using curried functions, consider a variant of app_3_5’ that expects a curried
two-argument function as its argument:

# let app_3_5 = fun f -> f 3 5;;

val app_3_5 : (int -> int -> ’a) -> ’a = <fun>

For example:

# app_3_5 to_the;;

⇒ (fun f -> f 3 5) (fun p -> fun b -> expt(b,p))

⇒ (fun p -> fun b -> expt(b,p)) 3 5

⇒ expt(5,3)
- : int = 125

Ocaml’s infix operators can be “converted” to curried prefix operators by wrapping them in
parentheses. For example, (+) is a function of type int -> int -> int that is equivalent to
fun x y -> x+y:

# (+) 1 2;;

⇒ (fun x y -> x+y) 1 2

⇒ 1+2
- : int = 3

We can use these with app_3_5:

# app_3_5 (+);;

⇒ (fun f -> f 3 5) (fun x y -> x+y)

⇒ (fun x y -> x+y) 3 5

⇒ 3+5
- : int = 8

1named after the logician Haskell Curry, who is also remembered in the name of the programming language

Haskell.
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# app_3_5 (-);;

⇒ (fun f -> f 3 5) (fun x y -> x-y)

⇒ (fun x y -> x-y) 3 5

⇒ 3-5
- : int = -2

How would we multiply 3 by 5? (Be careful – this is tricky!)
A key benefit to using curried functions (as opposed to tupled functions) is that partially applied

curried functions are useful in many situations. For example:

# app5 (to_the 2)

⇒ (fun f -> f 5) ((fun p -> fun b -> expt(b,p)) 2)

⇒ (fun f -> f 5) (fun b -> expt(b,2))

⇒ (fun b -> expt(b,2)) 5

⇒ expt(5,2)
- : int = 25

# app5 ((+) 1)

⇒ (fun f -> f 5) ((fun x y -> x+y) 1)

⇒ (fun f -> f 5) (fun y -> 1+y)

⇒ (fun y -> 1+y) 5

⇒ 1+5
- : int = 6

# app5 ((-) 1)

⇒ (fun f -> f 5) ((fun x y -> x-y) 1)

⇒ (fun f -> f 5) (fun y -> 1-y)

⇒ (fun y -> 1-y) 5

⇒ 1-5
- : int = -4

With Ocaml’s syntactic sugar, we can dispense with one or more explicit funs in a curried
function declaration. For example, all of the following are equivalent declarations of to_the:

# let to_the = fun p -> fun b -> expt(b,p);;

val to_the : int -> int -> int = <fun>

# let to_the p = fun b -> expt(b,p);;

val to_the : int -> int -> int = <fun>

# let to_the p b = expt(b,p);;

val to_the : int -> int -> int = <fun>

We can write functions that both take functions as arguments and return them as results. For

5



example, the following flip function swaps the arguments of a curried two-argument function:

# let flip f a b = f b a

val flip : (’a -> ’b -> ’c) -> ’b -> ’a -> ’c = <fun>

# (flip (-)) 3 2;;

⇒ ((fun f a b -> f b a) (fun x y -> x-y)) 3 2

⇒ (fun a b -> (fun x y -> x-y) b a) 3 2

⇒ (fun x y -> x-y) 2 3

⇒ 2-3
- : int = -1

# (flip to_the) 5 2;;

⇒ ((fun f a b -> f b a) (fun p -> fun b -> expt(b,p))) 5 2

⇒ (fun a b -> (fun p b -> expt(b,p)) b a) 5 2

⇒ (fun p b -> expt(b,p)) 2 5

⇒ expt(5,2)
- : int = 25

# app_3_5 (flip (<));;

⇒ (fun f -> f 3 5) ((fun f a b -> f b a) (fun x y -> x<y))

⇒ (fun f -> f 3 5) (fun a b -> (fun x y -> x<y) b a)

⇒ (fun a b -> (fun x y -> x<y) b a) 3 5

⇒ (fun x y -> x<y) 5 3

⇒ 5<3
- : bool = false

# app5 ((flip (-)) 1)

⇒ (fun f -> f 5) ((fun f a b -> f b a) (fun x y -> x-y) 1)

⇒ (fun f -> f 5) (fun b -> (fun x y -> x-y) b 1)

⇒ (fun b -> (fun x y -> x-y) b 1) 5

⇒ (fun x y -> x-y) 5 1

⇒ 5-1
- : int = 4

We can use the “memory” of substitution to create functions like app_3_5 via the following
function:2

# let church_pair = fun x -> fun y -> fun f -> f x y

For example, church_pair 3 5 returns a function equivalent to app_3_5 and and church_pair 17 32

returns a function equivalent to fun f -> f 17 32.
Because church_pair creates a function that remembers two values, it is effectively a pairing

2We name the function church pair because it is a functional encoding of pairs invented by Alonzo Church.
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operator. That is, church_pair x y in many ways acts like the tuple (x,y). For example, we
can write functions church_fst and church_snd that extract the left and right elements of this
functional “pair”:

# let church_fst cp = cp (fun a b -> a);;

val fst : ((’a -> ’b -> ’a) -> ’c) -> ’c = <fun>

# church_fst (church_pair 17 32);;

⇒ (fun cp -> cp (fun a b -> a))

((fun x y -> fun f -> f x y) 17 32)

⇒ (fun p -> p (fun a b -> a)) (fun f -> f 17 32)

⇒ (fun f -> f 17 32) (fun a b -> a)

⇒ (fun a b -> a) 17 32
17

How would church_snd be defined? What is the value of (church_pair 17 32) (+)?
Since any data structure can be made out of pairs, it is not surprising that any data structure

can be implemented in terms of functions. In fact, you should start thinking of functions as just
another kind of data structure! This semester we will see many examples of how abstract data
types can be elegantly represented by functions.

Note that functions with “memory” are very similar to methods in object-oriented languages.
Indeed, later in the semester we will see how numerous aspects of the object-oriented programming
paradigm can be modeled using first-class functions.

1.4 Storing Functions in Data Structures

Functions can be stored in data structures, like tuples and lists:

# let fun_tuple = (to_the, (<), app_3_5, church_pair);;

val fun_tuple :

(int -> int -> int) * (int -> int -> bool) * ((int -> int -> ’a) -> ’a) *

(’b -> ’c -> (’b -> ’c -> ’d) -> ’d) = (<fun>, <fun>, <fun>, <fun>)

# match fun_tuple with (f,g,h,k) -> (h f, k 2 1 g);;

⇒ match (to_the, (<), app_3_5, church_pair)

with (f,g,h,k) -> (h f, k 2 1 g);;

⇒ (app_3_5 to_the, church_pair 2 1 (<))

⇒ ((fun f -> f 3 5) (fun p b -> expt(b,p)),

(fun x y f -> f x y) 2 1 (fun x y -> x<y))

⇒ ((fun p b -> expt(b,p)) 3 5, (fun x y -> x<y) 2 1)

⇒ (expt(5,3), 2<1)
- : int * bool = (125, false)

1.5 Creating Functions

Finally, functions can be created in any context. In many programming languages, such as C,
functions can only be defined at “top-level”; it is not possible to declare one function inside of
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another function. But as seen above in the to_the and church_pair examples, the ability to
specialize a function to “remember” values in its body hinges crucially on the ability to have one
fun nested inside another. In this pattern, applying the outer fun can cause values to be substituted
into the body of the inner fun, allowing the resulting abstraction to “remember” the values of the
parameters to the outer one.

2 Function Composition

Just as there are standard ways of combining two integers to yield another integer (e.g., + and *)
and standard ways of combining two booleans to yield a boolean (e.g., &&, ||), there are standard
ways of combining two functions to yield a another function. The most important of these is
function composition. In mathematics, if f and g are two functions, then the composition of f

and g, written f ◦ g, is defined as follows:

(f ◦ g)(x) = f(g(x))

If we depict functions as boxes that take their inputs from their left and produce their outputs to
the right, composition would be depicted as follows:

(

f
x f(x)

)

◦

(

g
y g(y)

)

= g f
x g(x) f(g(x))

Note that the left-to-right nature of the graphical depiction of the function boxes requires inverting
the order of the function boxes when they are composed. In contrast, the right-to-left nature of
the textual notation requires no inversion.

Composition is straightforward to define in Ocaml:

let o f g = fun x -> f (g x)

val o : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b = <fun>

Here we have defined o as a curried prefix composition operator. Not that we could have also
defined it without any explicit fun via let o f g x = f (g x). Here are some examples involving
composition:

# let inc = (+) 1;;

⇒ let inc = (fun x y -> x+y) 1

⇒ let inc = (fun y -> 1+y)
val inc : int -> int = <fun>

# let dbl = ( * ) 2;;

⇒ let dbl = (fun x y -> x*y) 2

⇒ let dbl = (fun y -> 2*y)
val dbl : int -> int = <fun>
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# (o inc dbl) 10;;

⇒ (fun f g x -> f (g x)) inc dbl 10

⇒ inc (dbl 10)

⇒ (fun y -> 1+y) ((fun y -> 2*y) 10)

⇒ (fun y -> 1+y) (2*10)

⇒ (fun y -> 1+y) 20

⇒ 1+20
- : int = 21

# (o dbl inc) 10;;

⇒ (fun f g x -> f (g x)) dbl inc 10

⇒ dbl (inc 10)

⇒ (fun y -> 2*y) ((fun y -> 1+y) 10)

⇒ (fun y -> 2*y) (1+10)

⇒ (fun y -> 2*y) 11

⇒ 2*11
- : int = 22

Just as addition (+), multiplication (*), conjunction (&&), and disjunction (||) all have identity
values (respectively, 0, 1, true, and false), so too does composition have an identity value — the
identity function:

let id x = x

Graphically, the identity function is a function box that passes its argument unaltered:

x x

You should convince yourself that (o f id) and (o id f) are functions that are behaviorally
indistinguishable from f. This is easy to see from the graphical representation:

f
x f(x)

f
x f(x)

It is common to compose functions with themselves. For example:

# let twice f = o f f;;

val twice : (’a -> ’a) -> ’a -> ’a = <fun>

(* (twice f) behaves like fun x -> f (f x) *)

# let thrice f = o f (twice f);;

val thrice : (’a -> ’a) -> ’a -> ’a = <fun>

(* (thrice f) behaves like fun x -> f (f (f x)) *)

Numerous examples involving twice and thrice are shown in Fig. 1.
More generally, the n-fold composition of a function f , written f n, is the result of composing n

copies of f . (f 0, the zero-fold composition of f , is just the identity function.) Here is a graphical
depiction of fn :
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# (twice inc) 10;;

(* equivalent to inc (inc 10) *)

- : int = 12

# (twice dbl) 10;;

(* equivalent to dbl (dbl 10) *)

- : int = 40

# (thrice inc) 10;;

(* equivalent to inc (inc (inc 10)) *)

- : int = 13

# (thrice dbl) 10;;

(* equivalent to dbl (dbl (dbl 10)) *)

- : int = 80

# (twice (twice inc)) 0;;

(* equivalent to (twice inc) ((twice inc) 0) *)

- : int = 4

# (twice (thrice inc)) 0;;

(* equivalent to (thrice inc) ((thrice inc) 0) *)

- : int = 6

# (thrice (twice inc)) 0;;

(* equivalent to (twice inc) ((twice inc) ((twice inc) 0)) *)

- : int = 6

# (thrice (thrice inc)) 0;;

(* equivalent to (thrice inc) ((thrice inc) ((thrice inc) 0)) *)

- : int = 9

# ((twice twice) inc) 0;;

(* equivalent to (twice (twice inc)) 0 *)

- : int = 4

# ((twice thrice) inc) 0;;

(* equivalent to (thrice (thrice inc)) 0 *)

- : int = 9

# ((thrice twice) inc) 0;;

(* equivalent to (twice (twice (twice inc))) 0 *)

- : int = 8

# ((thrice thrice) inc) 0;;

(* equivalent to (thrice (thrice (thrice inc))) 0 *)

- : int = 27

Figure 1: Examples involving the twice and thrice functions.
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f f · · · f
x f0(x) f1(x) f2(x) fn−1(x) fn(x)

In Ocaml,, n-fold composition can be expressed via the following n_fold function:

let rec n_fold n f =

if n = 0 then

id

else

o f (n_fold (n-1) f)

For example:

# n_fold 5 inc 0;;
- : int = 5

# n_fold 3 dbl 1;;
- : int = 8

# n_fold 3 (fun x -> x * x) 2;;
- : int = 256

# n_fold 0 (fun x -> x * x) 17;;
- : int = 17

Note that the twice and thrice functions from above can be defined in terms of n_fold:

# let twice f = n_fold 2 f;;

val twice : (’a -> ’a) -> ’a -> ’a = <fun>

# let thrice f = n_fold 3 f;;

val thrice : (’a -> ’a) -> ’a -> ’a = <fun>

3 Church Numerals

The celebrated logician Alonzo Church (who invented the lambda calculus, a formal mathematical
system upon which functional programming is based) observed that n-fold composition functions
can be viewed as numerals in the sense that it is possible to perform arithmetic on them (e.g.
addition, multiplication, exponentiation, etc.). Such numerals are called Church numerals in his
honor. We shall use int2ch and ch2int to convert between Ocaml integers and church numerals:

# let int2ch = n_fold (* synonym for n_fold *)

val int2ch : int -> (’a -> ’a) -> ’a -> ’a = <fun>

# let ch2int c = c ((+) 1) 0

val ch2int : ((int -> int) -> int -> ’a) -> ’a = <fun>

ch2int finds the integer corresponding to an n-fold composition function by incrementing n times
starting at 0. For example:

# ((int2ch 17) inc) 10;;
- : int = 27
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# ch2int (int2ch 17);;
- : int = 17

# ch2int twice;;
- : int = 2

# ch2int thrice;;
- : int = 3

# let nonce = fun f x -> x;;

val nonce : ’a -> ’b -> ’b = <fun>

# ch2int nonce;;
- : int = 0

# let once = fun f x -> f x;;

val once : (’a -> ’b) -> ’a -> ’b = <fun>

# ch2int once;;
- : int = 1

As an example of arithmetic on Church numerals, consider the successor function succ that adds
one to a Church numeral. Since the Church numeral corresponding to n is the n-fold composition
function, applying succ to such a church numeral should yield an (n+1)-fold composition function.
Here’s one definition:

# let succ c = fun f -> o f (c f)

val succ : ((’a -> ’b) -> ’c -> ’a) -> (’a -> ’b) -> ’c -> ’b = <fun>

# ch2int (succ twice);;
- : int = 3

# ch2int (succ thrice);;
- : int = 4

# ch2int (succ nonce);;
- : int = 1

# ch2int (succ once);;
- : int = 2

# (succ thrice) dbl 1;;
- : int = 16

Note that an alternative definition of succ would be:

# let succ c = fun f -> o (c f) f;;

val succ : ((’a -> ’b) -> ’b -> ’c) -> (’a -> ’b) -> ’a -> ’c = <fun>

It is also possible to define a function plus that adds two Church numerals. One definition of
plus is based on the following observation: if c1 and c2 are Church numerals for n1 and n2, then
(c1 f) performs f n1 times, c2 performs f n2 times, and (o (c1 f) (c2 f)) performs f n1 + n2

times.
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# let plus c1 c2 = fun f -> o (c1 f) (c2 f);;

val plus : (’a -> ’b -> ’c) -> (’a -> ’d -> ’b) -> ’a -> ’d -> ’c = <fun>

# (ch2int (plus once nonce));;
- : int = 1

# (ch2int (plus twice thrice));;
- : int = 5

An alternative definition of plus is based on the observation that addition is repeated incre-
menting:

# let plus’ c1 c2 = ((c1 succ) c2);;

val plus’ :

((((’a -> ’b) -> ’c -> ’a) -> (’a -> ’b) -> ’c -> ’b) -> ’d -> ’e) ->

’d -> ’e = <fun>

# (ch2int (plus’ (int2ch 2) (int2ch 3)));;
- : int = 5

# (ch2int (plus’ (int2ch 1) (int2ch 0)));;
- : int = 1

In a similar manner, it is possible to define functions times and expt that perform multiplication
and exponentiation on Church numerals. 3 Example calls of these functions are shown below, but
their definition is left as an exercise. (Hints: (1) carefully study the twice/thrice examples from
above; (2) think in terms of the function box notation.)

# (ch2int (times (int2ch 2) (int2ch 3)));;

- : int = 6

# (ch2int (times (int2ch 3) (int2ch 2)));;

- : int = 6

# (ch2int (expt (int2ch 2) (int2ch 3)));;

- : int = 8

# (ch2int (expt (int2ch 3) (int2ch 2)));;

- : int = 9

It is also possible to define a pred function that decrements a Church numeral (and acts as the
identity on the Church numeral for 0):

# (ch2int (pred (int2ch 3));;

- : int = 2

# (ch2int (pred (int2ch 0));;

- : int = 0

3These functions can be defined without using int2ch, ch2int, n fold, or any recursively defined Ocaml functions.
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