
CS251 Programming Languages Handout # 26
Prof. Lyn Turbak March 2, 2005
Wellesley College Revised March 2, 2005

Intex: An Introduction to Program Manipulation

Revisions: Mar 2 : In Sec. 3.1 the reference to expSize in sizePgm should be sizeExp; in Fig. 6 and Fig. 7, each

”2” appearing in a function name (such as pgm2Exp) should be ”To” (as in pgmToExp).

1 Introduction

An interpreter is a program written in one language (the implementation language) that exe-
cutes a program written another language (the source language). The source and implementation
languages are typically different. For example, we might write an interpreter for Ocaml in Java.
We will call such an interpreter an “Ocaml interpreter”, naming it after the source language, not
the implementation language. It is possible to write an interpreter for a language in itself; such
an interpreter is known as a meta-circular interpreter. For example, Chapter 4 of Abelson and
Sussman’s Structure and Interpretation of Computer Programs presents a meta-circular interpreter
for Scheme. Such an interpreter does not by itself define the meaning of a language; it involves
boot-strapping issues we considered earlier in our discussions of interpretation and compilation.

One of the best ways to gain insight into programming language design and implementation is
read, write, and modify interpreters and translators. We will spend a significant amount of time
in this course studying interpreters and translators. We begin with an interpreter for an extremely
simple “mini” or “toy” language, an integer expression language we’ll call Intex. To understand
various programming language features, we will add them to Intex to get more complex languages.
Eventually, we will build up to more realistic source languages.

2 Abstract Syntax for Intex

An Intex program specifies a function that takes integer arguments and returns an integer result.
Abstractly, an Intex program is a tree constructed out of the following kinds of nodes:

• A program node is a node with two components: (1) A non-negative integer numargs spec-
ifying the number of arguments to the program and (2) A body expression.

• An expression node is one of the following:

– A literal specifying an integer constant, known as its value;

– An argument reference specifying an integer index that references a program argu-
ment by position;

– A binary application specifying a binary operator (known as its rator) and two
operand expressions (known as rand1 and rand2).

• A binary operator node is one of the following five operators: addition, subtraction,
multiplication, division, or remainder.

These nodes can be be depicted graphically and arranged into trees. For example, Fig. 1 depicts
the trees denoting three sample Intex programs: (1) a program that squares its single input, (2) a
program that averages its two inputs, and (3) a program that converts its single input, a temperature
measured in Fahrenheit, to a temperature measured in Celsius. Such trees are known as abstract
syntax trees (ASTs), because they specify the abstract logical structure of a program without

1

Pgm

1

numargs

BinApp

body

Mul

rator

Arg

rand1

1

Arg

rand2

1

Pgm

2

numargs

BinApp

body

Div

rator

BinApp

rand1

Add

rator

Arg

rand1

1

Arg

rand2

2

Lit

rand2

2

value

Pgm

1

numargs

BinApp

body

Div

rator

BinApp

rand1

Mul

rator

BinApp

rand1

Sub

rator

Arg

rand1

1

Lit

rand2

32

value

Lit

rand2

5

value

Lit

rand2

9

value

Squaring program Averaging program Fahrenheit-to-Celsius converter

Figure 1: Abstract syntax trees for three sample Intex programs.

any hint of how the program might be written down in concrete syntax. We leave discussion of the
concrete syntax of Intex programs until later in this handout (see Sec. 4).

It is easy to express Intex ASTs using Ocaml datatypes. Fig. 2 introduces three types to
express the three different kinds of Intex AST nodes:

1. The pgm type has a single constructor, Pgm, with two components (numargs and body);

2. The exp type is a recursive type with three constructors: Lit (for integer literals), Arg (for
argument references), and BinApp (for binary applications).

3. The binop type has five constructors, one for each of the five possible operators.

Using these datatypes, the three sample trees depicted in Fig. 1 can be expressed in Ocaml as
shown in Fig. 3.

3 Manipulating Intex Programs

Intex programs and expressions are just trees, and can be easily manipulated as such. Here we
study three different programs that manipulate Intex ASTs.

3.1 Program Size

Define the size of an Intex program as the number of boxed nodes in the graphical depiction of
its AST. Then the size of an Intex program can be determined as follows:

let rec sizePgm (Pgm(_,body)) = 1 + (sizeExp body)

and sizeExp e =

match e with

Lit i -> 1

| Arg index -> 1

| BinApp(_,r1,r2) -> 2 + (sizeExp r1) + (sizeExp r2)

(* add one for rator and one for BinApp node *)

2

type pgm = Pgm of int * exp (* numargs, body *)

and exp =

Lit of int (* value *)

| Arg of int (* index *)

| BinApp of binop * exp * exp (* rator, rand1, rand2 *)

and binop = Add | Sub | Mul | Div | Rem (* Arithmetic ops *)

Figure 2: Ocaml datatypes for Intex abstract syntax.

let sqr = Pgm(1, BinApp(Mul, Arg 1, Arg 1))

let avg = Pgm(2, BinApp(Div,

BinApp(Add, Arg 1, Arg 2),

Lit 2))

let f2c = Pgm(1, BinApp(Div,

BinApp(Mul,

BinApp(Sub, Arg 1, Lit 32),

Lit 5),

Lit 9))

Figure 3: Sample programs expressed using Ocaml datatypes.

For example:

open Intex;;

sizePgm sqr;;

- : int = 5

sizePgm avg;;

- : int = 8

sizePgm f2c;;

- : int = 11

The tree manipulation performed by sizeExp is an instance of a general fold operator on
Intex expressions that captures the essence of divide, conquer, and glue on these expressions:

let rec fold litfun argfun appfun exp =

match exp with

Lit i -> litfun i

| Arg index -> argfun index

| BinApp(op,rand1,rand2) ->

appfun op

(fold litfun argfun appfun rand1)

(fold litfun argfun appfun rand2)

Using fold, we can re-express sizeExp as:

(* fold-based version *)

let sizeExp e =

fold (fun _ -> 1) (fun _ -> 1) (fun _ n1 n2 -> 2 + n1 + n2) e

3

3.2 Static Argument Checking

We can statically (i.e., without running the program) check if all the argument indices are valid by
a simple tree walk that determines the minimum and maximum argument indices:

let rec argCheck (Pgm(n,body)) =

let (lo,hi) = argRange body

in (lo >= 1) && (hi <= n)

and argRange e =

match e with

Lit i -> (max_int, min_int)

| Arg index -> (index, index)

| BinApp(_,r1,r2) ->

let (lo1, hi1) = argRange r1

and (lo2, hi2) = argRange r2

in (min lo1 lo2, max hi1 hi2)

For example:

argCheck f2c;;

- : bool = true

argCheck (Pgm(1,Arg(2)));;

- : bool = false

Note that argRange can also be expressed in terms of fold:

(* fold-based version *)

let argRange e =

fold (fun _ -> (max_int, min_int))

(fun index -> (index, index))

(fun _ (lo1,hi1) (lo2,hi2) -> (min lo1 lo2, max hi1 hi2))

e

3.3 Interpretation

An interpreter for Intex is presented in Fig. 4. It determines the integer value of an Intex program
given a list of integer arguments. For example:

run sqr [5];;

- : int = 25

run sqr [-7];;

- : int = 49

run avg [5;15];;

- : int = 10

run f2c [212];;

- : int = 100

run f2c [32];;

- : int = 0

run f2c [98];;

- : int = 36

4

module IntexInterp = struct

open Intex

exception EvalError of string

let rec run (Pgm(n,body)) ints =

let len = List.length ints in

if n = List.length ints then

eval body ints

else

raise (EvalError ("Program expected " ^ (string_of_int n)

^ " arguments but got " ^ (string_of_int len)))

and eval exp args =

match exp with

Lit i -> i

| Arg index ->

if (index <= 0) || (index > List.length args) then

raise (EvalError("Illegal arg index: " ^ (string_of_int index)))

else

List.nth args (index - 1)

| BinApp(op,rand1,rand2) ->

primApply op (eval rand1 args) (eval rand2 args)

and primApply binop x y =

match binop with

Add -> x + y

| Sub -> x - y

| Mul -> x * y

| Div -> if y = 0 then

raise (EvalError ("Division by 0: " ^ (string_of_int x)))

else

x / y

| Rem -> if y = 0 then

raise (EvalError ("Remainder by 0: " ^ (string_of_int x)))

else

x mod y

end

Figure 4: An interpreter for Intex.

5

In certain situations, it is necessary to indicate an error; the EvalError exception is used for
this. For example:

run sqr [2;3];;

Exception: IntexInterp.EvalError "Program expected 1 arguments but got 2".

run sqr [];;

Exception: IntexInterp.EvalError "Program expected 1 arguments but got 0".

run (Pgm(1,BinApp(Div, Arg 1, Lit 0))) [5];;

Exception: IntexInterp.EvalError "Division by 0: 5".

The run function checks that number of supplied arguments matches the number of expected
arguments. It then defers to the eval function, which is the real workhorse of the interpreter. eval
defines the meaning of an expression relative to the argument list (args) of the program. The
argument list is needed to evaluate argument references. Although binary application expressions
do not directly refer to the argument list, it must be passed down to both rands in case they contain
argument references. Binary applications are evaluated via divide/conquer/glue: both rands are
recursively evaluated, and their values are combined by the primapply helper method, which defines
the binary operators.

Even the eval function can be expressed in terms of fold!

(* fold-based version *)

let eval exp =

fold (fun i -> (fun args -> i))

(fun index ->

(fun args ->

if (index <= 0) || (index > List.length args) then

raise (EvalError("Illegal arg index: " ^ (string_of_int index)))

else

List.nth args (index - 1)))

(fun op fun1 fun2 ->

(fun args ->

primApply op (fun1 args) (fun2 args)))

exp

4 A Concrete Syntax for Intex

4.1 A Plethora of Options

We have seen that abstract syntax trees (ASTs) make it easy to write Ocaml programs that
manipulate Intex programs. But it’s rather awkward to use the AST functions from Sec. 2 to
create Intex program trees. Moreover, we can’t very well expect that Intex programmers are
going to use AST functions written in Ocaml to write Intex programs!

To make programs easier to read and write, we can develop a concrete syntax that specifies
how program trees can be written as sequences of characters. There are many design choices to
make when definining concrete syntax. For example:

• How should argument references be written? Many languages have so-called positional argu-
ments that are specified by a numeric index. For example:

– the bash shell programming language uses $i to denote the ith argument (1-indexed) to
a shell script.

6

– the LaTeX formatting language uses #i to denote the ith argument (1-indexed) to a
macro.

– The main method in a Java class refers to the ith command line argument as an index
(0-based) of an array argument.

• How are applications of binary operators written? Suppose we want to represent the following
Intex expression tree:

BinApp

Add

rator

Lit

rand1

1

BinApp
rand2

Mul

rator

Lit

rand1

2

Lit

rand2

3

There are many possible notations. For instance:

– In infix notation, the operator is placed between the operands, as in 1 + (2 * 3). If
we specify that * has a higher precedence than + (as is usually assumed in mathematical
notation), we can dispense with the explicit parentheses and write 1 + 2 * 3.

– In prefix notation, the operator is placed before the operands. This is the convention
in Lisp dialects, in which the example would be written (+ 1 (* 2 3)). But there are
other variants as well; e.g., +(1,*(2,3)).

– In postfix notation, the operator is placed after the operands, as in 1 2 3 * + or
2 3 * 1 +. Postfix notation is unambiguous and can be written without any explicit
parentheses.

• What should the top-level program structure be? How should the number of program argu-
ments be declared? Again, there are many possibilities; here are a few:

– We could use C and Java’s approach of using a distinguished main function to specify
the entry point to a program:

int main(int a, int b) {return (a + b) / 2;}

However, this uses named parameters rather than positional parameters. It would be
more in line with Intex to specify only the number of parameters:

int main(int, int) {return ($1 + $2) / 2;}

In this case the main name, int type annotations, return keyword, and semi-colon are
“noise” in the sense that they don’t have any meaning in Intex and would be ignored.
A syntax that mapped more straightforwardly onto Intex would omit these:

main(2) {($1 + $2) / 2}

– We could use a notation similar to that used to define mathematical functions:

avg[2] = div(+($1,$2),2)

7

Here, the name avg has no semantic import (it is ignore by Intex), but it is a helpful
comment.

– We can represent the Intex tree in s-expression notation, where each tree node is ex-
plicitly labelled by its type:

(program 2

(binapp div

(binapp add

(arg 1)

(arg 2))

(lit 2)))

Here we have adopted the simple prefix convention from Handout #22 for representing
sum-of-product trees as s-expressions: the first s-expression in a parenthesized sequence
is a token that is the summand node label and the remaining s-expressions are arbitrary
s-expressions that represent the product components.

– There are other notations for representing sum-of-product trees. The most popular of
these are the XML and XML document description languages. In these languages,
summand tags appear in begin/end markups and product components are encoded both
in the association lists of markups as well as in components nested within the begin/end
markups. For instance, Fig. 5 shows how the averaging program might be encoded in
XML. The reader is left to ponder why XML, which at one level is a verbose encoding
of s-expressions, is a far more popular standard for expressing structured data than
s-expressions.

<program>

<numargs num=2>

<body>

<binapp>

<op name="/">

<rand1>

<binapp>

<op name="+">

<rand1>

<arg index=1>

</rand1>

<rand2>

<arg index=2>

</rand2>

</binapp>

</rand1>

<rand2>

<lit num=2>

</rand2>

</binapp>

</body>

</program>

Figure 5: The averaging program expressed in XML notation.

8

4.2 Compressed S-expression Format

Because s-expressions are easy to parse, we will adopt an s-expression notation for our concrete
Intex syntax. However, the notation used in the example above is more verbose than we’d like,
so we’ll use some tricks to make the notation more concise/readable:

• If we assume that numbers stand for themselves, we can avoid the explicit lit tag. Thus, we
will shorten (lit 2) to 2.

• Since we must be able to distinguish argument references from integer literals, we cannot

similarly shorten (arg 1) to 1. But we can use a shorter tag name, such as $, in which case
(arg 1) becomes ($ 1).1

• The only non-leaf node is a binary application, so we can dispense with the binapp tag with-
out introducing ambiguity. Using traditional operator symbols (+, -, *, /, %) in place of names
(add, sub, mul, div, rem) further shortens the notation. For example, (binapp add ($ 1) ($ 2))

becomes (+ ($ 1) ($ 2)).

• To distinguish Intex program from other programs in other mini-languages we will study,
we replace program by intex. This is not much shorter, but helps to disambiguate programs
from different languages.

The result of applying all of the above tricks on our three sample Intex programs yields:

(intex 1 (* ($ 1) ($ 1))) ; Squaring program

(intex 2 (/ (+ ($ 1) ($ 2) 2))) ; Averaging program

(intex 1 (/ (* (- ($ 1) 32) 5) 9)) ; Temperature conversion program

These are significantly shorter that the Ocaml AST notation or the unoptimized s-expression
notation. This is the s-expression notation that we will adopt for Intex. We will make similar
abbreviations in other languages. It’s worth noting that the syntax of Lisp dialects is effectively
determined by this process – prefix tags are used everywhere except for literals (e.g., numbers,
booleans, strings, characters) and for applications (which are written without an explicit apply

tag, as in (fact 5) rather than (apply fact 5)).
There are several advantages to using parenthesized prefix s-expression notation for concrete

syntax of the mini-languages we will study:

• It is easy to parse s-expressions into trees using the functions in the Sexp module (Handout
#22). We needn’t worry about defining lexical analyzers and parsers for each new language
we consider.

• The notation is unambiguous and extremely regular.

• Emacs provides lots of nice features for manipulating s-expressions (such as parethesis match-
ing and automatic indentation).

There are some drawbacks as well:

1If we’re willing to analyze the characters in a symbol name, we could shorten this even more to $1.

9

• The mini-languages will end up looking a lot like a Lisp dialect, such as Scheme. We must
be careful to keep in mind that they are very different languages from Lisp even though they
look like Lisp on the surface.

• The mini-languages will all have a very similar syntax even though their semantics (meaning)
may differ significantly. This can make it hard to differentiate between languages.

• For those used to programming in non-Lisp langauges like Java, C, and Ocaml, the paren-
thesized prefix s-expression form can seem rather unnatural at first. Hopefully they will
become natural with practice. (And you will be getting lots of practice!)

4.3 Unparsing and Parsing Intex Programs

It is relatively straightforward to convert between Intex ASTs (specified via Ocaml data type
constructors), sexp trees (also specified via Ocaml data type constructors), and s-expression no-
tation (strings with matching parenthesis). Fig. 6 presents functions that unparse an Intex AST
into an s-expression. For example:

open Intex;; (* Unparsing functions are in Intex module *)

let f2c = Pgm(1, BinApp(Div,

BinApp(Mul,

BinApp(Sub,Arg(1),Lit(32)),

Lit(5)),

Lit(9)));;

val f2c : Intex.pgm =

Pgm (1,

BinApp (Div, BinApp (Mul, BinApp (Sub, Arg 1, Lit 32), Lit 5), Lit 9))

pgmToSexp f2c;;

- : Sexp.sexp =

Sexp.Seq

[Sexp.Sym "intex"; Sexp.Int 1;

Sexp.Seq

[Sexp.Sym "/";

Sexp.Seq

[Sexp.Sym "*";

Sexp.Seq

[Sexp.Sym "-"; Sexp.Seq [Sexp.Sym "$"; Sexp.Int 1]; Sexp.Int 32];

Sexp.Int 5];

Sexp.Int 9]]

pgmToString f2c;;

- : string = "(intex 1 (/ (* (- ($ 1) 32) 5) 9))"

Fig. 7 presents functions for parsing an s-expression into an Intex AST. Let’s give them a
spin:

open Intex;; (* Parsing functions are in Intex module *)

10

let rec pgmToSexp p =

match p with

Pgm (n, e) ->

Seq ([Sym "intex"; Int n; expToSexp e])

and expToSexp e =

match e with

Lit i -> Int i

| Arg i -> Seq [Sym "$"; Int i]

| BinApp (rator, rand1, rand2) ->

Seq ([Sym (primopToString rator); expToSexp rand1; expToSexp rand2])

and primopToString p =

match p with

Add -> "+"

| Sub -> "-"

| Mul -> "*"

| Div -> "/"

| Rem -> "%"

and expToString s = sexpToString (expToSexp s)

and pgmToString s = sexpToString (pgmToSexp s)

Figure 6: Unparsing Intex programs to s-expressions.

let f2cSexp = Sexp.stringToSexp "(intex 1 (/ (* (- ($ 1) 32) 5) 9))";;

val f2cSexp : Sexp.sexp =

Sexp.Seq

[Sexp.Sym "intex"; Sexp.Int 1;

Sexp.Seq

[Sexp.Sym "/";

Sexp.Seq

[Sexp.Sym "*";

Sexp.Seq

[Sexp.Sym "-"; Sexp.Seq [Sexp.Sym "$"; Sexp.Int 1]; Sexp.Int 32];

Sexp.Int 5];

Sexp.Int 9]]

sexpToPgm f2cSexp;;

- : Intex.pgm =

Pgm (1,

BinApp (Div, BinApp (Mul, BinApp (Sub, Arg 1, Lit 32), Lit 5), Lit 9))

stringToPgm "(intex 1 (/ (* (- ($ 1) 32) 5) 9))";;

- : Intex.pgm =

Pgm (1,

BinApp (Div, BinApp (Mul, BinApp (Sub, Arg 1, Lit 32), Lit 5), Lit 9))

11

let rec sexpToPgm sexp =

match sexp with

Sexp.Seq [Sexp.Sym("intex");

Sexp.Int(n);

body] ->

Pgm(n, sexpToExp body)

| _ -> raise (SyntaxError ("invalid Intex program: "

^ (sexpToString sexp)))

and sexpToExp sexp =

match sexp with

Int i -> Lit i

| Seq([Sym "$"; Int i]) -> Arg i

| Seq([Sym p; rand1; rand2]) ->

BinApp(stringToPrimop p, sexpToExp rand1, sexpToExp rand2)

| _ -> raise (SyntaxError ("invalid Intex expression: "

^ (sexpToString sexp)))

and stringToPrimop s =

match s with

"+" -> Add

| "-" -> Sub

| "*" -> Mul

| "/" -> Div

| "%" -> Rem

| _ -> raise (SyntaxError ("invalid Intex primop: " ^ s))

and stringToExp s = sexpToExp (stringToSexp s)

and stringToPgm s = sexpToPgm (stringToSexp s)

Figure 7: Parsing s-expressions into Intex programs.

12

5 All Together Now: A Read-Eval-Print Loop

We now have all the pieces to create an interactive read-eval-print loop (REPL) similar to
those used in an Ocaml interpreter, a Scheme interpreter, or a bash shell. Fig. 8 presents the the
repl function, which launches a REPL for Intex.

let repl () =

let print = StringUtils.print in

let sexpToint sexp = (* sexpToint : sexp -> int *)

match sexp with

Sexp.Int(i) -> i

| _ -> raise (Failure "Not an int!") in

let rec loop args =

let _ = print "\n\nintex> " in

let line = read_line () in

match (Sexp.stringToSexp line) with

Sexp.Seq [Sexp.Sym "#quit"] -> print "\nMoriturus te saluto!\n"

| Sexp.Seq ((Sexp.Sym "#args") :: ints) -> loop (List.map sexpToint ints)

| _ ->

try

(print (string_of_int (eval (stringToExp line) args));

loop args)

with

EvalError s -> (print ("Error: " ^ s); loop args)

| SyntaxError s -> (print ("Error: " ^ s); loop args)

in loop []

Figure 8: A read-eval-print loop (REPL) for Intex.

At its core, the Intex REPL:

1. Reads an Intex expression the user types at a prompt;

2. Evaluates the Intex expression;

3. Prints the resulting integer value.

For example:

repl();;

intex> (+ 1 2)

3

intex> (* (+ 3 4) (- 5 6))

-7

The try . . .with construct specifies an exception handler similer to Java’s catch. In this case,
it catches errors without leaving the REPL:

intex> (/ 5 0)

Error: Division by 0: 5

intex> (% 7 (- 3 3))

Error: Remainder by 0: 7

13

So far, we have seen how the REPL evaluates literals and binary applications. But how can
argument lists be specified? The #args directive introduces an argument list that can be used to
evaluate the following expressions:

intex> (#args 10 20 30)

intex> (+ ($ 1) (* ($ 2) ($ 3)))

610

intex> (#args 5 2 7)

intex> (+ ($ 1) (* ($ 2) ($ 3)))

19

intex> ($ 4)

Error: Illegal arg index: 4

intex> ($ 0)

Error: Illegal arg index: 0

Finally, we need a way to exit the interpreter. The #quit directive does this:

intex> (#quit)

Moriturus te saluto!

- : unit = ()

(* Now we’re back in the OCaml interpreter *)

14

