A Modularity Problem

Consider infinite sequences of integers, such as:

- **powers of 2**: 1, 2, 4, 8, 16, 32, 64, ...
- **factorials**: 1, 1, 2, 6, 24, 120, 720, ...
- **Fibonacci numbers**: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...
- **primes**: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 ...

Suppose we want answers to questions like the following:

- What are the first \(n \) elements?
- What is the first element greater than 100?
- What is the (0-based) index of the first element greater than 100?
- What is the first consecutive pair whose difference is more than 25?
- For which index \(i \) is the sum of elements 0 through \(i \) more than 1000?

Challenge: can we answer these questions in a modular way?
Non-Modular Haskell Solutions

-- returns list of first n Fibonacci numbers
fibsPrefix :: Integer -> [Integer]
fibsPrefix num = gen 0 0 1
 where gen n a b =
 if n >= num then []
 else a : (gen (n + 1) b (a + b))

-- returns least Fibonacci number greater than lim
leastFibGt :: Integer -> Integer
leastFibGt lim = least 0 1
 where least a b = if a > lim then a
 else least b (a + b))

-- returns (0-based) index i such that first i Fibonacci
-- numbers have a sum greater than lim
fibSumIndex :: Integer -> Integer
fibSumIndex lim = index 0 0 0 1
 where index i sum a b =
 if sum > lim then i
 else index (i+1) (sum+a) b (a + b)

A More Modular Approach: Infinite Lists

Idea: Separate the generation of the sequence elements from subsequent processing. Since we don't know how many elements we need, generate all of them — lazily!

nats = genNats 0 where genNats n = n : genNats (n + 1)
-- Can also be written: nats = [0..]

poss = tail nats -- the positive integers
-- Can also be written: poss = [1..]

powers n = genPowers 1
 where genPowers x = x : (genPowers (n * x))

facts = genFacts 1 1
 where genFacts ans n = ans : (genFacts (n * ans) (n + 1))

fibs = genFibs 0 1
 where genFibs a b = a : (genFibs b (a + b))
Processing Infinite Lists

Note: Assume the following functions are invoked only on infinite lists. Then we can ignore the base case of an empty list! Each function could be extended to handle the empty list as well.

-- Returns a list of the first n elements of a given list.
\[
take \ n \ (x:xs) = \text{if} \ (n == 0) \ \text{then} \ [] \ \text{else} \ x : \ (\text{take} \ (n-1) \ xs)
\]

-- Returns first element satisfying predicate p
\[
\text{firstElem} \ p \ (x:xs) = \text{if} \ (p \ x) \ \text{then} \ x \ \text{else} \ \text{firstElem} \ p \ xs
\]

-- Returns first contiguous pair satisfying predicate p
\[
\text{firstPair} \ p \ (x:y:zs) = \\
\quad \text{if} \ (p(x,y)) \ \text{then} \ (x,y) \ \text{else} \ \text{firstPair} \ p \ (y:zs)
\]

-- Returns (0-based) index of first elt satisfying pred p
\[
\text{indexOf} \ p \ xs = \text{ind} \ 0 \ xs \\
\quad \text{where ind} \ i \ (x:xs) = \\
\quad \quad \text{if} \ (p \ x) \ \text{then} \ i \ \text{else} \ (\text{ind} \ (i+1) \ xs)
\]

Modular Infinite List Processing Examples

\[
take 10 \ \text{fibs}
\]

\[
\text{firstElem} \ (\& \ x \rightarrow x > 100) \ \text{(powers 2)}
\]

\[
\text{indexOf} \ (\& \ x \rightarrow x > 1000) \ \text{facts}
\]

\[
\text{firstPair} \ (\& \ (x,y) \rightarrow (y - x) > 25) \ \text{fibs}
\]
Scanning

Scanning accumulates partial results of `foldl` into a list.

\[
\text{scanl} :: (a \rightarrow b \rightarrow a) \rightarrow a \rightarrow [b] \rightarrow [a] \\
\text{scanl } f \text{ ans } (x:xs) = \text{ans } : \text{scanl } f \ (f \text{ ans } x) \ xs
\]

\[
\text{scanl } (+) \ 0 \ (\text{powers } 2) \ -- \ be \ careful \ of \ initial \ zero!
\]

-- alternative definition of facts

\[
facts = \text{scanl } (*) \ 1 \ \text{ints}
\]

-- Like scanl, but uses first elt as initial answer

\[
\text{scanl1} :: (a \rightarrow a \rightarrow a) \rightarrow [a] \rightarrow [a] \\
\text{scanl1 } f \text{ (x:xs)} = \text{scanl } f \ x \ xs
\]

\[
\text{indexOf } (\ \lambda s \rightarrow s > 1000) \ (\text{scanl1 } (+) \ \text{fibs})
\]

Higher-order Infinite List Generation

\[
\text{iterate} :: (a \rightarrow a) \rightarrow a \rightarrow [a] \\
\text{iterate } f \ x = x : \text{iterate } f \ (f \ x)
\]

-- another way to generate the nats

\[
nats = \text{iterate } (1 +) \ 0
\]

\[
\text{iterate2} :: (a \rightarrow a \rightarrow a) \rightarrow a \rightarrow a \rightarrow [a] \\
\text{iterate2 } f \ x1 \ x2 = x1 : \text{iterate2 } f \ x2 \ (f \ x1 \ x2)
\]

-- another way to generate the fibs

\[
fibs = \text{iterate2 } (+) \ 0 \ 1
\]

\[
\text{iteratei} :: (\text{Integer} \rightarrow a \rightarrow a) \rightarrow \text{Integer} \rightarrow a \rightarrow [a] \\
\text{iteratei } f \ n \ x = x : \text{iteratei } f \ (n + 1) \ (f \ n \ x)
\]

-- yet another way to generate the facts

\[
facts = \text{iteratei } (*) \ 1 \ 1
\]
Cyclic Definitions of Infinite Lists

ones = 1 : ones

-- cyclic definition of nats
nats = 0 : (map (1 +) nats)

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith f (x:xs) (y:ys) = (f x y) : (zipWith f xs ys)

-- another cyclic definition of nats
nats = 0 : (zipWith (+) ones nats)

-- cyclic definition of facts
facts = 1 : (zipWith (*) poss facts)

-- cyclic definition of fibs
fibs = 0 : 1 : (zipWith (+) fibs (tail fibs))

Generating Primes

Idea: use the Sieve of Eratosthenes

sieve (x:xs) =
 x : (sieve (filter (\ y -> (rem y x) /= 0) xs))

primes = sieve (tail (tail nats)) -- start sieving at

Not only does this give an infinite list of primes, it does so efficiently by avoiding unnecessary divisions.

For more examples of lazy lists in Haskell, see Chapter 17 of Simon Thompson book *Haskell: The Craft of Functional Programming*.
Lazy Trees

Can use laziness to perform a two-pass tree walk in a single pass:

```haskell
data Tree a = Leaf | Node (Tree a) a (Tree a) deriving Show

addMax tr = tr'
  where (tr', m) = walk tr
    walk Leaf = (Leaf, 0)
    walk (Node l n r) = (Node l' (n + m) r', max3 n m l r)
      where (l', ml) = walk l
        (r', mr) = walk r

max3 a b c = max a (max b c)

t = (Node (Node Leaf 1 (Node Leaf 7 Leaf)) 5 (Node Leaf 4 Leaf))

-- AddMax> addMax t
-- Node (Node Leaf 8 (Node Leaf 14 Leaf)) 12 (Node Leaf 11 Leaf)

See Hughes paper *Functional Programming Matters* for compelling lazy game tree example.
```

Streams: Lazy Lists for Scheme

`(cons-stream E_{head} E_{tail})` returns a (potentially infinite) stream whose head is the value of E_{head} and whose tail is the value of E_{tail}. The evaluation of E_{tail} is delayed until it is needed.

`(head E_{stream})` returns the head element of the stream value of E_{stream}.

`(tail E_{stream})` returns the tail element of the stream value of E_{stream}. This forces the computation of the delayed tail expression.

`(stream-null? E_{stream})` returns `#t` if E_{stream} is the empty stream and `#f` otherwise.

`the-empty-stream` returns the empty stream.
Stream Examples I

;;; Generate stream of integers starting with n
(define ints-from
 (lambda (n)
 (cons-stream n (ints-from (+ n 1)))))); No base case!

;;; Converts first n elements of infinite stream to a list
(define take
 (lambda (n str)
 (if (= n 0)
 ()
 (cons (head str) (take (- n 1) (tail str))))))

(define ones (cons-stream 1 ones))

(define map-stream
 (lambda (f str)
 (cons-stream (f (head str))
 (map-stream f (tail str))))))

(define nats (cons-stream 0 (map-stream (lambda (x) (+ x 1)) nats)))

Stream Examples II

(define map2-streams
 (lambda (f str1 str2)
 (cons-stream (f (head str1) (head str2))
 (map2-streams f (tail str1) (tail str2))))))

(define fibs
 (cons-stream 0
 (cons-stream 1
 (map2-streams + fibs (tail fibs)))))

Can similarly translate other lazy list examples from Haskell to Scheme

See Section 3.5 of *Structure and Interpretation of Computer Programs (SICP)* for more stream examples.
Implementing Lazy Data in Strict Languages

- Use memoizing promises to implement lazy lists in Scheme:
 \[\text{(cons-stream } E_1 \ E_2) \text{ desugars to (cons } E_1 \text{ (delay } E_2)\]\n
 \begin{align*}
 & (\text{define (head } s\text{) (car } s)) \\
 & (\text{define (tail } s\text{) (force (cdr } s))) \\
 & (\text{define (null-stream? } s\text{) (null? } s)) \\
 & (\text{define the-empty-stream '()})
 \end{align*}

- Can generalize this idea to handle infinite trees.
- Can similarly implement lazy lists in OCaml.
- Lazy data is very helpful, but sometimes need even more laziness (e.g. translating \texttt{addMax} example to Scheme or OCaml).

Java Enumerations

Like streams, Java's enumerations can be infinite. For example:

```java
public class FibEnumerations implements Enumeration {

    private int a, b;

    public FibEnumeration () { a = 0; b = 1; }

    public boolean hasMoreElements () { return true; }

    public Object nextElement () {
        int old_a = a;
        a = b;
        b = old_a + b;
        return new Integer(old_a); // wrap int to satisfy nextElement spec
    }
}
```

- Unlike streams, enumerations are not \textit{persistent}; can't hold on to a snapshot of the enumeration at a given point in time without copying it.
- While lazy lists are easy to adapt to trees, enumerations are inherently linear.