
CS251 Programming Languages Handout # 1
Prof. Lyn Turbak January 30, 2007
Wellesley College

CS251 Course Information

1 Contact Information

Professor: Franklyn Turbak (please call me “Lyn”)
Office: SCI E126
Phone: x3049
E-mail: fturbak@wellesley.edu (“Franklyn Turbak” in FirstClass)
Lectures: SCI E104, Tue./Wed./Fri. 11:10am–12:20pm
Office Hours: Monday: 4–6pm

Tuesday: 12:30–2:30pm
Wednesday: 4–6pm
Friday: 3–5pm
Appointments can be made for other times. This semester, I will be off-
campus most Thursday afternoons, so I will almost never be available
on Thursday afternoons. I will sometimes need to cancel or shift office
hours to attend a meeting or at talk. I will post a message to CS251-S07

Announcements to announce changes to office hours.
Web Site: http://cs.wellesley.edu/~CS251

First Class: CS251-S05 Announcements, CS251-S05 Q&A

Tutor: Rebecca Shapiro, drop-in hours Tue. 8–10pm

2 Course Overview

There are thousands of programming languages, but only a small number of important programming
language ideas. We will elucidate some of these ideas, and use them to understand, evaluate, and
compare programming languages.
There are several themes that run through the course:

Dimensions: Programming languages can be analyzed along a number of dimensions. The
dimensions we will use to study programming languages include first-class values, naming,
state, data, control, types, safety, and memory management.

Programming Paradigms: Programming languages can embody many different models
of computation. Java is representative of the object-oriented model, while C is a popular
exemplar of the imperative model. In this course, we will study four programming paradigms:
function-oriented programming, imperative programming, object-oriented programming, and
logic-oriented programming. We will read and write programs in all of these paradigms, but
most of our focus will be on the functional paradigm.

Interpreters and Translators: One of the best ways to understand the design space of
programming languages is to study the implementation of simple languages. There are two
fundamental approaches to programming language implementation: (1) interpreting one pro-
gramming language (the source language) on top of another (the implementation language);
and (2) translating a program in one programming language (the source language) into an-
other programming language (the target language) via a translation program written in an
implementation language. Reading, modifying, and building interpreters and translators are

1



key activities in this course. We will use OCaml, Scheme, Haskell, Java, and C as the imple-
mentation languages for various “mini” source languages.

Interpreters and translators are excellent examples of meta-programming, in which programs
manipulate other programs. The notion of meta-programming may seem confusing and some-
what incestuous at first glance, but many computer scientists consider meta-programming to
be the most interesting kind of programming activity. We will get lots of hands-on experience
with meta-programming this semester.

3 Prerequisites

The official prerequisite for CS251 is CS230, Data Structures. We will often use standard data
structures (e.g. lists, trees, stacks, queues, etc.) and algorithms (e.g., sorting, searching, traversing)
both as examples for exploring the expressiveness of various programming languages and as tools
for implementing interpreters. We will also revisit many of the “big ideas” of CS11 and CS230
– e.g., abstraction, modularity, recursion, iteration, abstract data types – in the context of the
programming languages we study.
Knowledge of some material from CS240, particularly assembly-level programming, will be

helpful for some parts of the course. However, CS240 is not an official prerequisite, and we will
review the CS240 material that you need to know for CS251.
An unofficial prerequisite for CS251 is the willingness to work hard. The concepts covered in

the course are very deep, and the programming (especially when it comes to writing interpreters
and translators) is intrinsically more challenging than the programming you’ve done in CS111 and
CS230. Moreover, you will be doing a lot of programming in this course. You should expect to
work about ten hours every week on your assignments for this course.

4 Reading Materials

4.1 Lecture Notes and Papers

The material presented in CS251 is not neatly covered in any textbook or collection of textbooks.
Most of the material will be presented in lecture (take detailed notes!) and in supplementary
handouts and code that I provide. I will also hand out a few technical papers that cover some of
the material.

4.2 Textbooks

There is one required textbook in this course: Introduction to the Objective Caml Programming
Language, by Jason Hickey. We will use this book to learn the Ocaml programming language,
which will be our main implementation language in the course. This book is available on-line from
the CS251 home page and I will be handing out copies of it in class.
There are three other textbooks that are recommended (but not required) for the course:

• Structure and Interpretation of Computer Programs, 2nd edition (SICP) by Abelson and
Sussman with Sussman (MIT Press, 1996). This is the textbook used in 6.001 at MIT. Many
people rate it as the best computer science text ever written (I am among them). It is a must
read for any serious computer science student, but it is not a quick read. Plan to read it
carefully many times through; you will learn something new on each pass. Although it is not
about programming languages per se, it has more insight into the essence of programming
languages than most self-proclaimed programming language texts. Chapter 4 on interpreters
is particularly relevant to CS251. This textbook is also a good way to learn how to program
Scheme, although that is not its primary purpose.

2



• The Functional Approach to Programming, (FAP) by Guy Cousineau and Michel Mauny
(Cambridge University Press, 1998). This is a nice resource for learning functional program-
ming in the context of Ocaml.

• Haskell: The Craft of Functional Programming, 2nd edition (HCFP) by Simon Thompson
(Addison-Wesley, 1999). This book gives a very good introduction to programming in the
functional paradigm in the context of Haskell, a purely-functional, lazy programming lan-
guage.

The books mentioned about contain important examples of programming language dimensions and
interpretation. Moreover, they cover programming in Ocaml, Scheme, and Haskell, which will
be the three main programming languages we use for coding this semester.
Because the three optional books are expensive and they are not the chief source of information

in the course, I suggest that you do not purchase them. You can instead rely on copies in the
Computer Science resource room (SCI 173).

4.3 Reserved Materials

Several books relevant to this course are either available in the Computer Science resource room
(SCI 173) (Note: books in SCI 173 should only be used in 173 and the microfocus area.) They are
listed below. I encourage you to become familiar with this collection and to consult it often.

4.3.1 Books on Programming Languages in General

• Programming Languages: A Grand Tour, edited by Ellis Horowitz. An excellent collection of
classic programming languages papers, some of which you will be required to read this term.
There are two copies on reserve, neither of which may leave the library: a first edition (1983)
and a third edition (1987). They are basically the same, although the later edition has some
newer articles.

• Principles of Programming Languages: Design, Evaluation, and Implementation, by Bruce
MacLennan (1987). Discusses principles of programming language design in the context of
actual programming languages. Used as a textbook in previous terms of CS251.

• Programming Languages: An Interpreter-Based Approach, by Samuel Kamin (1990). Uses
Pascal-based interpreters to explore toy versions of the following modern programming lan-
guages: Lisp, APL, Scheme, SASL, Clu, Smalltalk, and Prolog. The strength of this book is
that each chapter contains a discussion of the real language on which the corresponding toy
language is based; I heartily recommend that you read these discussions. Used as a textbook
in previous terms of CS251.

• Essentials of Programming Languages (EOPL) by Friedman, Wand, and Haynes (MIT Press,
1992). This book uses interpreters written in Scheme to explore programming langauge
features and paradigms. This is the strategy that we will follow throughout much of the
course, although the particular interpreters we use are different than those in the book. The
book is well worth reading; the initial chapters are especially helpful for learning Scheme.
Used as a textbook in previous terms of CS251.

• Programming Languages: Concepts and Constructs, by Ravi Sethi (1989).

• Programming Languages: History and Fundamentals, by Jean Sammet, (1969).

• Introduction to the Theory of Programming Languages, by Bertrand Meyer (1991).

3



• Principles of Programming Languages, by R. D. Tennent (1981)

• Programming Language Concepts, by Carlo Ghezzi and Mehdi Jazayeri (1987).

4.3.2 Books on Particular Programming Languages or Paradigms

• ML for the Working Programmer, 2nd edition (MLWP) by Lawrence Paulson (Cambridge
University Press, 1996). This is an excellent resource for learning how to do higher-order
typed programming in Standard ML, a dialect of ML that is different from OCaml. It
contains many nice examples of typeful programming, higher-order functions, immutable
data structures, and interpreters.

• The Haskell School of Expression: Learning Functional Programming Through Multimedia,
Paul Hudak, (2000).

• LISP, Patrick Henry Winston and Berthold K. P. Horn (1984)

• Common Lisp: The Language, Guy L. Steele, Jr. (1990).

• APL: An Interactive Approach, by Leonard Goodman and Allen J. Rose. (1984).

• Scheme and the Art of Programming, by George Springer and Dan Friedman (1989).

• Functional Programming: Application and Implementation, by Peter Henderson (1980).

• Abstraction and Specification in Program Development, by Barbara Liskov and John Guttag
(1986). The textbook for 6170, MIT’s course in software engineering. Includes an overview
of CLU and a CLU language manual.

• Smalltalk-80, the Language, by Adele Goldberg and Dave Robson (1985).

• The Art of Prolog, by Leon Sterling and Ehud Shapiro (1986).

• Programming in Prolog, by W.G. Clocksin, C.S. Mellish (1987).

• On to Java, by Patrick Henry Winston and Sundar Narasimhan (Addison-Wesley, 1996). This
is a good and relatively short and inexpensive introduction to programming in Java. The On
to C and On to C++ books by these authors are also recommended for an introduction to
these other languages.

4.3.3 Other Resources:

The Science Center Library houses many relevant books other than those on reserve. Use http:
//luna.wellesley.edu/search to search the collection.
The MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) has an excellent

computer science library (a.k.a. the “Reading Room”) on the 8th floor of the Stata Center (the
new MIT building designed by Frank Gehry that looks as if it belongs in a Dr. Seuss story). This
is an especially good place to find journals and technical reports. You can visit their on-line catalog
at http://rr.csail.mit.edu/catalog/.
The Barker Engineering Library at MIT (on the 5th floor of building 10, under the big dome)

houses an extensive collection of computer science books. You can visit their on-line catalog at
http://library.mit.edu.
The ACM and IEEE digital libraries contain a wealth of computer science information, especially

from journals and conference proceedings published by these organizations. Ask Lyn how to access
these digital libraries.

4



5 Course Web Pages, Directories, and Conferences

All handouts and various course-related links can be found on the CS251 home page at the following
URL:

http://cs.wellesley.edu/~cs251

The CS251 course directory is located on cs.wellesley.edu in the directory /home/cs251.
This directory contains material relevant to the class, and is where the problem set drop fold-
ers are located. This semester, we will be using CVS to download problem set materials from
cs.wellesley.edu (see Handout #7), so there is no reason to directly connect to cs.wellesley.edu
for this purpose. However, in order to submit softcopies of your problem sets, you will need to use
the Linux scp program to copy directories into the drop folders in /home/cs251/drop. Note that
you can also copy files to/from cs.wellesley.edu using WinSCP on a PC or Fetch on a Mac.
Additionally, there is a CS251-SO7 conference in FirstClass with two subconferences:

• CS251-S07 Announcements will be used to make class announcements, such as corrections to
assignments and clarifications of material discussed in class.

• CS251-S07 Q&A is a forum for you to post questions or comments. They will be answered by
me or a classmate. This is also a good place to find people to form a study group.

You should plan on reading the CS251 conferences on a regular basis. It is strongly recommended
that you add both subconferences to your FirstClass desktop

6 Homework

6.1 Problem Sets

There will be weekly problem sets during the semester. These will include pencil and paper problems
and programming problems. Programs will range from simple programs to substantial interpreters
and translators written in languages such as Ocaml, Scheme, Haskell, Java, and C. Since
the best way I know of understanding programming languages is by modifying interpreters and
translators, many problems will be along these lines.
Many of the assignments will be challenging. Keep in mind that programming often consumes

more time than you think it will. Start your assignments early! This will give you time to
think about the problems and ask questions if you hit an impasse. Waiting until the last minute
to begin an assignment is a recipe for disaster.
Problem sets will typically be due on Wednesdays at 11:59pm. You need to submit both a

“hard” (paper) copy of your assignment as well as a “soft” (electronic) copy of any programs (so
that I may test them if necessary). Hardcopies should be slipped under my office door.
Most problem sets will be graded on a 100 point scale. I will strive to have problem sets graded

as soon as possible. At this time, solutions will be distributed with the graded homework.

6.2 Collaboration Policy

I believe that collaboration fosters a healthy and enjoyable educational environment. For this
reason, I encourage you to talk with other students about the course and to form study groups.
Because the programming assignments in this course are particularly challenging, you will be

allowed on any assignment to form a two-person “team” with a partner. The two team members
can (in fact, must; see below) work closely together on the assignment and turn in a single hard-

5



and soft-copy of the assignment for the team. The grade received on such a submission will be
given to both team members.
This is a rather unusual collaboration policy, and it is only allowed subject to the following

ground rules:

• There are two kinds of problems on problem sets this semester: group problems and individual

problems. Team members may collaborate only on group problems. Individual problems are
effectively “take-home quizzes” that must be completed by each individual student without
collaborating with anyone else.

• The work on group problems must be a true collaboration in which each member of the team
will carry her own weight. It is not acceptable for two team members to split the group
problems of an assignment between them and work on them independently. Instead, the two
team members must actively work together on all parts of the assignment. In particular,
almost all programming on the assignment should be done with the two team members
working at the same computer. It is strongly recommended that both team members share
the responsibility of “driving” (i.e., typing at the keyboard), swapping every so often.

The fact that team members have to program together means that you need to carefully
consider a potential partner’s schedule before forming a team. You cannot be a team if you
cannot find large chunks of time to spend at a computer together!

• You can only work with a given partner on a single problem set during the semester. So if you
want to continue to collaborate, you must choose a different partner for every assignment.
Rotating through partners is a good way to build community in the class and is helpful for
avoiding situations where one individual feels pressured to continue working with another.

• You are not required to have a partner on any assignment, but you are encouraged to do so.
Based on past experience, working with a partner can significantly decrease the amount of
time you spend on an assignment, because you are more likely to avoid silly errors and blind
alleys. On the other hand, certain individual may take more time on an assignment than they
would alone. In this case there are still benefits to working with a partner. but they may be
outweighed by the time cost.

Unless otherwise instructed, teams are allowed to discuss the group problems (but never the
indivdual problems) on problem sets with other teams and exchange ideas about how to solve
them. However, there is a thin line between collaboration and plagiarizing the work of others.
Therefore, I require that each (one-person or two-person) team must compose its own solution to
each assignment. In particular, while you may discuss strategies for approaching the programming
assignments with other teams and may receive debugging help from them, each team is required
to write all of its own code. It is unacceptable (1) to write a program with another
team and turn in two copies of the same program or (2) to copy code written by other
teams. Such incidents will be interpreted as violations of the Honor Code.
In keeping with the standards of the scientific community, you must give credit

where credit is due. If you make use of an idea that was developed by (or jointly with) others,
please reference them appropriately in your work. E.g., if person X gets a key idea for solving a
problem from person Y , person X’s solution should begin with a note that says “I worked with Y

on this problem” and should say “The main idea (due to Y ) is ...” in the appropriate places. It is
unacceptable for students to work together but not to acknowledge each other in their write-ups.
When working on homework problems, it is perfectly reasonable to use code from the textbooks

and other materials handed out in class. It is also reasonable to consult public literature (books,
articles, etc.) for hints, techniques, and even solutions. However, you must cite any sources that

6



contribute to your solution. There is one extremely important exception to this policy: assign-
ments and solutions from previous terms of CS251 are not considered to be part of the
“public” literature. You must refrain from looking at any solutions to problem sets
or exams from previous semesters of CS251. It is my policy that consulting solutions
from previous semesters of CS251 constitutes a violation of the Honor Code.

6.3 Late Homework Policy

I realize that it is not always possible to turn in problem sets on time. On the other hand, turning
in one problem set late can make it more difficult to turn in the next problem set on time. I have
decided on the following policy for this course this term:

All problem sets will be due at the advertised time (typically 11:59pm on a Wednesday).
A problem set can be turned in 24 · n hours late if it is accompanied by n Lateness
Coupons. If you work with a partner, each of you needs to attach one Lateness Coupon
per person per day late.

At the end of this handout, you will find ten Lateness Coupons that you can use throughout
the term. Use them wisely: you only get ten, and they are not copyable or transferable between
students.
You may turn in late problem sets by slipping them under my office door. Of course, if I post

solutions before you turn in a late problem set, you are bound by the Honor Code not to examine
these solutions.
In extenuating circumstances (e.g.,, sickness, personal crisis, family problems), you may request

an extension without penalty. Such extensions are more likely to be granted if they are made before
the due date.

6.4 Problem Set Header Sheets

I would like to get a sense for how much time it takes you to do your CS251 problem sets. I use
this information to design problem sets later in the semester, as well as for future semesters.
Please keep track of the time you spend on each problem of your problem sets, and include this

information on the problem set header sheets that I will provide at the end of each problem set.
(Two time columns will be provided for the case of students working together on an assignment.)
Turn in this header sheet as the first page of your hardcopy submission. Assignments will typically
have both group problems and individual problems; a separate header sheet will be provided for
group problems and individual problems.

6.5 Extra Credit

To make up for points lost on problem sets and exams, students often request extra credit problems.
In order to give everyone the same opportunity, I will sometimes include extra credit problems on
the problem sets. The extra credit problems will often be more difficult than the other problems,
but they provide the opportunity to earn extra points toward your course grade. You should only
attempt extra credit problems after completing the assigned problems.
Extra credit problems are entirely optional. Extra credit points will only be factored into

course grades after I have partitioned the grade scale into letter grades. Thus, doing he extra credit
problems may raise your course grade, but not doing extra credit problems will not lower your
course grade.
For maximum flexibility, you may turn in extra credit problems at any time during the term

(through the end of finals week). However, experience has shown that students who leave extra
credit problems until the end of the term rarely turn them in. It is in your best interest to complete

7



extra credit problems in a timely fashion. I will not hand out solutions to extra credit problems,
but you are encouraged to discuss them with me in person.

6.6 Programming

We will be writing most programs in the following five programming languages. All except Java
(which you already know) will be taught during the semester:

• Ocaml will be used to (1) explore the function-oriented programming paradigm in a statically
typed context and (2) implement interpreters and translators for various mini-languages that
illustrate important programming language features or dimensions.

• Scheme, a dialect of Lisp, will be used to function-oriented programming paradigm in a
dynamically typed context.

• Haskell will be used to explore programming in a purely functional language (no side effects
at all) with “lazy” evaluation.

• Java will be used to explore object-oriented programming.

• C will be used to explore imperative programming, especially in the context of manual storage
management.

The “default” place for you to work on your assignments will be at the CS Department’s Linux
workstations in the mini-Focus. Implementations of all five of the above languages are installed on
them. Information about how to use these programming environments on these machines will be
provided at relevant points during the semester. Documentation on these systems will be accessible
from the CS251 web page.
In order to use the Linux workstations, you will need a Linux account. If you do

not already have one, please ask Lyn to create one for you.
There are many free implementations of the above languages that you can install on your

personal computer, if you own one; see the documentation accessible from the CS251 home page
for details. However, there are several reasons to prefer working on the Linux workstations:

• There are likely to be other students working on their CS251 there, increasing the probability
of collaboration.

• Most alums say that getting Unix (of which Linux is an instance) experience is one of the
most important skills you can get acquire while at Wellesley. You will lose your chance to
get this experience if you stick with your Mac or PC (unless, of course, you install Linux on
them).

• The programming language environments on the Linux workstations are the only ones I will
officially support. There are often small differences between implementations that can cause
many frustrating headaches. Although I can try to help with installing/using other systems,
I will have very little time for such activities.

6.7 Saving Work

You have a limited amount of space on the CS department fileserver (cs.wellesley.edu, a.k.a.
puma ) to store your course-related files. Although regular backups are made on puma, sometimes
files are irretrievably lost.1 For this reason, you should not depend on puma as the only repository

1For example, in March, 2004, a significant number of puma files were deleted by a hacker before they had been

backed up.

8



for your course files. You are also expected to keep backup copies of all your course work on (1) a
flash drive, (2) your FirstClass account, and/or (3) the hard disk of your own computer.

7 Exams

There is only one exam this semester: a Final Exam during the regular final examination period.
Although there will no dedicated take-home exams, the individual problems (as opposed to

group problems) on problem sets effectively count as take-home quizzes. Most problem sets will
have an individual problem. Keep in mind that you may not collaborate with anyone on an
individual problem.

8 Grades

The course grade will be computed as shown below:

Group problems on problem sets (total) 40%

Individual problems on problem sets (total) 40%

Final exam 15%

Class participation 5%

The default ranges for grades are expressed as a percentage of total points (excluding extra
credit points):

A 93.33 – 100

A- 90 – 93.32

B+ 86.66 – 89.99

B 83.33 – 86.65

B- 80 – 83.32

C+ 76.66-79.99

C 73.33-76.65

C- 70 – 73.32

D 60 – 69.99

F below 60

I reserve the right to lower boundaries between grades, but I will not raise them. This means
that I can grade on a curve, but only in your favor.
Keep in mind that this is a very challenging course in which a B is considered a good grade (not

a slap in the face) and an A is an outstanding grade. In the past, the average grade in this course
has tended to be in the B range.
The above information is intended to tell you how I grade. It is not intended to encourage a

preoccupation with point accumulation. You should focus on learning the material; the grade will
take care of itself.

9 Finding Help

If you have any questions at all about the class (whether big or small, whether on problem sets
lectures, reading, or whatever) please contact me. That’s what I’m here for!
The best time to see me is during my scheduled office hours (which are listed at the top of this

handout). If these times are not convenient, we can set up an appointment at some other time.
You can set up an appointment by talking with me in person, calling me on the phone, or sending

9



me email. You can also ask questions by sending me email. I read my email on a regular basis, and
will check it even more frequently in the few days before an assignment is due.
This year we are fortunate to have Rebecca Shapiro as a tutor for the course. Rebecca’s drop-in

tutor schedule will be posted early in the semester.
If you are having trouble with the course, you can request a one-on-one tutor from the Learning

and Teaching Center (LTC). This service is confidential and free of charge; please take advantage
of it if you would like some extra help! Contact me or LTC for more information about this service.
Finally, when looking for help, don’t overlook your fellow students — not only those who have

taken the course in the past, but your classmates as well. Your classmates are a valuable resource;
make good use of them!

10 Students With Special Needs

If you have any disabillities (including “hidden” ones, like learning disabilities), I encourage you to
meet with me so that we can discuss accomodations that may be helpful to you.

10



LATENESS COUPONS

Below are ten Lateness Coupons. A problem set that is 24 · n hours late must be accompanied
with n Lateness Coupons in order to be accepted. That is, each coupon gives you one extra day
to turn in a problem set. You may use them in any manner in which you wish – e.g., turn in
every problem set one day late, or turn in one problem set ten days late. Lateness coupons are not
transferable between students.

CS251 Lateness Coupon #1

CS251 Lateness Coupon #2

CS251 Lateness Coupon #3

CS251 Lateness Coupon #4

CS251 Lateness Coupon #5

CS251 Lateness Coupon #6

CS251 Lateness Coupon #7

CS251 Lateness Coupon #8

CS251 Lateness Coupon #9

CS251 Lateness Coupon #10

11


