
Compound Data and Memory
Management

Handout #50
CS251 Lecture 39

May 9, 2007

Franklyn Turbak

Wellesley College

Compound Data and Memory Management, CS251 Spring ’07 – p.1/29

Compound Data
Simple data are atomic — they have no parts. E.g.
integers, floats booleans, characters. (But some languages,
esp. C, can view even simple data as sequences of bits.)
Compound data have parts:

Products: datum has multiple value components. E.g.
pairs, tuples, arrays, vectors, strings, records, structs,
etc.

Sums: datum is a tagged choice of several values. E.g.,
oneofs, variants, tagged sums, tagged unions,
discriminated unions.

Sum of Products: datum is one of several possible
tagged products: E.g. linked lists, binary trees, abstract
syntax trees, s-expressions. Implemented via OCaml
data types, Java objects, Pascal variant records, XML
trees.

Compound Data and Memory Management, CS251 Spring ’07 – p.2/29

Product Dimensions
How are product values created and later decomposed into parts? Is there special
syntax for creating the product or selecting/changing its parts?

Are the components of the product indexed by position or by name? If by position, is
indexing 0 or 1 based?

When accessing a component, can its index be calculated or must an index be a
manifest constant?

Are the components values (as in call-by-value) or computations (as in
call-by-name/call-by-need)?

Are the components of the product immutable or mutable?

Is the length of the product fixed or variable?

Are all components of the product required to have the “same type,” i.e., are products
homogeneous?

When products are nested, are the nested components all required to have the same
size and/or “shape”?

How are products passed as arguments, returned as results, and stored in
assignments?

Can the lifetime of a product exceed the lifetime of an invocation of a procedure in
which it is created?

Compound Data and Memory Management, CS251 Spring ’07 – p.3/29

Pairs: The Simplest Product
OCaml’s immutable pairs has parts accessible via fst and snd or pattern matching:
let p = (17,true);;

val p : int * bool = (17, true)

if snd(p) then fst(p)*2 else 42;;

- : int = 34

let (i,b) = p in if b then i*2 else 42;;

- : int = 34

Standard ML of New Jersey (SMLNJ) has immutable pairs whose parts are accessible
via #1 and #2 or pattern matching:
- val p = (17,true);

val p = (17,true) : int * bool

- if #2(p) then #1(p)*2 else 42;

val it = 34 : int

- let val (i,b) = p in if b then i*2 else 42 end;

val it = 34 : int

Pair components can be made mutable via explicit cells. E.g.
let p = (ref 17, true) in (fst p := (! (fst p) + 1); p);;

- : int ref * bool = ({contents = 18}, true)

Compound Data and Memory Management, CS251 Spring ’07 – p.4/29

Pairs in Scheme
Dynamically typed mutable pairs in Scheme created via cons,
selected via car and cdr, and changed via set-car! and
set-cdr!.
(let* ((p (cons 17 #t))

(a (car p)))

(begin (set-car! p (cdr p)) (set-cdr! p a) p))

;Value 1: (#t . 17) ; A "dotted pair"

Scheme lists are just cdr-linked pairs terminated with the empty list
’() (equivalent to #f in some implementations).
(cons 17 (cons #t (cons "foo" ’())))

;Value 2: (17 #t "foo") ; Abbreviation of (17 . (#t . ("foo" . ())))

(list 17 #t "foo")

;Value 3: (17 #t "foo")

The quotation notation for symbols ((quote symbol), abbreviated
’symbol) is also used for dotted pairs and lists.
’((17 . #t) (fun (a b) (bind c (+ a b) (/ a b))))

;Value 4: ((17 . #t) (fun (a b) (bind c (+ a b) (/ a b))))

Compound Data and Memory Management, CS251 Spring ’07 – p.5/29

Pairs in Other Languages
Can make immutable and mutable pairs in Java, but have type
headaches:

Approach 1: make different class for every pair of component
types. Yuck!

Approach 2: make one Pair class that holds two Objects, but
then have to (1) wrap/unwrap small values like integers and
characters and (2) cast components upon extraction. Yuck!

Approach 3: Java 1.5 supports generic classes that are
parameterized by type. Can define a class Pair<S,T> that pairs
objects of type S with those of type T and can instantiate these
with any object types. Wrapping and casting is still necessary, but
is handled automatically by Java in most cases.

Can use C structs (records), but

need different struct type for every pair of component types;

we’ll see that semantics is somewhat surprising.
Compound Data and Memory Management, CS251 Spring ’07 – p.6/29

Product Components can be Lazy
Parameter passing mechanisms can be applied to product
components: they can be values (call-by-value), thunks
(call-by-name), or memoized promised (call-by-lazy).
E.g. what is the behavior of the following example under
CBV, CBN, and CBL?

(bind p (pair (println (+ 1 2))

(println (+ 3 4)))
(+ (snd p) (* (fst p) (fst p))))

Compound Data and Memory Management, CS251 Spring ’07 – p.7/29

Parameter Passing of Mutable Products
Consider passing mutable pairs in HOILIC-like language:

(bind p (pair 2 3)

(bind f (fun (r) (seq (setfst r (+ (fst r) (snd r)))

(setsnd p (* (fst p) (snd p)))))

(seq (f p) (println (fst p)) (println (snd p)))))

In call-by-value-sharing (Ocaml, Scheme, Java, C arrays),
parameter r shares the same mutable storage with p.

In call-by-value-copy (C structs, Pascal arrays and records),
parameter r has mutable slots distinct from p that are initialized to
the contents of p’s slots.

Compound Data and Memory Management, CS251 Spring ’07 – p.8/29

Positional Products
Both OCaml and SMLNJ support arbitrary length statically typed
immutable heterogeneous tuples and fixed-length mutable
homogeneous arrays. In OCaml, a general tuple is only
decomposable via pattern matching; in SMLNJ, the #i syntax may
also be used.

Scheme has dynamically typed arbitrary-length mutable
heterogeneous lists and fixed-length mutable heterogeneous vectors.

Java has statically typed mutable fixed-length homogeneous arrays
and extensible heterogeneous (sort of, via Object subtyping)
vectors.

C has (weakly) statically typed mutable fixed-length homogeneous
arrays, but since arrays don’t “know” size, can access out-of-bounds
array indices.

Pascal has statically typed mutable fixed-length homogeneous
arrays. Bizarrely, array size is part of type, so procedures aren’t
polymorphic over arrays of different size! Compound Data and Memory Management, CS251 Spring ’07 – p.9/29

Products with Named Components
Many languages support products with named components. E.g.

OCaml/SMLNJ records have immutable components by default.
(SMLNJ tuples are just sugar for records.)

Java class instances have mutable components.

C structs have mutable components.

Pascal records have mutable components.

Common Lisps defstruct facility manipulates records with mutable
components.

Compound Data and Memory Management, CS251 Spring ’07 – p.10/29

Records in OCaml
type person = name: string; mutable age: int; sex: bool;;

type person = name : string; mutable age : int; sex : bool;

let wendy = name="Wendy Wellesley"; age=19; sex=true;;

val wendy : person = name = "Wendy Wellesley"; age = 19; sex = true

let will = name="William Wellesley"; age=57; sex=false;;

val will : person = name = "William Wellesley"; age = 57; sex = false

let wanda = wendy with name = "Wanda Wellesley";; (* new person record *)

val wanda : person = name = "Wanda Wellesley"; age = 19; sex = true

wendy.age;;

- : int = 19

wendy.age <- wendy.age + 1;;

- : unit = ()

wendy.age;;

- : int = 20

wanda.age;;

- : int = 19
Note: the names name, age, and sex are in a single global namespace for record field
names. A declaration of a new record type with one of these names makes the name
inaccessible in the old record type.

Compound Data and Memory Management, CS251 Spring ’07 – p.11/29

Stack vs. Heap
Programs typically manipulate two areas of memory:

Stack: (i.e., Java Execution Land in CS11/CS230) The stack typically
holds activation/execution frames for function/procedure/method
invocations. Variables and compound data whose lifetime does not
outlast the invocation may be stored in the frame. C/Java execution
frames and local C compound data (arrays/structs) are stored here.
When the invocation returns, the frame is popped off the stack,
implicitly deallocating any data in the frame.

Heap: (i.e., Java Object Land in CS11/CS230) The heap holds data blocks
whose lifetime may outlast the function/procedure/method invocation
in which it was created. Java objects and Ocaml/Haskell/Scheme
data/closures/environments are stored here. Heap blocks can be
deallocated manually (as in C/Ada/Pascal) or automatically (via
garbage collection, as in Java/Ocaml/Haskell/Scheme).

Compound Data and Memory Management, CS251 Spring ’07 – p.12/29

Inspecting the C Stack with Invalid Array References
int test (int* a, int lo, int hi) {

int i; for (i=lo; i<=hi; i++)

printf("%x:a[%d]=%d (%x)\n", &a[i], i, a[i], a[i]); }

int main () { int b[] = {17,42}; test(b, -17, 1); }

linux> gcc -o arrayrefs arrayrefs.c; ./arrayrefs

bffff74c:a[-17]=1073823076 (40013d64) # return addr. of printf (stale)

bffff750:a[-16]=134513912 (80484f8) # address of format string

bffff754:a[-15]=-1073744048 (bffff750) # address of &a[i] (stale)

bffff758:a[-14]=-15 (fffffff1) # i (stale)

bffff75c:a[-13]=-15 (fffffff1) # a[i] (stale)

bffff760:a[-12]=-15 (fffffff1) # a[i] (stale)

... # unused slots

bffff774:a[-7]=-7 (fffffff9) # i (for i = -7)

bffff778:a[-6]=-1073743976 (bffff798) # saved base pointer for main

bffff77c:a[-5]=134513799 (8048487) # return address of test call

bffff780:a[-4]=-1073743984 (bffff790) # 1st arg to test = &b[0]

bffff784:a[-3]=-17 (ffffffef) # 2nd arg to test

bffff788:a[-2]=1 (1) # 3rd arg to test

bffff78c:a[-1]=134513633 (80483e1) # unused slot

bffff790:a[0]=17 (11) # b[0]

bffff794:a[1]=42 (2a) # b[1]

Compound Data and Memory Management, CS251 Spring ’07 – p.13/29

String Overwriting in C
// strings.c

// illustrates how one string can overwrite another in c

int main () {

char a[] = "foo";

char b[] = "bar";

printf("a=%s; b=%s\n",a,b);

strcpy(b,"bazquux");

// strcpy(dest,src) is a built-in string copy function

printf("a=%s; b=%s\n",a,b);

}

linux> gcc -o strings strings.c; ./strings

a=foo; b=bar

a=uux; b=bazquux

Compound Data and Memory Management, CS251 Spring ’07 – p.14/29

Stack-Allocated C Arrays Cannot be Returned
// stack-arrays.c

void printarray(char* s, int* a, int n) {

int i; for (i = 0; i < n; i++) {printf("%s[%d] = %d\t", s, i, a[i]);}

printf("\n");}

int* elts (int n, int scale) {

int a[n]; // Stack allocated array

int i; for (i = 0; i < n; i++) { a[i] = scale*i; }

printarray("a",a,n); return a; }

int main ()] {

int* b; int* c; b = elts(4,1); printarray("b",b,4);

c = elts(4,2); printarray("b",b,4); printarray("c",c,4); }

linux> gcc -o stack-arrays stack-arrays.c; ./stack-arrays

stack-arrays.c: In function ‘elts’:

stack-arrays.c:20: warning: function returns address of local variable

a[0] = 0 a[1] = 1 a[2] = 2 a[3] = 3

b[0] = 0 b[1] = 1108542220 b[2] = -1073744264 b[3] = 134513720

a[0] = 0 a[1] = 2 a[2] = 4 a[3] = 6

b[0] = 0 b[1] = 1108542220 b[2] = -1073744264 b[3] = 134513720

c[0] = 0 a[1] = 1108542220 c[2] = -1073744264 c[3] = 134513720
Compound Data and Memory Management, CS251 Spring ’07 – p.15/29

One Way to Fix Problem
// stack-arrays2.c

void printarray(char* s, int* a, int n) {

int i; for (i = 0; i < n; i++) {printf("%s[%d] = %d\t", s, i, a[i]);}

printf("\n");}

int* elts (int* a, int n, int scale) {

// Pass in already allocated array a to elts

int i; for (i = 0; i < n; i++) { a[i] = scale*i;}

printarray("a",a,n); return a;}

int main () {

// Fix problem in stack-arrays.c by allocating arrays outside elts;

int b[4]; int c[4]; elts(b,4,1); printarray("b",b,4);

elts(c,4,2); printarray("b",b,4); printarray("c",c,4); }

linux> gcc -o stack-arrays2 stack-arrays2.c; ./stack-arrays2

a[0] = 0 a[1] = 1 a[2] = 2 a[3] = 3

b[0] = 0 b[1] = 1 b[2] = 2 b[3] = 3

a[0] = 0 a[1] = 2 a[2] = 4 a[3] = 6

b[0] = 0 b[1] = 1 b[2] = 2 b[3] = 3

c[0] = 0 c[1] = 2 c[2] = 4 c[3] = 6
Compound Data and Memory Management, CS251 Spring ’07 – p.16/29

Another Way to Fix Problem: Heap Allocation
C provides the following functions for manual heap storage
management:

void *malloc (size_t size);
allocates size bytes and returns a pointer to the
allocated memory. The memory is not cleared. Returns
the NULL pointer if the request fails.

void free(void *ptr);
frees the memory space pointed to by ptr, which must
have been returned by a previous call to malloc().
Otherwise, or if free(ptr) has already been called
before, undefined behaviour occurs. If ptr is NULL, no
operation is performed.

Compound Data and Memory Management, CS251 Spring ’07 – p.17/29

Heap Allocated Arrays in C
// heap-arrays.c

void printarray(char* s, int* a, int n) {

int i; for (i = 0; i < n; i++) {printf("%s[%d] = %d\t", s, i, a[i]);}

printf("\n");}

int* elts (int n, int scale) {

int* a = (int *) malloc(n*sizeof(int)); // Heap allocated array:

int i; for (i = 0; i < n; i++) { a[i] = scale*i;}

printarray("a",a,n); return a;}

int main () {

int* b; int* c; b = elts(4,1); printarray("b",b,4);

c = elts(4,2); printarray("b",b,4); printarray("c",c,4);}

linux> gcc -o heap-arrays heap-arrays.c; ./heap-arrays

a[0] = 0 a[1] = 1 a[2] = 2 a[3] = 3

b[0] = 0 b[1] = 1 b[2] = 2 b[3] = 3

a[0] = 0 a[1] = 2 a[2] = 4 a[3] = 6

b[0] = 0 b[1] = 1 b[2] = 2 b[3] = 3

c[0] = 0 c[1] = 2 c[2] = 4 c[3] = 6

Compound Data and Memory Management, CS251 Spring ’07 – p.18/29

Problems with Manual Heap Storage Management

Storage Leak: If do not free storage that is no longer
accessible, can run out of heap space.

Dangling Pointer: If free a pointer to a heap block
that is still in use, unpredictable behavior can result.

// dangling.c

int main () {

int* a; int *b;

a = (int *) malloc(10);

a[0] = 17;

free(a); // Any reference to a after this is dangling

b = (int *) malloc(10);

b[0] = 42;

printf("a[0]=%d; b[0]=%d\n", a[0], b[0]);}

linux> gcc -o dangling dangling.c; ./dangling

a[0]=42; b[0]=42

Compound Data and Memory Management, CS251 Spring ’07 – p.19/29

Automatic Heap Storage Management: Garbage Collection

Can automatically reclaim storage that is no longer accessible from a program a via a
process called garbage collection (GC).

All storage blocks reachable from the root set (typically processor registers) are live
and are preserved. All others are dead and are reclaimed.

We’ll consider several approaches to GC in the context of the following Scheme
example:
(let* ((a (cons 1 (cons 2 ’())))

(b (cons 3 (cons 4 ’())))

(c (cons a b)))

(begin (set-cdr! (cdr b) b)

(set-cdr! (cdr a) (cdr a))

(set-car! c (cdr b))

c))
Assume the returned pair is the GC root.

Some languages allow specifying actions to perform when a storage block is
reclaimed. E.g., Java finalize method and C++ destructors.

Garbage collection is essential to program modularity. Without it, how can we know in
a large system when it’s safe to free memory?

Compound Data and Memory Management, CS251 Spring ’07 – p.20/29

GC: Reference Counting
Idea: Keep track of the number of pointers to each

heap-allocated block and reclaim the block when this number

reaches 0;

Some C++ implementations use reference counting for GC.

Advantage: Easy to perform incrementally.

Disadvantages:

Need space to maintain the reference counts.

Reference counts must be updated at every allocation and

assignment;

Doesn’t reclaim cyclic data.

Compound Data and Memory Management, CS251 Spring ’07 – p.21/29

GC: Mark-Sweep
Idea: Maintain a free list of all storage blocks from which new storage is allocated. For
simplicity, assume all blocks are pairs. Each block has a mark bit that is initially false.
When free list is exhausted, perform GC in two phases:

1. Mark phase Trace through all blocks accessible from root set, setting the mark bit
of every accessible block.

2. Sweep phase Sweep through all blocks. Unmarked blocks are reclaimed by
adding them to the free list. Marked blocks have their mark bit unset.

Advantages: (1) Easy to understand and (2) only requires one bit per block.

Disadvantages:

Storage for mark bits.

Cleverness needed to avoid recursion stack in mark phase.

System must pause while GC takes place.

Sweep phase touches all memory (mark phase touches only live memory).

Memory fragmentation.

Compound Data and Memory Management, CS251 Spring ’07 – p.22/29

GC: Stop and Copy
Idea: Split memory into two equal-sized semispaces. Allocate

blocks from “current” semispace (other used only for

collection). When current semispace is exhausted, copy only

accessible blocks to other semispace, and make it the new

“current” semispace.

Advantages:

Simple to allocate and trace arbitrary sized blocks.

Copy phase touches only live memory.

Copy phase compacts memory, avoiding fragmentation.

Disadvantages:

Half of memory is unused!

Need to pause for GC (but there are incremental versions).

Compound Data and Memory Management, CS251 Spring ’07 – p.23/29

GC: Stop and Copy Algorithm
Call exhausted semispace from-space and the other semispace to-space. GC copies live
blocks in from-space to to-space using two pointers into to-space named scan and free.
Invariants: (1) scan ≤ free; (2) pointers before scan point to to-space; (3) pointers
between scan and free point to from-space; (4) from-space blocks already moved to
to-space contain a forwarding address to to-space in first slot.

// Pseudocode

copy k root pointers beginning of to-space

scan = beginning of to-space

free = scan + k

while scan != free

if mem[scan] is pointer to not-yet-moved from-space block then

copy block to mem[free .. free+(n-1)]; // assume n is block size

mem[mem[scan]] = free; // Leave forwarding address

mem[scan] = free; // Update pointer to to-space.

free = free + n;

else if mem[scan] is pointer to already moved from-space block then

mem[scan] = mem[mem[scan]]; // Use forwarding address

// Do nothing if mem[scan] is a non-pointer

scan = scan + 1

// When scan = free, collection is done. Start allocating from free.

Compound Data and Memory Management, CS251 Spring ’07 – p.24/29

GC: Conservative GC

Precise GC requires distinguishing pointers and
non-pointers.

In some language implementations (esp. C, C++) this is
not possible.

Conservative GC treats everything that might be a
pointer as a pointer. Will preserve some blocks that are
reclaimed in precise systems.

Compound Data and Memory Management, CS251 Spring ’07 – p.25/29

C Points as Structs
// points-struct.c

typedef struct P {int x; int y;} point;

point scaledCopy (int s, point p) {

point q; q.x = s * p.x; q.y = s * p.y; return q;}

void scale1 (int s, point p) { // Call by copy, not sharing!

p.x = s * p.x; p.y = s * p.y; }

void scale2 (int s, point* p) {

(*p).x = s * (*p).x; (*p).y = s * (*p).y; }

void printPoint (point p) {

printf("x=%d;y=%d\n", p.x, p.y); }

int main () {

point a,b; a.x = 1; a.y = 2;

b = scaledCopy(3,a); printPoint(a); printPoint(b);

scale1(4,a); scale2(5,&b); printPoint(a); printPoint(b);}

linux> gcc -o points-struct points-struct.c; ./points-struct

x=1;y=2

x=3;y=6

x=1;y=2

x=15;y=30

Compound Data and Memory Management, CS251 Spring ’07 – p.26/29

C Points as Stack-Allocated Arrays
// points-array.c

/* Represent a point as a 2-slot integer stack array,

with x in slot 0 and y in slot 1. */

typedef int point[2];

void scaledCopy (int s, point p, point q) { // Must pass in result array

q[0] = s * p[0]; q[1] = s * p[1]; }

void scale1 (int s, point p) { // Call by sharing!

p[0] = s * p[0]; p[1] = s * p[1]; }

void scale2 (int s, point* p) {

(*p)[0] = s * (*p)[0]; (*p)[1] = s * (*p)[1]; }

void printPoint (point p) {printf("x=%d;y=%d\n", p[0], p[1]); }

int main () { point a,b; a[0] = 1; a[1] = 2;

scaledCopy(3,a,b); printPoint(a); printPoint(b);

scale1(4,a); scale2(5,&b); printPoint(a); printPoint(b); }

linux> gcc -o points-array points-sarray.c; ./points-sarray

x=1;y=2

x=3;y=6

x=4;y=8

x=15;y=30

Compound Data and Memory Management, CS251 Spring ’07 – p.27/29

C Points as Heap-Allocated Arrays
// points-harray.c

/* Represent a point as a 2-slot integer heap array,

with x in slot 0 and y in slot 1. */

typedef int* point;

point makePoint (int x, int y) {

point p = (point) malloc(2*sizeof(int));

p[0] = x; p[1] = y; return p;}

point scaledCopy (int s, point p) { return makePoint(s*p[0], s*p[1]);}

void scale (int s, point p) { p[0] = s*p[0]; p[1] = s*p[1]; }

void printPoint (point p) { printf("x=%d;y=%d\n", p[0], p[1]); }

int main () { point a,b; a = makePoint(1,2);

b = scaledCopy(3,a); printPoint(a); printPoint(b);

scale(4,a); scale(5,b); printPoint(a); printPoint(b);}

linux> gcc -o points-harray points-harray.c; ./points-harray

x=1;y=2

x=3;y=6

x=4;y=8

x=15;y=30

Compound Data and Memory Management, CS251 Spring ’07 – p.28/29

Integer Lists in C
// sumlist.c

#include <stddef.h>

typedef struct IL {int head; struct IL *tail;} intlist;

int sumlist (intlist* lst) {

if (lst == NULL) return 0;

else return (*lst).head + sumlist((*lst).tail);}

intlist* fromTo (int lo, int hi) {

intlist* result;

if (lo > hi) return NULL;

else { result = (intlist*) malloc(sizeof(intlist));

(*result).head = lo;

(*result).tail = fromTo(lo + 1, hi);

return result; } }

int main () {

printf("sumlist(fromTo(1,10))=%d\n", sumlist(fromTo(1,10))); }

linux> gcc -o sumlist sumlist.c; ./sumlist

sumlist(fromTo(1,10))=55

Compound Data and Memory Management, CS251 Spring ’07 – p.29/29

	Compound Data
	Product Dimensions
	Pairs: The Simplest Product
	Pairs in Scheme
	Pairs in Other Languages
	Product Components can be Lazy
	Parameter Passing of Mutable Products
	Positional Products
	Products with Named Components
	Records in OCaml
	Stack vs. Heap
	{
ormalsize {} Inspecting the C Stack with Invalid Array References}
	String Overwriting in C
	{
ormalsize Stack-Allocated C Arrays Cannot be Returned}
	One Way to Fix Problem
	{large Another Way to Fix Problem: Heap Allocation}
	Heap Allocated Arrays in C
	{
ormalsize Problems with Manual Heap Storage Management}
	{
ormalsize Automatic Heap Storage Management: Garbage Collection}
	GC: Reference Counting
	GC: Mark-Sweep
	GC: Stop and Copy
	GC: Stop and Copy Algorithm
	GC: Conservative GC
	C Points as Structs
	C Points as Stack-Allocated Arrays
	C Points as Heap-Allocated Arrays
	Integer Lists in C

