
CS251 Programming Languages Handout # 42

Prof. Lyn Turbak April 24, 2007

Wellesley College Revised April 25, 2007

HOILEC: Imperative Programming with Explicit Cells

This is a second draft of a handout with parts that still need to be fleshed out.

Thus far our focus has been on the function-oriented programming paradigm (also known
as the functional programming paradigm), which is characterized by the following:

• heavy use of first-class functions

• immutability/persistence: variables and data structures do not change over time

• expressions denote values.

Ocaml, Scheme, and Haskell are exemplars of this paradigm, though only Haskell enforces
immutability, making is a purely functional language. Because Ocaml and Scheme support
some mutability features, they are sometimes called mostly functional languages.

We now begin to explore the imperative programming paradigm, which is characterized
by the following features:

• mutability/side effects: variables, data structures, procedures, and input/output streams can
change over time.

• a distinction between expressions (which denote values) and statements (which perform ac-
tions). (In some languages, expressions do both.)

• imperative languages often have non-local control flow features (gotos , non-local exits, ex-
ceptions). We will study these later.

Imperative languages include C, Ada, Pascal and Fortran. Imperative programming is also the
foundation for object-oriented languages like Java and C++.

We will study imperative programming by extending Hofl with some imperative features. We
will see that mixing imperative features with Hofl’s first-class functions is a powerful combination
that can express many important programming idioms, such as memoization and object-oriented
programming. Such idioms are used extensively in real-world function-oriented languages that
support imperative features (e.g., Ocaml and Scheme).

1 Hoilec = Hofl + Explicit Mutable Cells

We begin our exploration of imperative programming by extending Hofl with a new kind of value:
themutable cell. This is a one-slot data structure whose value can change over time. We christen
the resulting langauge Hoilec = Higher-Order Imperative Language with Explicit Cells.

Fig. 1 summarizes the new primitive operations inHoilec. This includes operations for creating
mutable cells (cell), getting the current value in a mutable cell (^), changing the value in a mutable
cell (:=), testing the equality of two mutable cells (cell=), and determining if a value is a cell
(cell?). The new primitive operations also include print and println for displaying values.

Here are some examples involving the operators:

1

Hoilec Specification Ocaml

(cell E) Return a cell whose contents is the
value of E

ref E

(^ E) Return current contents of the cell
designated by E.

! E

(:= Ecell Enew) Change contents of the cell designated
by Ecell to be the value of Enew . Re-
turns the old contents of Ecell .

Ecell := Enew

(this returns unit, not the old
value)

(cell= E1 E2) Test if E1 and E2 denote the same
cell.

E1 = E2

(cell? E) Test if E denotes a cell. N/A

(print E) Displays the string representation of
the value of E and returns the value.

(print string ...)

(this returns unit, not the value)

(println E) Displays the string representation of
the value of E followed by newline and
returns the value.

(print string (... ^ "\n"))

(this returns unit, not the value)

Figure 1: New primitive operations added to Hofl to yield Hoilec.

hoilec> (def a (cell 3))

a

hoilec> (^ a)

3

hoilec> (def b (cell 3))

b

hoilec> (^ b)

3

hoilec> (:= a 17)

3

hoilec> (list (^ a) (^ b))

(list 17 3)

hoilec> (cell= a b)

#f

hoilec> (cell= a a)

#t

hoilec> (cell? a)

#t

hoilec> (cell? (^ a))

#f

hoilec> (println (+ 1 2))

3

3

hoilec> (print (+ 1 2))

33 2

It turns out that Ocaml is similar to Hoilec because it also provides state-based computation
via mutable cells. Fig. 1 shows the Ocaml cell operations corresponding to the Hoilec ones.

In the presence of side effects, order of evaluation is important! Hoilec provides sequential
evaluation via the following construct:

(seq E1 . . . En)

Evaluate E1 . . . En in order and return the value of En .

This need not be a new kernel construct because it can be implemented by the following desguaring:

(seq E1 . . . En) ; (bindseq ((I1 E1) . . . (In En)) In) ; Ii fresh

Hoilec’s (seq E1 . . . En) corresponds to:

• Ocaml’s (E1; . . . ; En)

• Scheme’s (begin E1 . . . En)

• Java and C’s {E1; . . . ; En;} (no value returned)

What is the behavior of the following Hoilec expression?

(bind a (cell (+ 3 4))

(seq (println (^ a))

(:= a (* 2 (^ a)))

(println (^ a))

(:= a (+ 1 (^ a)))

(println (^ a))

(bind b (cell (^ a))

(bind c b

(seq (println (cell=? a b))

(println (cell=? b c))

(:= c (/ (^ c) 5))

(println (^ a))

(println (^ b))

(^ c))))))

Unlike in Hofl, the order of evaluation of primitive operands makes a difference in Hoilec, and
is specified to be left-to-right.1 For example, the following expressions can distinguish left-to-right
and right-to-left evaluation of operands

(- (println (* 3 4)) (println (+ 1 2)))

(bind c (cell 1)

(+ (seq (:= c (* 10 (^ c))) (^ c))

(seq (:= c (+ 2 (^ c))) (^ c))))

(bind d (cell 1)

(+ (:= d 2) (* (:= d 3) (^ d))))

1Even in Hofl, order of evaluation can be distinguished by error messages.

3

2 Hoilec Examples

2.1 Imperative Factorial

Here is an imperative factorial in Java:

public static int fact (int n) {
int ans = 1;

while (n > 0) {
// Order of assignments is critical!

ans = n * ans ;

n = n - 1;

}
return ans ;

}

Here is how we can express an imperative factorial in Hoilec:

(def (fact n)

(bindpar ((num (cell n))

(ans (cell 1)))

(bindrec

((loop (fun ()

(if (= (^ num) 0)

(^ ans)

(seq

(:= ans (* (^ num) (^ ans)))

(:= num (- (^ num) 1))

(loop))))))

(loop))))

We can define the following while-loop syntactic sugar in Hoilec to express loops:

(while Etest Ebody)

;

(bindrec ((Iloop ; Iloop is fresh

(fun ()

(if Etest

(seq Ebody (Iloop))

#f)))) ; Arbitrary return value

(Iloop) ; Start the loop

)

For example:

(def (fact n)

(bindpar ((num (cell n))

(ans (cell 1)))

(seq (while (> (^ num) 0)

(seq (:= ans (* (^ num) (^ ans)))

(:= num (- (^ num) 1))))

(^ ans))))

We can modify this to print the state variables in the loop:

4

hoilec> (def (fact n)

(bindpar ((num (cell n))

(ans (cell 1)))

(seq (while (> (^ num) 0)

(seq (print "(^ num) = ")

(print (^ num))

(print "; (^ ans) = ")

(println (^ ans))

(:= ans (* (^ num) (^ ans)))

(:= num (- (^ num) 1))))

(^ ans))))

fact

hoilec> (fact 5)

"(^ num) = "5"; (^ ans) = "1

"(^ num) = "4"; (^ ans) = "5

"(^ num) = "3"; (^ ans) = "20

"(^ num) = "2"; (^ ans) = "60

"(^ num) = "1"; (^ ans) = "120

120

5

2.2 Collecting the Arugments to fib

Below is a Hoilec Fibonacci program that collects all the arguments to fib (in reverse order):

(hoilec (x) (list (fib x) (^ args))

(def args (cell #e)) ;; collects args to fib (in reverse)

(def (fib n)

(seq (:= args (prep n (^ args)))

(if (<= n 1)

n

(+ (fib (- n 1)) (fib (- n 2)))))))

For example:

HoilecEnvInterp.runFile "fib-args.hec" [5];;

(list 5 (list 1 0 1 2 3 0 1 2 1 0 1 2 3 4 5))

In Hofl, which does not have mutable cells, we would need to “thread” state through compu-
tation:

(hofl (x) (fib x #e)

(def (fib n args) ; Returns list of

; (1) fib and

; (2) args

(if (<= n 1)

(list n (prep n args))

(bind ans1 (fib (- n 1) (prep n args))

(bind ans2 (fib (- n 2) (nth 2 ans1))

(list (+ (nth 1 ans1) (nth 1 ans2))

(nth 2 ans2)))))))

2.3 Mutable Stacks in Hoilec

We can represent a mutable stack in Hoilec as a cell that contains a list of stack elements arranged
from top down:

(def (make-stack) (cell #e))

(def (stack-empty? stk) (empty? (^ stk)))

(def (top stk) (head (^ stk)))

(def (push! val stk)

(:= stk (prep val (^ stk))))

(def (pop! stk)

(bind t (top stk)

(seq (:= stk (tail (^ stk)))

t)))

For example:

hoilec> (bind s (make-stack)

(seq (push! 2 s) (push! 3 s) (push! 5 s)

(+ (pop! s) (pop! s))))

8

6

2.4 fresh: Maintaining State in HOILEC functions.

The following fresh function (similar to OCaml’s StringUtils.fresh) illustrates how Hoilec

functions can maintain state in a local environment:

(def fresh

(bind count (cell 0)

(fun (s)

(bind n (^ count)

(seq (:= count (+ n 1))

(str+ (str+ s ".")

(toString n)))))))

For example:

hoilec> (fresh "foo")

"foo.0"

hoilec> (fresh "bar")

"bar.1"

hoilec> (fresh "foo")

"foo.2"

Here is the implementation of StringUtils.fresh in Ocaml:

(* fresh creates a "fresh" name for the given string

by adding a "." followed by a unique number.

If the given string already contains a dot,

fresh just changes the number. E.g., fresh "foo.17"

will give a string of the form "foo.XXX" *)

let fresh =

let counter = ref 0 in

fun str ->

let base = (try let i = String.index str ’.’ in String.sub str 0 i

with Not_found -> str) in

let count = !counter in

let _ = counter := count + 1 in

base ^ "." ^ (string_of_int count)

2.5 Promises in Hoilec

• (delayed Ethunk) Return a promise to evaluate the thunk (nullary function) denoted by
Ethunk at a later time.

• (force Epromise) If the promise denoted by Epromise has not yet been evaluated, evaluate it
and remember and return its value. Otherwise, return the remembered value.

Example:

(bind inc! (bind c (cell 0)

(fun() (seq (:= c (+ 1 (^ c)))

(^ c))))

(bind p (delayed (fun () (println (inc!))))

(+ (force p) (force p))))

7

Here is one way to implement promises in Hoilec:

(def (delayed thunk)

(list thunk (cell #f) (cell #f)))

(def (force promise)

(if (^ (nth 2 promise))

(^ (nth 3 promise))

(bind val ((nth 1 promise)) ; dethunk !

(seq (:= (nth 2 promise) #t)

(:= (nth 3 promise) val)

val))))

Here is a second way to implement promises in Hoilec:

(def (delayed thunk)

(bindpar ((flag (cell #f))

(memo (cell #f)))

(fun ()

(if (^ flag)

(^ memo)

(seq (:= memo (thunk)) ; dethunk!

(:= flag #t)

(^ memo))))))

(def (force promise) (promise))

2.6 Object-Oriented Stacks in Hoilec

8

3 Implementing the Hoilec Interpreter

4 Discussion

4.1 Other Mutable Structures

• In addition to ref cells, Ocaml supports arrays with mutable slots. But all variables and list
nodes are immutable!

• Scheme has mutable list node slots (changed via set-car! & set-cdr!) and vectors with
mutable slots (modified via vector-set!).

• C and Pascal support mutable records and array variables, which can be stored either on
the stack or on the heap. Stack-allocated variables are sources of big headaches (we shall see
this later).

• Almost every language has stateful input/output (I/O) operations for reading from/writing
to files.

4.2 Advantages of Side Effects

• Can maintain and update information in a modular way. Examples:

– Report the number of times a function is invoked. Much easier with cells than without!

– Using StringUtils.fresh to generate fresh names – avoids threading name generator
throughout entire mini-language implementation.

– Tracing functions in Ocaml and Scheme.

• Computational objects with local state are nice for modeling the real world. E.g., gas
molecules, digital circuits, bank accounts.

4.3 Disadvantages of Side Effects

• Lack of referential transparency makes reasoning harder.

Referential transparency: evaluating the same expression in the same environment
always gives the same result.

In language without side effects, (+ E E) can always be safely transformed to (* 2 E).
But not true in the presence of side effects! E.g. E = (seq (:= c (+ (^ c) 1)) a).

Even in a purely functional call-by-value language, non-termination is a kind of side
effect. Are the following HOILEC expressions always equal?

(if E1 E2 E3)

<=?=> (bind I E3 (if E1 E2 I)) ; I fresh

• Aliasing makes reasoning in the presence of side effects particularly tricky. E.g. Hoilec

example:

(+ (^ a) (seq (:= b (+ 1 (^ b))) (^ a))

<=?=> (seq (:= b (+ 1 (^ b))) (* 2 (^ a)))

• Harder to make persistent structures (e.g., aborting a transaction, rolling back a database to
a previous saved point).

9

