
CS251 Programming Languages Handout # 23
Prof. Lyn Turbak February 23, 2007
Wellesley College

Modules and Data Abstraction in Ocaml

1 Overview

Programs, especially large ones, are typically decomposed into components that can be separately
written, compiled, tested, and debugged. Ocaml and many other languages call such components
modules, but they are also known as packages, structures, units, and classes.1

Ideally, each individual module is described by an interface that specifies the components
required by the module from the rest of the program (the imports) and the components supplied
by the module to the rest of the program (the exports). Interfaces often list the names and types
of imported and exported values along with informal English descriptions of these values (e.g., Java

APIs). Such interfaces make it possible for programmers to implement a module without having
to know the implementation details of other modules. They also make it possible for a compiler to
check for type consistency within a single module.

The process of combining modules to form a whole program is called linking. Linking is
typically performed in a distinct link time phase that is performed after all the individual modules
are compiled (compile time) but before the entire program is executed (run time).

The specification for how to combine the modules to form a program is written in a linking
language. The linking language is almost always different from the programming language in
which the module components are written. A crude form of linking involves hard-wiring the file
names for imported modules within the source code for a given module. In more flexible approaches,
a module is parameterized over names for the imported modules and the linking language specifies
the actual modules to be used for the parameters. Ideally, the linking language should check that
the interface types of the actual module parameters are consistent with those of the formal module
parameters. In this case, the linking language is effectively a simple typed programming language.

Often, a linking language simply lists the modules to be combined. For example, the object
files of a C program are linked by supplying a list of file names to the compiler (which actually calls
the linker). A linking language can be made more powerful by adding other programming language
features that allow more computation to be performed during the linking process. But the desire to
make linking languages more expressive is often in tension with the desire to guarantee that (1) the
linking process terminates and (2) mere mortals can reliably understand and use the sophisticated
types that often accompany more expressive linking languages.

Modules typically serve several purposes in a programming language:

• Modular Program Structure: As noted above, modules are used to decompose big programs
into smaller parts that can be separately written, compiled, tested, and debugged. This
facilitates dividing a program project among members of a programming team. Each team
member can work on his or her part independently, and the parts can later be linked to form
a working program. Modules also help individual programmers to organize their work by
allowing them to concentrate on one part of a problem at a time.

• Name Control: Modules help to control the use of names in a program. It is often natural
to use the same name for different values in different parts of a program. For example, the
name map may mean a list-mapping function in one part of a program and a tree-mapping
function in another part of a program. Qualifying the name map with the name of its module,

1In many languages, such as C, files serve as de facto modules, but in general the relationship between source files

and program modules can be more complex.

1

as in List.map and Tree.map, allows the programmer to indicate which map is meant in a
particular context. Modules typically provide a way to distinguish which values should be
visible to the rest of the program (public in Java) and which values should remain hidden
within the module (private in Java).

• Data Abstraction: In many languages (including Ocaml), modules are the means of sep-
arating the specification of a data abstraction from its implementation. Ideally, multiple
implementations of the same data abstraction should be allowed to co-exist within a single
program.

In the rest of this handout, we explore modules using theOcamlmodule system as an example. Any
module system will have a means of specification (the interface), implementation, and combination.
In Ocaml, a module specification is called a signature, and a module implementation is called a
structure. Modules can be combined using direct references in the form of fully qualified names (or
via open), but more sophisticated operations of abstracting and specializing modules are available
via functors. We shall explore each of these facilities below.

2 Structures

In Ocaml, we can collect declarations into a module using the notation:

struct module-declarations end

This creates a an entity called a structure, which is Ocaml’s terminology for a module imple-
mentation. A structure can be named using the notation:

module module-name = structure

For example, Fig. 1 shows a structure named Circ that contains useful values for dealing with
circles.

module Circ = struct

let pi = 3.14159

let circum r = 2.0 *. pi *. r

let sq x = x *. x

let area r = pi *. (sq r)

end

Figure 1: The Circ module.

Ocaml uses qualified names of the form module-name.component-name (“dot notation”)
to extract module components from a module. The following code shows how to refer to Circ

components from outside the Circ module:

Circ.pi *. 10.0;;

- : float = 31.4159

(Circ.circum 10.0, Circ.area 10.0);;

- : float * float = (62.8318, 314.159)

Qualified names are important for distinguishing values that have the same component name
in two different modules. For example, suppose there is a Rect module containing the following
area declaration:

let area w h = w *. h

Then we can use Circ.area and Rect.area in the same expression:

2

(Circ.area 10.0, Rect.area 2.0 3.0);;

- : float * float = (314.159, 6.)

Using qualified names everywhere can be cumbersome. The Ocaml open declaration “opens
up” a module and permits its components to be used with their unqualified names. For example,
the declaration open Circ is equivalent to the following sequence of declarations:

let pi = Circ.pi;

let circum = Circ.circum;

let sq = Circ.sq;

let area = Circ.area;

The open declaration can be used in the top-level Ocaml interpreter or inside a structure. For
example, here is sample top-level use:

open Circ;;

(circum 10.0, area 10.0);;

- : float * float = (62.8318, 314.159)

As an example of using open within a structure, consider:

module TestCirc = struct

open Circ

let test1 r = (circum r, area r)

let test2 r = (sq pi +. circum r +. area r)

end

In this case, the open declaration permits the use of unqualified names from the Circ module in
the remainder of the TestCirc declarations.

It is possible to open multiple modules within a structure declaration. If two modules export
the same name, the unqualified name refers to the component from the module opened last. For
example:

module Test2 = struct

open Circ

let f r = (circum r, area r)

open Rect

let g x y = (circum x, Circ.area y, area x y)

end

The unqualified area in f refers to Circ.area. However, the unqualified area in g refers to
Rect.area, since Rect was most recently opened. Using Circ.area within g requires explicit
qualification to distinguish it from Rect.area.

The module declaration can be used to introduce synonyms for structure names within another
structure. In the following module, the Circ and Rect modules are not opened but are given
one-letter abbreviations that makes the explicitly qualified names more concise.

module Test3 = struct

module C = Circ

module R = Rect

let f r = (C.circum r, C.area r)

let g x y = (C.circum x, C.area y, R.area x y)

end

We may also use one module declaration within another to define nested structures. An example
of this is shown in Fig. 2. A sequence of module qualifications can be used to extract the innermost
components:

3

module Nested = struct

open Circ

module Data = struct

let d1 = [1.0; 2.0]

let d2 = [3.0; 4.0; 5.0]

end

module Funs = struct

let f1 = List.map circum

let f2 = List.map area

end

end

Figure 2: An example of nested structures.

(Nested.Funs.f1 Nested.Data.d1, Nested.Funs.f2 Nested.Data.d2);;

- : float list * float list =

([6.28318; 12.56636], [28.27431; 50.26544; 78.53975])

Ocaml structures are somewhat like records/structs/objects in other languages. For example,
dot notation is used to extract record components in Pascal, struct components in C, and object
components in Java. There are two key differences between Ocaml structures and traditional
record values:

1. Ocaml structures can include type components as well as value components. We shall en-
counter this feature when we study abstract data types in Sec. 4. Handling modules with
type components requires a sophisticated type system.

2. Unlike traditional record values, structures are second-class entities in Ocaml — they can
be manipulated only in limited ways. For instance, structures cannot be named with a
let, passed as arguments to functions, returned from functions as results, or stored in data
structures.2 This limitation is imposed to simplify the type system and the linking process.

The second-classness of Ocaml structures makes them like Java classes, which are also second-
class entities. Indeed, the examples we have seen so far (except nested modules) can be expressed in
Java using classes containing static variables and methods. For example, here is the Circ module
expressed in Java:

public class Circ {
public static double pi = 3.14159;

public static double circum (double r) {return 2*pi*r;}
public static double sq (double x) {return x*x;}
public static double area (double r) {return pi*sq(r);}

}

As in Ocaml, qualified names are used used in Java to extract a static component from a class
(e.g., Circ.circum(10.0)).

Java classes are a form of module, but Java has another module mechanism, the package,
for collecting related classes together. Java’s import declaration is similar to Ocaml’s open

declaration, but it works at the package level rather than at the class level. For example, in a
regular Java program, a two-dimensional point can be created as follows:

2
Ocaml also provides traditional record structures that are first class.

4

new java.awt.Point(1,2)

The qualified name java.awt.Point indicates that the Point class can be found in the java.awt
package. However, if the declaration

import java.awt.Point;

appears at the top of the file, the class name Point may be used without qualification.

3 Signatures

If the structure in Fig. 1 is stored in the file Circ.ml, then we can load it into the top-level
interpreter as follows:

#use "Circ.ml";;

module Circ :

sig

val pi : float

val circum : float -> float

val sq : float -> float

val area : float -> float

end

A module has a type, which is called its signature. A signature consists of a collection of decla-
ration types between keywords sig and end. A signature may even include nested module decla-
rations, as exemplified by the Nested module:

#use "Nested.ml";;

module Nested :

sig

module Data :

sig

val d1 : float list

val d2 : float list

end

module Funs :

sig

val f1 : float list -> float list

val f2 : float list -> float list

end

end

The declarations of modules opened within a module do not appear in the signature of the
module. For example, TestCirc opens the Circ module, but there is no indication of this in its
signature:

#use "TestCirc.ml";;

module TestCirc :

sig

val test1 : float -> float * float

val test2 : float -> float

end

However, when the module declaration is used to rename a module within another module (as in
the Test3 example above), the declarations of the renamed modules appear in the signature:

5

#use "Test3.ml";;

module Test3 :

sig

module C :

sig

val pi : float

val circum : float -> float

val sq : float -> float

val area : float -> float

end

module R :

sig

val area : float -> float -> float

end

val f : float -> float * float

val g : float -> float -> float * float * float

end

It is possible to name signatures and to declare that structures have a signature. The notation

module type signature-name = signature

introduces a named signature. For instance, here is a signature named CIRC3 that describes the
values in the Circ module:

module type CIRC = sig

val pi : float

val circum : float -> float

val sq : float -> float

val area : float -> float

end

We can declare that a structure has a particular signature by writing

module module-name : signature = structure ,

where signature is either a signature name, or an explicit signature of the form sig . . . end. For
example:

module Circ:CIRC = struct

let pi = 3.14159

let circum r = 2.0 *. pi *. r

let sq x = x *. x

let area r = pi *. (sq r)

end

Suppose we store the CIRC signature in the file Circ.sig and the modified Circ structure in
the file Circ.ml.4 Then we can load these into the Ocaml interpreter:

3Many Ocaml programmers name signatures with all caps, but this is only a convention.
4We do not have to store the signature and structure in different files. A single file can contain any number of

signatures and modules.

6

#use "Circ.sig";;

module type CIRC =

sig

val pi : float

val circum : float -> float

val sq : float -> float

val area : float -> float

end

#use "Circ.ml";;

module Circ : CIRC

Note how the Ocaml interpreter uses the notation module Circ : CIRC to indicate that the Circ
structure has the CIRC signature.

Signatures can be used to hide module components. When a module is given an explicit sig-
nature, only the names mentioned in the signature are exported from the module; no other names
can be extracted from the module. For example, we can defined a restricted version Circres of
the Circ module as follows:

module Circres: sig

val circum : float -> float

val area : float -> float

end

= Circ;;

module Circres :

sig

val circum : float -> float

val area : float -> float

end

The Circres module exports only the circum and area functions. The other values of the Circ

module (pi and sq) are not exported. For example, we cannot use Circres.pi or Circres.sq

even though these are used internally to to define Circres.area. In this way, explicit signatures
can be used to hide module components that would be declared private in a Java class.

4 Abstract Data Types

Ocaml modules can contain type components as well as value components. In conjunction with
this feature, the hiding feature of signatures is ideal for realizing an abstract data type (ADT),
in which a contract serves as an abstraction barrier that separates the client and implementer of
functions that manipulate an abstract value.

4.1 Example: Points

For example, the following signature describes an abstract point type:

module type POINT = sig

type point

val make : int -> int -> point

val getX : point -> int

val getY : point -> int

val origin : point

end

The declaration type point indicates that any module matching the POINT signature must have a
point type, but it does not reveal what the point type is: the point type is abstract.

Here is a structure that implements points as pairs of integers:

7

module PairPoint : POINT = struct

type point = int * int

let make x y = (x,y)

let getX (x,_) = x

let getY (_,y) = y

let origin = (0,0)

end;;

module PairPoint : POINT

The feedback from the Ocaml interpreter, module PairPoint : POINT, indicates that this struc-
ture indeed satsifies the POINT signature. We can now manipulate points using values in the
PairPoint structure:

let p = PairPoint.make 1 2;;

val p : PairPoint.point = <abstr>

PairPoint.getX p;;

- : int = 1

PairPoint.getY p;;

- : int = 2

PairPoint.origin;;

- : PairPoint.point = <abstr>

(PairPoint.getX PairPoint.origin, PairPoint.getY PairPoint.origin);;

- : int * int = (0, 0)

Note how Ocaml uses the qualified name PairPoint.point for the type of points created with
the PairPoint module. It does not divulge any details about the representation of this type, but
uses the notation <abstr> to keep the abstract type hidden. In fact, any attempt to manipulate a
point as a pair signals an error:

fst p;;

Characters 4-5:

fst p;;

^

This expression has type PairPoint.point but is here used with type ’a * ’b

Of course, we can implement points using representations other than pairs. For example, we
can represent a point as a list of two integers:5

module ListPoint : POINT = struct

type point = int list

let make x y = [x;y]

let getX p = List.hd p

let getY p = List.hd (List.tl p)

let origin = [0;0]

end;;

module ListPoint : POINT

For all intents and purposes, ListPoint is indistinguishable from PairPoint. For example:

5We could also implement getX and getY using pattern matching, as in let getX [x;] = x, but this would

generate warnings about non-exhaustive pattern matching.

8

let p2 = ListPoint.make 1 2;;

val p2 : ListPoint.point = <abstr>

ListPoint.getX p2;;

- : int = 1

ListPoint.getY p2;;

- : int = 2

ListPoint.origin;;

- : ListPoint.point = <abstr>

(ListPoint.getX ListPoint.origin, ListPoint.getY ListPoint.origin);;

- : int * int = (0, 0)

The Ocaml type system prevents abstraction violations on abstract types by assuming that
two distinct abstract types are not equal. For example:

PairPoint.getX p2;;

Characters 15-17:

PairPoint.getX p2;;

^^

This expression has type ListPoint.point but is here used with type

PairPoint.point

ListPoint.getY PairPoint.origin;;

Characters 15-31:

ListPoint.getY PairPoint.origin;;

^^^^^^^^^^^^^^^^

This expression has type PairPoint.point but is here used with type

ListPoint.point

It is even possible to represent a point as a function:

module PredPoint : POINT = struct

type point = bool -> int

let make x y = fun b -> if b then x else y

let getX p = p true

let getY p = p false

let origin b = 0

end;;

module PairPoint : POINT

Functional points behave indistinguishably from other points:

let p3 = PredPoint.make 1 2;;

val p3 : PredPoint.point = <abstr>

PredPoint.getX p3;;

- : int = 1

PredPoint.getY p3;;

- : int = 2

PredPoint.origin;;

- : PredPoint.point = <abstr>

(PredPoint.getX PredPoint.origin, PredPoint.getY PredPoint.origin);;

- : int * int = (0, 0)

4.2 Example: Environments

A more compelling example of an abstract data type is the mergeable environment datatype in
Fig. 3. An environment is an abstraction that associates names with values. As we shall see later,
interpreters, type checkers, and compilers all use environments for tracking the names used in a
program.

9

The figure shows two implementations of the MENV signature: ListMenv, which represents en-
vironments as lists of name/value pairs, and FunMenv, which represents environments as functions
that map names to values. Below is a transcript of some interactions involving ListMenv:

open ListMenv;;

let e0 = empty;; (* The empty env *)

val e0 : ’a ListMenv.menv = <abstr>

let e1 = bind "a" 1 e0;; (* The env a |-> 1 *)

val e1 : int ListMenv.menv = <abstr>

let e2 = bind "b" 2 e1;; (* The env a |-> 1, b |-> 2 *)

val e2 : int ListMenv.menv = <abstr>

let e3 = bind "a" 3 e2;; (* The env a |-> 3, b |-> 2 *)

val e3 : int ListMenv.menv = <abstr>

let e4 = make ["b";"c";"d"] [4;5;6];; (* The env b |-> 4, c |-> 5, d |-> 6 *)

val e4 : int ListMenv.menv = <abstr>

let e5 = merge e3 e4;; (* The env a |-> 3, b |-> 2, c |-> 5, d |-> 6 *)

val e5 : int ListMenv.menv = <abstr>

let e6 = merge e4 e3;; (* The env a |-> 3, b |-> 4, c |-> 5, d |-> 6 *)

val e6 : int ListMenv.menv = <abstr>

let envs = [e0;e1;e2;e3;e4;e5;e6]

val envs : int ListMenv.menv list =

[<abstr>; <abstr>; <abstr>; <abstr>; <abstr>; <abstr>; <abstr>]

ListUtils.map (fun e -> lookup "a" e) envs;;

- : int option list = [None; Some 1; Some 1; Some 3; None; Some 3; Some 3]

ListUtils.map (fun e -> lookup "b" e) envs;;

- : int option list = [None; None; Some 2; Some 2; Some 4; Some 2; Some 4]

ListUtils.map (fun e -> lookup "c" e) envs;;

- : int option list = [None; None; None; None; Some 5; Some 5; Some 5]

ListUtils.map (fun e -> lookup "d" e) envs;;

- : int option list = [None; None; None; None; Some 6; Some 6; Some 6]

ListUtils.map (fun e -> lookup "e" e) envs;;

- : int option list = [None; None; None; None; None; None; None]

An identical transcript would be obtained if every occurrence of ListMenv were replaced by
FunMenv.

An interesting feature of the FunMenv module is that it uses functions as the data structure for
implementing environments. In the First-Class Functions handout (#17), we saw that functions
could be use to implement pairs (Church pairs) and natural numbers (Church numerals). The
FunMenv module underscores that implementing data structures as functions is more than just
an intellectual curiosity; it is a practical implementation technique! FunMenv is one of the many
examples of functional implementation of data structures that we shall encounter in this course.

4.3 Example: Sets

A classic example of an ADT is a set. From the client’s perspective, a set is an abstract collection
of values that contains each value at most once and which supports operations like membership
testing, insertion, deletion, and the union, intersection, and difference of sets. An implementer
can use any concrete data representation and algorithms to implement the set as long as the set
operations work as expected. For example, the implementation may involve collections of elements
potentially containing duplicate entries as long as the set functions make it appear as though the
set contains exactly one occurrence of each element.

In Ocaml an ADT’s contract is represented as a signature and an ADT’s implementation is
a module satisfying that signature. For example, Fig. 4 shows the signature for a set ADT. Each
type declaration in the signature is accompanied by an English description of the meaning of the
declared operation or value. By not giving a concrete definition of the set type, the declaration

10

(* Mergeable Environment Signature *)

module type MENV = sig

type ’a menv

val empty: ’a menv

val bind : string -> ’a -> ’a menv -> ’a menv

val make : string list -> ’a list -> ’a menv

val lookup : string -> ’a menv -> ’a option

val merge : ’a menv -> ’a menv -> ’a menv

end

module ListMenv : MENV = struct

type ’a menv = (string * ’a) list

let empty = []

let bind name valu env = (name,valu) :: env

let make names values = ListUtils.foldr2 bind empty names values

let lookup name env =

match ListUtils.some (fun (s,_) -> s = name) env with

None -> None

| Some (_,valu) -> Some valu

let merge env1 env2 = env1 @ env2

end

module FunMenv : MENV = struct

type ’a menv = (string -> ’a option)

let empty = fun s -> None

let bind name valu env =

fun s -> if s = name then Some valu else env s

let make names values = ListUtils.foldr2 bind empty names values

let lookup name env = env name

let merge env1 env2 =

fun s -> (match env1 s with

None -> env2 s

| Some v -> Some v)

end

Figure 3: A signature and two implementations for mergeable environments.

11

type ’a set guarantees that the ADT is truly abstract. A client can only use the operations in
the signature to create and manipulate sets. The type system prevents any attempt by the client to
manipulate a set directly using knowledge of the underlying concrete representation. For instance,
if sets are represented as lists, then any attempt by the client to perform list operations directly on
a set will fail.

module type SET = sig

type ’a set

val empty : ’a set (* the empty set *)

val singleton : ’a -> ’a set (* a set with one element *)

val insert : ’a -> ’a set -> ’a set (* insert elt into given set *)

val delete : ’a -> ’a set -> ’a set (* delete elt from given set *)

val isEmpty: ’a set -> bool (* is the given set empty? *)

val size : ’a set -> int (* number of distinct elements in given set *)

val member : ’a -> ’a set -> bool (* is elt a member of given set? *)

val union: ’a set -> ’a set -> ’a set (* union of two sets *)

val intersection: ’a set -> ’a set -> ’a set (* intersection of two sets *)

val difference: ’a set -> ’a set -> ’a set (* difference of two sets *)

val fromList : ’a list -> ’a set (* create a set from a list *)

val toList : ’a set -> ’a list (* list all set elts, sorted low to high *)

val toString : (’a -> string)

-> ’a set -> string (* string representation of the set *)

end

Figure 4: A signature for a set abstract data type (ADT).

The signature gives great latitude for an implementer to choose a representation for the ADT. In
the case of sets, a simple representation for a set is a list of elements without duplicates sorted from
low to high. For the ordering criteria, we use the built-in ordering that Ocaml provides for any
type. A handy collection of functions for manipulating such lists is provided in the ListSetUtils
module (Fig. 5), whose signature is:

module type LIST_SET_UTILS = sig

val member: ’a -> ’a list -> bool

val insert: ’a -> ’a list -> ’a list

val delete: ’a -> ’a list -> ’a list

val union: ’a list -> ’a list -> ’a list

val intersection: ’a list -> ’a list -> ’a list

val difference: ’a list -> ’a list -> ’a list

end

A set implementation using these functions is the SortedListSet module presented in Fig. 6.
Of particular interest is the fromList function, which uses insert to insert all elements of the
given list into the resulting set. This preserves the invariant that the set must be a sorted list
without duplicates. It would be incorrect to defined fromList as

let fromList xs = xs

because the list xs might contain elements out of order or contain duplicate elements.
Of course, the SortedListSet module is only one possible implementation of the set ADT.

There are many other possible implementations, including variants of binary search trees (BSTs)
— binary trees of elements in which all elements in the left subtree of each node are strictly less
than the element value of that node, and all elements in the right subtree of each node are strictly
greater than the element value of that node. We will see how to implement binary trees in the next

12

module ListSetUtils : LIST_SET_UTILS = struct

let rec member x ys =

match ys with

[] -> false

| y::ys’ -> (x = y) || ((x > y) && (member x ys’))

(* Insert an element into a sorted list *)

let rec insert x ys =

match ys with

[] -> [x]

| y::ys’ -> if x < y then x::ys

else if x = y then ys

else y::(insert x ys’)

(* Delete an element from a sorted list *)

let rec delete x ys =

match ys with

[] -> []

| y::ys’ -> if x = y then ys’

else if x < y then ys

else y::(delete x ys’)

(* Merge two sorted lists, removing duplicates *)

let rec union xs ys =

match (xs, ys) with

([], _) -> ys

| (_, []) -> xs

| (x::xs’,y::ys’) -> if x = y then x::(union xs’ ys’)

else if x < y then x::(union xs’ ys)

else y::(union xs ys’)

(* Intersection of two sorted lists *)

let rec intersection xs ys =

match (xs, ys) with

([], _) -> []

| (_, []) -> []

| (x::xs’,y::ys’) -> if x = y then x::(intersection xs’ ys’)

else if x < y then intersection xs’ ys

else intersection xs ys’

(* Difference of two sorted lists *)

let rec difference xs ys =

match (xs, ys) with

([], _) -> []

| (_, []) -> xs

| (x::xs’,y::ys’) -> if x = y then difference xs’ ys

else if x < y then x::(difference xs’ ys)

else difference xs ys’

end

Figure 5: Utilities used to process sorted lists.

13

module SortedListSet : SET = struct

module LSU = ListSetUtils (* Abbreviation for list set utilities *)

type ’a set = ’a list

let empty = []

let singleton x = [x]

let insert x s = LSU.insert x s

let delete x s = LSU.delete x s

let isEmpty s = (s = [])

let size s = List.length s

let member x s = LSU.member x s

let union s1 s2 = LSU.union s1 s2

let intersection s1 s2 = LSU.intersection s1 s2

let difference s1 s2 = LSU.difference s1 s2

let toList s = s

let fromList xs = List.fold_right insert xs empty

let toString eltToString s = StringUtils.listToString eltToString s

end

Figure 6: An implementation of the set ADT using sorted lists.

lecture (Handout #25).
The Ocaml type system is sophisticated enough to allow several implementations of the same

ADT to be used in the same program. But it must be a type error for the operations of one
implementation to be used on a value created by another implementation. For instance, suppose we
have a BSTSet module implementing the SET signature in addition to the SortedListSet module,
and we make the following two sets:

let sls = SortedListSet.fromList [1;2;3];;

val sls : int SortedListSet.set = <abstr>

let bst = BSTSet.fromList [2;3;4];;

val bst : int BSTSet.set = <abstr>

Then it should be a type error to use a SortedListSet operation on bst or to use a BSTSet

operation on sls. And indeed it is:

14

SortedListSet.insert 1 bst;;

Characters 23-26:

SortedListSet.insert 1 bst;;

^^^

This expression has type int BSTSet.set but is here used with type

int SortedListSet.set

BSTSet.union sls bst;;

Characters 13-16:

BSTSet.union sls bst;;

^^^

This expression has type int SortedListSet.set but is here used with type

’a BSTSet.set

Ocaml is able to determine this by keeping track of which module the sets come from. In this
case, sls has type int SortedListSet.set, while bst has type int BSTSet.set, and these types
are considered distinct by the type system.

5 Functors

There are many situations where we would like to abstract over the particular structure that
is used to implement a given signature. For example, we might want to implement some point
functions (adding points, subtracting points, etc.) in terms of the POINT signature studied earlier.
Because these operations can be written in terms of the abstract point operations, we want to be
able to specify them in a way that is indepedent of the concrete representation of any particular
implementation of the POINT signature.

Since structures are second-class entities in Ocaml, we cannot use functions to abstract over
them. However, Ocaml supplies us with a function-like entity called a functor that is able to
abstract over structures. In order to provide type safet and static linking guarantees, Ocaml makes
functors more restrictive than functions — they can only be declared and used in limited ways.
Nevertheless, functors are still a powerful way to abstract over the details of particular structures.

Here is a simple example of a functor involving points::

module PointOps =

functor (P: POINT) -> struct

let neg p = P.make (-(P.getX p)) (-(P.getY p))

let add p1 p2 = P.make ((P.getX p1) + (P.getX p2))

((P.getY p1) + (P.getY p2))

let sub p1 p2 = add p1 (neg p2)

let toPair p = (P.getX p, P.getY p)

end

PointOps is a functor that takes as its single argument any structure P satisfying the POINT sig-
nature. As its result, it returns a structure that declares four point functions: a neg function that
negates both coordinates of a point; an add function that performs componentwise addition of
points; a sub function that performs componentwise subtraction of points; and a toPair function
that converts a point to a pair.

The type of the above functor is:

15

module PointOps :

functor (P : POINT) ->

sig

val neg : P.point -> P.point

val add : P.point -> P.point -> P.point

val sub : P.point -> P.point -> P.point

val toPair : P.point -> int * int

end

This type says that if the functor is applied to any structure P satisfying the POINT signature,
the result is a structure containing the four functions neg, add, sub, and toPair. The notation
P.point indicates the point type that comes from argument, P, given to the functor. A type that
depends on the argument type to a functor is is known as a dependent type.

The PointOps functor can be applied to any structure satisfying the POINT signature. Here are
some examples:

module PairPointOps = PointOps(PairPoint);;

module PairPointOps :

sig

val neg : PairPoint.point -> PairPoint.point

val add : PairPoint.point -> PairPoint.point -> PairPoint.point

val sub : PairPoint.point -> PairPoint.point -> PairPoint.point

val toPair : PairPoint.point -> int * int

end

PairPointOps.toPair (PairPointOps.sub (PairPoint.make 8 1) (PairPoint.make 3 4));;

- : int * int = (5, -3)

module PredPointOps = PointOps(PredPoint);;

module PredPointOps :

sig

val neg : PredPoint.point -> PredPoint.point

val add : PredPoint.point -> PredPoint.point -> PredPoint.point

val sub : PredPoint.point -> PredPoint.point -> PredPoint.point

val toPair : PredPoint.point -> int * int

end

PredPointOps.toPair (PredPointOps.sub (PredPoint.make 8 1) (PredPoint.make 3 4));;

- : int * int = (5, -3)

As another example of functors, suppose that we want to be able to write testing code for a set
implementation that gives us confidence that the implementation is implemented correctly. Because
we only care about the abstract behavior of sets in our testing code, we would like to be able to
use the same testing code with any set implementation, regardless of its concrete representation.

We can achieve this goal using the set-testing functor SimpleSetTest shown in Fig. 7. This
functor takes as its single argument any structure Set satisfying the SET signature. As its result,
it returns a structure with the single declaration for a testing function named test. This test

function uses operations in the the Set structure to manipulate sets of the type int Set.set. It
returns a triple of (1) a set containing the elements 1,2,4,5,6; (2) a string representation of this set;
and (3) a list of integer lists showing the results of various set operations.

We can load SimpleSetTest into the top-level interpreter as follows:

#use "../sets/SimpleSetTest.ml";;

module SimpleSetTest :

functor (Set : SET) ->

sig val test : unit -> int Set.set * string * int list list end

Note that int Set.set is a dependent type.

16

module SimpleSetTest =

functor (Set: SET) -> struct

let test () =

let s1 = Set.fromList [5;2;6;1;4]

and s2 = Set.fromList [2;8;6;3]

in (s1,

Set.toString string_of_int s1,

[Set.toList s1;

Set.toList s2;

Set.toList (Set.insert 3 s1);

Set.toList (Set.delete 5 s1);

Set.toList (Set.union s1 s2);

Set.toList (Set.intersection s1 s2);

Set.toList (Set.difference s1 s2)]

)

end

Figure 7: A simple set-testing functor.

We can now give SimpleSetTest a spin on different set structures:

module SLST = SimpleSetTest(SortedListSet);;

module SLST :

sig

val test : unit -> int SortedListSet.set * string * int list list

end

SLST.test();;

- : int SortedListSet.set * int list list * string list =

(<abstr>,

"[1,2,4,5,6]",

[[1; 2; 4; 5; 6]; [2; 3; 6; 8]; [1; 2; 3; 4; 5; 6]; [1; 2; 4; 6];

[1; 2; 3; 4; 5; 6; 8]; [2; 6]; [1; 4; 5]],

)

module BSTST = SimpleSetTest(BSTSet);;

module BSTST :

sig

val test : unit -> int BSTSet.set * string * int list list

end

BSTST.test();;

- : int BSTSet.set * int list list * string list =

(<abstr>,

"((* 1 (* 2 *)) 4 ((* 5 *) 6 *))",

[[1; 2; 4; 5; 6]; [2; 3; 6; 8]; [1; 2; 3; 4; 5; 6]; [1; 2; 4; 6];

[1; 2; 3; 4; 5; 6; 8]; [2; 6]; [1; 4; 5]],

)

By using the printed representation <abstr>, Ocaml hides the implementation details of the given
set structure. However, the toString function exposes the details of which structure is used in this
example. This is not a failure of the Ocaml module system; it just reflects that this operation is
defined in an ambiguous way that allows it to return different results for different implementations.

17

