
CS251 Programming Languages Handout # 25

Prof. Lyn Turbak February 28, 2007

Wellesley College

Sum-of-Product Data Types

1 Introduction

Every general-purpose programming language must allow the processing of values with different
structure that are nevertheless considered to have the same “type”. For example, in the processing
of simple geometric figures, we want a notion of a “figure type” that includes circles with a radius,
rectangles with a width and height, and triangles with three sides. Abstractly, figure values might
be depicted as shown below:

Circle

1.0

Rect

2.0 3.0

Tri

4.0 5.0 6.0

The name in the oval is a tag that indicates which kind of figure the value is, and the branches
leading down from the oval indicate the components of the value. Such types are known as sum-

of-product data types because they consist of a sum of tagged types, each of which holds on to
a product of components. They are also known as algebraic data types.

In Ocaml we can declare a new figure type that represents these sorts of geometric figures as
follows:

type figure =

Circ of float (* radius *)

| Rect of float * float (* width, height *)

| Tri of float * float * float (* side1, side2, side3 *)

Such a declaration is known as a data type declaration. It consists of a series of |-separated
clauses of the form

constructor-name of component-types ,

where constructor-name must be capitalized. The names Circ, Rect, and Tri are called the
constructors of the figure type. Each serves as a function-like entity that turns components of
the appopriate type into a value of type figure. For example, we can make a list of the three
figures depicted above:

# let figs = [Circ 1.; Rect (2.,3.); Tri(4.,5.,6.)];; (* List of sample figures *)

val figs : figure list = [Circ 1.; Rect (2., 3.); Tri (4., 5., 6.)]

It turns out that constructors are not functions and cannot be manipulated in a first-class way.
For example, we cannot write

List.map Circ [7.;8.;9.] (* Does not work, since Circ is not a function *)

However, we can always embed a constructor in a function when we need to. For example, the
following does work:

List.map (fun r -> Circ r) [7.;8.;9.] (* This works *)

We manipulate a value of the figure type by using the Ocaml match construct to perform a
case analysis on the value and name its components. For example, Fig. 1 shows how to calculate
figure perimeters and scale figures.

Using data type declarations, we can create user-defined versions of some of the built-in Ocaml

types that we have been using. For instance, here is a definition of the option type:

1



# let pi = 3.14159;;

val pi : float = 3.14159

(* Use pattern matching to define functions on sum-of-products datatype values *)

# let perim fig = (* Calculate perimeter of figure *)

match fig with

Circ r -> 2.*.pi*.r

| Rect (w,h) -> 2.*.(w+.h)

| Tri (s1,s2,s3) -> s1+.s2+.s3;;

val perim : figure -> float = <fun>

# List.map perim figs;;

- : float list = [6.28318; 10.; 15.]

# let scale n fig = (* Scale figure by factor n *)

match fig with

Circ r -> Circ (n*.r)

| Rect (w,h) -> Rect (n*.w, n*.h)

| Tri (s1,s2,s3) -> Tri (n*.s1, n*.s2, n*.s3);;

val scale : float -> figure -> figure = <fun>

# List.map (scale 3.) figs;;

- : figure list = [Circ 3.; Rect (6., 9.); Tri (12., 15., 18.)]

# List.map (FunUtils.o perim (scale 3.)) figs;;

- : float list = [18.84954; 30.; 45.]

Figure 1: Manipulations of figure values.

# type ’a option = None | Some of ’a;;

type ’a option = None | Some of ’a

This is an example of a parameterized data type declaration in which the ’a can be instantiated
to any type. option is an example of a type constructor.

# None;;

- : ’a option = None

# Some 3;;

- : int option = Some 3

# Some true;;

- : bool option = Some true

We can even construct our own version of a list type (though it won’t support the infix ::

operator or the square-bracket list syntax):

# type ’a myList = Nil | Cons of ’a * ’a myList;;

type ’a myList = Nil | Cons of ’a * ’a myList

Note that lists are a recursive data type. Data types are implicitly recursive without the need for
any keyword like rec. Here are our lists in action:

# let ns = Cons(1, Cons(2, Cons(3, Nil)));;

val ns : int myList = Cons (1, Cons (2, Cons (3, Nil)))

# let bs = Cons(’a’, Cons(’b’, Cons(’c’, Nil)));;

val bs : char myList = Cons (’a’, Cons (’b’, Cons (’c’, Nil)))

2



# let ss = Cons("d", Cons("n", Cons("t", Nil)));;

val ss : string myList = Cons ("d", Cons ("n", Cons ("t", Nil)))

# let rec map f xs =

match xs with

Nil -> Nil

| Cons(x,xs’) -> Cons(f x, map f xs’);;

val map : (’a -> ’b) -> ’a myList -> ’b myList = <fun>

# map ((+) 1) ns;;

- : int myList = Cons (2, Cons (3, Cons (4, Nil)))

# map ((^) "a") ss;;

- : string myList = Cons ("ad", Cons ("an", Cons ("at", Nil)))

Data type declarations may be mutually recursive if they are glued together with and. For
example, here is the definition of data types and constructors for lists of even length and odd
length:

# type ’a evenList = ENil | ECons of ’a * (’a oddList)

and ’a oddList = OCons of ’a * (’a evenList);;

type ’a evenList = ENil | ECons of ’a * ’a oddList

type ’a oddList = OCons of ’a * ’a evenList

# OCons(2, ECons(3, OCons(5, ENil)));;

- : int oddList = OCons (2, ECons (3, OCons (5, ENil)))

# ECons(2, ENil);;

Characters 9-13:

ECons(2, ENil);;

^^^^

This expression has type ’a evenList but is here used with type int oddList

The last example shows that the type system cannot be fooled by declaring an odd-length list to
have even length.

Sometimes it is helpful for data type declarations to have multiple type parameters. These must
be enclosed in parenthesis and separated by commas. For example:

# type (’a,’b) swaplist = SNil | SCons of ’a * ((’b,’a) swaplist);;

type (’a, ’b) swaplist = SNil | SCons of ’a * (’b, ’a) swaplist

# let alts = SCons(1, SCons(true, SCons(2, SCons(false, SNil))));;

val alts : (int, bool) swaplist =

SCons (1, SCons (true, SCons (2, SCons (false, SNil))))

# let stail xs =

match xs with

SNil -> raise (Failure "attempt to take tail of empty swaplist")

| SCons(x,xs’) -> xs’;;

val stail : (’a, ’b) swaplist -> (’b, ’a) swaplist = <fun>

# stail alts;;

- : (bool, int) swaplist = SCons (true, SCons (2, SCons (false, SNil)))

# let srev xs =

let rec loop olds news =

match olds with

SNil -> news

| SCons(x,xs’) -> loop xs’ (SCons(x,news))

in loop xs SNil;;

val srev : (’a, ’a) swaplist -> (’a, ’a) swaplist = <fun>

3



Note that the Ocaml type reconstruction process forces both swaplist type parameters to be
the same. Intuitively, this is because the type of the first element of the reversed list depends on
whether the list length is even or odd. When these two types are unified, srev works on any length
of list.

# srev alts;;

Characters 5-9:

srev alts;;

^^^^

This expression has type (int, bool) swaplist but is here used with type

(int, int) swaplist

Invoking srev on alts fails because it has type (int, bool) swaplist, which is not match the
form (’a, ’a) swaplist. However, we can use srev on lists that do match this form:

# srev (SCons(true, SCons(false, SNil)));;

- : (bool, bool) swaplist = SCons (false, SCons (true, SNil))

# srev (SCons(1, SCons(2, SCons(3, SNil))));;

- : (int, int) swaplist = SCons (3, SCons (2, SCons (1, SNil)))

Data type declarations are different from type abbreviations, even though both are are intro-
duced via the type keyword. Consider the following:

# type ’a doubloon1 = ’a * ’a;; (* Type abbreviation *)

type ’a doubloon1 = ’a * ’a

# type ’a doubloon2 = Doubloon of ’a * ’a;; (* Data type declaration *)

type ’a doubloon2 = Doubloon of ’a * ’a

The presence of the capitalized constructor name Doubloon (as well as the keyword of1) is the
syntactic marker that indicates that doubloon2 is a sum-of-products data type rather than a type
abbreviation. Recall that constructor names must be capitalized in Ocaml.

Note that doubloon2 is an example of a data type with just a single constructor. Such data types
can be useful as a simple data abstraction mechanism in cases where it is desirable to distinguish
representations that happen to have the same concrete type.2 For example:

# let swap1 ((x,y) : ’a doubloon1) = (y, x);;

val swap1 : ’a doubloon1 -> ’a * ’a = <fun>

# let swap2 d = match d with Doubloon (x,y) -> Doubloon (y,x);;

val swap2 : ’a doubloon2 -> ’a doubloon2 = <fun>

# swap1 (1,2);;

- : int * int = (2, 1)

# swap2 (Doubloon(1,2));;

- : int doubloon2 = Doubloon (2, 1)

# swap1 (Doubloon(1,2));;

Characters 7-20:

swap1 (Doubloon(1,2));;

^^^^^^^^^^^^^

This expression has type ’a doubloon2 but is here used with type

’b doubloon1 = ’b * ’b

1The of keyword is not required for nullary constructors, such as None in the option data type.
2However, this is a very crude form of abstraction, since the concrete representation can be manipulated via

pattern matching. For true data abstraction, the module mechanism described in Handout #23 should be used.

4



# swap2 (1,2);;

Characters 7-10:

swap2 (1,2);;

^^^

This expression has type int * int but is here used with type ’a doubloon2

2 Binary Trees

2.1 Background

A classic example of a parameterized recursive data type is the binary tree. A binary tree is
either (1) a leaf or (2) a node with a left subtree, value, and right subtree. Here is a depiction of a
sample binary tree:

Node

Node

Leaf 2 Leaf

4 Node

Node

Leaf 1 Node

Leaf 5 Leaf

6 Node

Leaf 3 Leaf

The depiction is more compact if we put each value in the node position and use for each leaf:

4

2 6

1

5

3

The notation is even more compact if we do not draw the leaves:

4

2 6

1

5

3

5



2.2 Binary Trees in Ocaml

We can express the type of a binary tree in Ocaml as follows:

(* Binary tree datatype abstracted over type of node value *)

type ’a bintree =

Leaf

| Node of ’a bintree * ’a * ’a bintree (* left subtree, value, right subtree *)

Here is how we create our sample binary tree of integers in Ocaml:

# let int_tree =

Node(Node(Leaf, 2, Leaf),

4,

Node(Node(Leaf, 1, Node(Leaf, 5, Leaf)),

6,

Node(Leaf, 3, Leaf)));;

val int_tree : int bintree =

Node (Node (Leaf, 2, Leaf), 4,

Node (Node (Leaf, 1, Node (Leaf, 5, Leaf)), 6, Node (Leaf, 3, Leaf)))

Of course, we can create a binary tree of strings instead, such as:

green

like and

eggs ham

# let string_tree =

Node(Node(Leaf, "like", Leaf),

"green",

Node(Node(Leaf, "eggs", Leaf),

"and",

Node(Leaf, "ham", Leaf)));;

val string_tree : string bintree =

Node (Node (Leaf, "like", Leaf), "green",

Node (Node (Leaf, "eggs", Leaf), "and", Node (Leaf, "ham", Leaf)))

Now we’ll define some simple functions that manipulate trees in Figs. 2–4. In each case we
will use the match construct to test whether a given tree is a leaf or a node and to extract the
components of the node.

6



# let rec nodes tr = (* Returns number of nodes in tree *)

match tr with

Leaf -> 0

| Node(l,v,r) -> 1 + (nodes l) + (nodes r);;

val nodes : ’a bintree -> int = <fun>

# nodes int_tree;;

- : int = 6

# nodes string_tree;;

- : int = 5

# let rec height tr = (* Returns height of tree *)

match tr with

Leaf -> 0

| Node(l,v,r) -> 1 + max (height l) (height r);;

val height : ’a bintree -> int = <fun>

# height int_tree;;

- : int = 4

# height string_tree;;

- : int = 3

# let rec sum tr = (* Returns sum of nodes in tree of integers *)

match tr with

Leaf -> 0

| Node(l,v,r) -> v + (sum l) + (sum r);;

val sum : int bintree -> int = <fun>

# sum int_tree;;

- : int = 21

Figure 2: Binary tree functions, part 1.

7



# let rec prelist tr = (* Returns pre-order list of leaves *)

match tr with

Leaf -> []

| Node(l,v,r) -> v :: (prelist l) @ (prelist r);;

val prelist : ’a bintree -> ’a list = <fun>

# prelist int_tree;;

- : int list = [4; 2; 6; 1; 5; 3]

# prelist string_tree;;

- : string list = ["green"; "like"; "and"; "eggs"; "ham"]

# let rec inlist tr = (* Returns in-order list of leaves *)

match tr with

Leaf -> []

| Node(l,v,r) -> (inlist l) @ [v] @ (inlist r);;

val inlist : ’a bintree -> ’a list = <fun>

# inlist int_tree;;

- : int list = [2; 4; 1; 5; 6; 3]

# inlist string_tree;;

- : string list = ["like"; "green"; "eggs"; "and"; "ham"]

(* Returns post-order list of leaves *)

# let rec postlist tr =

match tr with

Leaf -> []

| Node(l,v,r) -> (postlist l) @ (postlist r) @ [v];;

val postlist : ’a bintree -> ’a list = <fun>

# postlist int_tree;;

- : int list = [2; 5; 1; 3; 6; 4]

# postlist string_tree;;

- : string list = ["like"; "eggs"; "ham"; "and"; "green"]

Figure 3: Binary tree functions, part 2.

8



# let rec map f tr = (* Map a function over every value in a tree *)

match tr with

Leaf -> Leaf

| Node(l,v,r) -> Node(map f l, f v, map f r);;

val map : (’a -> ’b) -> ’a bintree -> ’b bintree = <fun>

# map (( * ) 10) int_tree;;

- : int bintree =

Node (Node (Leaf, 20, Leaf), 40,

Node (Node (Leaf, 10, Node (Leaf, 50, Leaf)), 60, Node (Leaf, 30, Leaf)))

# map String.uppercase string_tree;;

- : string bintree =

Node (Node (Leaf, "LIKE", Leaf), "GREEN",

Node (Node (Leaf, "EGGS", Leaf), "AND", Node (Leaf, "HAM", Leaf)))

# map String.length string_tree;;

- : int bintree =

Node (Node (Leaf, 4, Leaf), 5,

Node (Node (Leaf, 4, Leaf), 3, Node (Leaf, 3, Leaf)))

# map ((flip String.get) 0) string_tree;;

- : char bintree =

Node (Node (Leaf, ’l’, Leaf), ’g’,

Node (Node (Leaf, ’e’, Leaf), ’a’, Node (Leaf, ’h’, Leaf)))

# let rec fold glue lfval tr = (* Divide/conquer/glue on trees *)

match tr with

Leaf -> lfval

| Node(l,v,r) -> glue (fold glue lfval l) v (fold glue lfval r);;

val fold : (’a -> ’b -> ’a -> ’a) -> ’a -> ’b bintree -> ’a = <fun>

# let sum = fold (fun l v r -> l + v + r) 0;; (* Alternative definition *)

val sum : int bintree -> int = <fun>

(* can define nodes, height similarly *)

# let prelist tr = fold (fun l v r -> v :: l @ r) [] tr;; (* Alternative definition *)

val prelist : ’a bintree -> ’a list = <fun>

(* can define inlist, postlist similarly *)

# let toString valToString tr =

fold (fun l v r -> "(" ^ l ^ " " ^ (valToString v) ^ " " ^ r ^ ")")

"*"

tr;;

val toString : (’a -> string) -> ’a bintree -> string = <fun>

# toString string_of_int int_tree;;

- : string = "((* 2 *) 4 ((* 1 (* 5 *)) 6 (* 3 *)))"

# toString FunUtils.id string_tree;;

- : string = "((* like *) green ((* eggs *) and (* ham *)))"

Figure 4: Binary tree functions, part 3.

9



2.3 Binary Search Trees

A common use of binary trees in practice is to implement binary search trees (BSTs). The BST

condition holds at a non-leaf binary tree node if (1) all elements in the left subtree of the node
are ≤ the node value and (2) all elements in the right subtree of the node are ≥ the node value. A
tree is a BST if the BST condition holds at all non-leaf nodes in the tree.

For example, below are some of the many possible BSTs containing the numbers 1 through 7.
Note that a BST is not required to be balanced in any way.

1

2

3

4

5

6

7

3

1

2

6

5

4

7

4

2

1 3

6

5 7

6

2

1 4

3 5

7

7

6

5

4

3

2

1

Fig. 5 presents a BSTSet module in which sets are represented as binary search trees. (This
is the BSTSet module mentioned in the discussion of sets in Handout #23.) The combination of
sum-of-product data types, pattern matching on these types, and higher-order functions makes this
implementation remarkably concise. It is worthwhile for you to compare this implementation to a
corresponding implementation in other languages, such as Java or C.

3 S-Expressions

3.1 Overview

A symbolic expression (s-expression for short) is a simple notation for representing tree struc-
tures using linear text strings containing matched pairs of parentheses. Each leaf of a tree is an
atom, which (to first approximation) is any sequence of characters that does not contain a left
parenthesis (‘(’), a right parenthesis (‘)’), or a whitespace character (space, tab, newline, etc.).3

Examples of atoms include x, this-is-an-atom, anotherKindOfAtom, 17, 3.14159, 4/3*pi*r^2,
a.b[2]%3, ’Q’, and "a (string) atom". A node in an s-expression tree is represented by a pair
of parentheses surrounding zero or s-expressions that represent the node’s subtrees. For example,
the s-expression

((this is) an ((example) (s-expression tree)))

designates the structure depicted in Fig. 6. Whitespace is necessary for separating atoms that
appear next to each other, but can be used liberally to enhance (or obscure!) the readability of the
structure. Thus, the above s-expression could also be written as

3As we shall see, string and character literals can contain parentheses and whitespace characters.

10



module BSTSet : SET = struct

open Bintree (* exports bintree datatype and functions from previous section *)

type ’a set = ’a bintree

let empty = Leaf

let singleton x = Node(Leaf, x, Leaf)

let rec insert x t =

match t with

Leaf -> singleton x

| Node(l,v,r) -> if x = v then t

else if x < v then Node(insert x l, v, r)

else Node(l, v, insert x r)

let rec member x s =

match s with

Leaf -> false

| Node(l,v,r) -> if x = v then true

else if x < v then member x l

else member x r

(* Assume called on non-empty tree *)

let rec deleteMax t =

match t with

Leaf -> raise (Failure "shouldn’t happen")

| Node(l,v,Leaf) -> (v, l)

| Node(l,v,r) -> let (max, r’) = deleteMax r in

(max, Node(l,v,r’))

let rec delete x s =

match s with

Leaf -> Leaf

| Node(l,v,Leaf) when v = x -> l

| Node(Leaf,v,r) when v = x -> r

| Node(l,v,r) -> if x = v then

let (pred, l’) = deleteMax l in Node(l’, pred, r)

else if x < v then Node(delete x l, v, r)

else Node(l, v, delete x r)

let rec toList s = inlist s

let rec union s1 s2 = ListUtils.foldr insert s2 (postlist s1)

(* In union and below, postlist helps to preserve balance more than

inlist or prelist in a foldr. For a foldl, prelist would be best. *)

let rec intersection s1 s2 =

ListUtils.foldr (fun x s -> if member x s1 then insert x s

else s)

empty

(postlist s2)

let rec difference s1 s2 = ListUtils.foldr delete s1 (postlist s2)

let rec fromList xs = ListUtils.foldr insert empty xs

let rec toString eltToString s = StringUtils.listToString eltToString (toList s)

end

Figure 5: An implementation of the SET signature using binary search trees.

11



this is

an

example s-expression tree

Figure 6: Viewing ((this is) an ((example) (s-expression tree))) as a tree.

((this is)

an

((example)

(s-expression

tree)))

or (less readably) as

(

( this

is) an ( ( example

) (

s-expression tree )

)

)

without changing the structure of the tree.
S-expressions were pioneered in Lisp as a notation for data as well as programs (which we

have seen are just particular kinds of tree-shaped data!). We shall see that s-expressions are an
exceptionally simple and elegant way of solving the parsing problem: translating string-based
representations of data structures and programs into the tree structures they denote.4 For this
reason, all the mini-languages we study later in this course have a concrete syntax based on s-
expressions.

The fact that Lisp dialects (including Scheme) have a built-in primitive for parsing s-expressions
(read) and treating them as literals (quote) makes them particularly good for manipulating pro-
grams (in any language) written with s-expressions. It is not quite as convenient to manipulate
s-expression program syntax in other languages, such as Ocaml, but we shall see that it is still far
easier than solving the parsing problem for more general notations.

3.2 Representing S-Expressions in Ocaml

As with any other kind of tree-shaped data, s-expressions can be represented in Ocaml as values
of an appropriate datatype. The Ocaml datatype representing s-expression trees is presented in
Fig. 7.

There are five kinds of atoms, distinguished by type; these are the leaves of s-expression trees:

1. integer literals, constructed via Int;

2. floating point literals, constructed via Flt;

4There are detractors who hate s-expressions and claim that Lisp stands for Lots of Irritating Silly Parenthesis.

Apparently such people lack a critical aesthetic gene that prevents them from appreciating beautiful designs.

Strangely, many such people seem to prefer the far more verbose encoding of trees in XML notation discussed

later in the course. Go figure!

12



type sexp =

Int of int

| Flt of float

| Str of string

| Chr of char

| Sym of string

| Seq of sexp list

Figure 7: Ocaml s-expression datatype.

3. string literals, constructed via Str;

4. character literals, constructed via Chr; and

5. symbols, which are name tokens (as distinguished from quoted strings), constructed via Sym.

The nodes of s-expression trees are represented via the Seq constructor, whose sexp list argument
denotes any number of s-expression subtrees. For example, the s-expression given by the concrete
notation

(stuff (17 3.14159) ("foo" ’c’ bar))

would be expressed in Ocaml as:

Seq [Sym("stuff");

Seq [Int(17); Flt(3.14159)];

Seq [Str("foo"); Chr(’c’); Sym("bar")]]

The Sexp module in ~/cs251/utils/Sexp.ml contains several handy utilities for manipulating
sexp trees. In particular, it contains functions for parsing s-expression strings into sexp trees
and for unparsing sexp trees into s-expression trees. The signature SEXP for the Sexp module is
presented in Fig. 8. We will not study the implementation of the Sexp functions, but will use them
as black boxes.

Here are some sample invocations of functions from the Sexp module:

# let s = Sexp.stringToSexp "(stuff (17 3.14159) (\"foo\" ’c’ bar))";;

val s : Sexp.sexp =

Sexp.Seq

[Sexp.Sym "stuff"; Sexp.Seq [Sexp.Int 17; Sexp.Flt 3.14159];

Sexp.Seq [Sexp.Str "foo"; Sexp.Chr ’c’; Sexp.Sym "bar"]]

# Sexp.sexpToString s;;

- : string = "(stuff (17 3.14159) (\"foo\" ’c’ bar))"

# let ss = Sexp.stringToSexps "stuff (17 3.14159) (\"foo\" ’c’ bar)";;

val ss : Sexp.sexp list =

[Sexp.Sym "stuff"; Sexp.Seq [Sexp.Int 17; Sexp.Flt 3.14159];

Sexp.Seq [Sexp.Str "foo"; Sexp.Chr ’c’; Sexp.Sym "bar"]]

# Sexp.sexpsToString ss;;

- : string = "stuff\n\n(17 3.14159)\n\n(\"foo\" ’c’ bar)"

13



module type SEXP = sig

(* The sexp type is exposed for the world to see *)

type sexp =

Int of int

| Flt of float

| Str of string

| Chr of char

| Sym of string

| Seq of sexp list

exception IllFormedSexp of string

(* This exception is used for all errors in s-expression manipulation *)

val stringToSexp : string -> sexp

(* (stringToSexp <str>) returns the sexp tree represented by the s-expression

<str>. Raise an IllFormedSexp exception if <str> is not a valid

s-expression string. *)

val stringToSexps : string -> sexp list

(* (stringToSexps <str>) returns the list of sexp trees represented by <str>, which

is a string containing a sequence of s-expressions. Raise an IllFormedSexp

exception if <str> not a valid representation of a sequence of s-expressions. *)

val fileToSexp : string -> sexp

(* (fileToSexp <filename>) returns the sexp tree represented by the s-expression

contents of the file named by <filename>. Raises an IllFormedSexp exception

if the file contents is not a valid s-expression. *)

val fileToSexps : string -> sexp list

(* (fileToSexps <filename>) returns the list of sexp trees represented by the

contents of the file named by <filename>. Raises an IllFormedSexp exception if

the file contents is not a valid representation of a sequence of s-expressions. *)

val sexpToString : sexp -> string

(* (sexpToString <sexp>) returns an s-expression string representing <sexp> *)

val sexpToString’ : int -> sexp -> string

(* (sexpToString’ <width> <sexp>) returns an s-expression string representing

<sexp> in which an attempt is made for each line of the result to be

<= <width> characters wide. *)

val sexpsToString : sexp list -> string

(* (sexpsToString <sexps>) returns string representations of the sexp trees

in <sexps> separated by two newlines. *)

val sexpToFile : sexp -> string -> unit

(* (sexpsToFile <sexp> <filename>) writes a string representation of <sexp>

to the file name <filename>. *)

val readSexp : unit -> sexp

(* Reads lines from standard input until a complete s-expression has been

found, and returns the sexp tree for this s-expresion. *)

end

Figure 8: The SEXP signature.

14



# Sexp.readSexp();;

(a b

(c d e)

(f (g h))

i)

- : Sexp.sexp =

Sexp.Seq

[Sexp.Sym "a"; Sexp.Sym "b";

Sexp.Seq [Sexp.Sym "c"; Sexp.Sym "d"; Sexp.Sym "e"];

Sexp.Seq [Sexp.Sym "f"; Sexp.Seq [Sexp.Sym "g"; Sexp.Sym "h"]];

Sexp.Sym "i"]

3.3 S-Expression Representations of Sum-of-Product Trees

We will mainly use s-expressions for concisely representing the trees implied by sum-of-product
data type constructor invocations. We will represent a tree node with tag tag and subtrees t1 . . . tn

by an s-expression of the form:

(tag <s-expression for t1> . . . <s-expression for tn>)

For instance, consider the following figure trees

Circle

1.0

Rect

2.0 3.0

Tri

4.0 5.0 6.0
(Circle 1.0) (Rect 2.0 3.0) (Tri 4.0 5.0 6.0)

And here is a binary tree example:

Node

Node

Leaf 2 Leaf

4 Node

Node

Leaf 1 Node

Leaf 5 Leaf

6 Node

Leaf 3 Leaf

Using the above conventions, this would be represented via the s-expression:

(Node (Node (Leaf) 2 (Leaf))

4

(Node (Node (Leaf) 1 (Node (Leaf) 5 (Leaf)))

6

(Node (Leaf) 3 (Leaf)))) ; Let’s call this the ‘‘verbose’’ notation

This is not a very compact representation! We can often develop more compact representations
for particular data types. For instance, here are other s-expressions representing the binary tree
above:

((* 2 *) 4 ((* 1 (* 5 *)) 6 (* 3 *))) ; The ‘‘compact’’ notation

((2) 4 ((1 (5)) 6 (3))) ; The ‘‘dense’’ notation

Fig. 9 shows functions that convert between binary trees and these s-expression notations.

15



let rec toVerboseSexp eltToSexp tr =

match tr with

Leaf -> Seq [Sym "Leaf"]

| Node(l,v,r) -> Seq [Sym "Node";

toVerboseSexp eltToSexp l;

eltToSexp v;

toVerboseSexp eltToSexp r]

let rec toCompactSexp eltToSexp tr =

match tr with

Leaf -> Sym "*"

| Node(l,v,r) -> Seq [toCompactSexp eltToSexp l;

eltToSexp v;

toCompactSexp eltToSexp r]

let rec toDenseSexp eltToSexp s =

match s with

Leaf -> Seq([]) (* Special case for tree with just a leaf *)

| Node(Leaf,v,Leaf) -> Seq([eltToSexp v])

| Node(l,v,Leaf) -> Seq([toDenseSexp eltToSexp l; eltToSexp v])

| Node(Leaf,v,r) -> Seq([eltToSexp v; toDenseSexp eltToSexp r])

| Node(l,v,r) -> Seq([toDenseSexp eltToSexp l; eltToSexp v; toDenseSexp eltToSexp r])

let rec fromVerboseSexp eltFromSexp sexp =

match sexp with

Seq [Sym "Leaf"] -> Leaf

| Seq([ls; x; rs]) -> Node(fromVerboseSexp eltFromSexp ls,

eltFromSexp x,

fromVerboseSexp eltFromSexp rs)

| _ -> raise (Failure ("Bintree.fromVerboseSexp -- can’t handle sexp:\n"

^ (Sexp.sexpToString sexp)))

let rec fromCompactSexp eltFromSexp sexp =

match sexp with

Sym "*" -> Leaf

| Seq([ls; x; rs]) -> Node(fromCompactSexp eltFromSexp ls,

eltFromSexp x,

fromCompactSexp eltFromSexp rs)

| _ -> raise (Failure ("Bintree.fromCompactSexp -- can’t handle sexp:\n"

^ (Sexp.sexpToString sexp)))

let rec fromDenseSexp eltFromSexp sexp =

match sexp with

Sexp.Seq([]) -> Leaf

| Sexp.Seq([x]) -> Node(Leaf, eltFromSexp x, Leaf)

| Sexp.Seq([(Sexp.Seq _) as ls; x]) ->

Node(fromDenseSexp eltFromSexp ls, eltFromSexp x, Leaf)

| Sexp.Seq([x; (Sexp.Seq _) as rs]) ->

Node(Leaf, eltFromSexp x, fromDenseSexp eltFromSexp rs)

| Sexp.Seq([ls; x; rs]) -> Node(fromDenseSexp eltFromSexp ls,

eltFromSexp x,

fromDenseSexp eltFromSexp rs)

| _ -> raise (Failure ("Bintree.fromDenseSexp -- can’t handle sexp:\n"

^ (Sexp.sexpToString sexp)))

Figure 9: Functions for converting between binary trees and s-expressions.

16


