
CS251 Programming Languages Handout # 24
Prof. Lyn Turbak February 25, 2005
Wellesley College

Problem Set 4
Due: 6pm Friday, March 2

Overview:
The individual problem on this assignment tests your understanding of highe-order list oper-

ations. The group problems on this assignment will give you practice with the signal-processing
style of programming, modules, and sum-of-product datatypes.

Reading:

• Handout #8 (Jason Hickey’s Ocaml tutorial): Chapters 6, 7, 10 (ignore 10.4), and 11.

• Handout #22: John Backus’s Turing Award Lecture (Sections 1 – 11 and 15–16)

• Handout #23: Modules and Data Abstraction in Ocaml.

• Handout #25: Sum-of-Product Data Types

Individual Problem Submission:
Each student should turn in a hardcopy submission packet for the individual problem by slipping

it under Lyn’s office door by 6pm Fri. March. 2. The packet should include:

1. an individual problem header sheet;

2. your final version of disjoint.ml from Problem 1;

3. a transcript showing the result of running test_disjoint();

Each student should also submit a softcopy (consisting of your final ps4-individual directory) to
the drop directory ~cs251/drop/ps4/username.
Working Together:
If you want to work with a partner on this assignment, try to find a different partner than

you worked with on a previous assignment. If this is not possible, you may choose a partner from
before. But try not to choose the same partner you chose last week!

Group Problem Submission:
Each team should turn in a single hardcopy submission packet for all problems by slipping it

under Lyn’s office door by 6m on Fri. Mar. 2. The packet should include:

1. a team header sheet indicating the time that you (and your partner, if you are working with
one) spent on the parts of the assignment.

2. your pencil-and-paper answers for Group Problem 1;

3. your final version of PredSet.ml for Group Problem 2;

4. a transcript of test cases showing that your PredSet functions work;

5. your final version of OperationTreeSet.ml for Group Problem 3;

Each team should also submit a single softcopy (consisting of your final ps4-group directory) to
the drop directory ~cs251/drop/p4/username, where username is the username of one of the team
members (indicate which drop folder you used on your hardcopy header sheet).
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Individual Problem [20]: Feeling Disjointed
Consider the following Ocaml list function:

val pairwise disjoint: ’a list list -> bool

pairwise disjoint xss returns true if no two lists in xss share an element in
common. Otherwise (i.e., there are two lists in xss that share an element in common)
it returns false.

For example:

# pairwise_disjoint [];;

- : bool = true

# pairwise_disjoint [[1]];;

- : bool = true

# pairwise_disjoint [[1];[2]];;

- : bool = true

# pairwise_disjoint [[1;1];[2;2]];; (* There may be duplicates within a list *)

- : bool = true

# pairwise_disjoint [[1;2];[1]];;

- : bool = false

# pairwise_disjoint [[1;2];[2]];;

- : bool = false

# pairwise_disjoint [[1;2];[3;4;5];[6;7;8;9]];;

- : bool = true

# pairwise_disjoint [[1;2;1];[3;4;3;5];[6;7;6;8;8;9]];; (* Dups within a list OK *)

- : bool = true

# pairwise_disjoint [[6;1;4];[3;9];[8;2;7;5]];;

- : bool = true

# pairwise_disjoint [[6;1;7;4];[3;9];[8;2;7;5]];;

- : bool = false

# pairwise_disjoint [[6;1;4];[3;9;1];[8;2;7;5]];;

- : bool = false

# pairwise_disjoint [[6;1;4];[3;9];[8;3;2;7;5]];;

- : bool = false

# pairwise_disjoint [[5;45;25;35;15];[1];[3;23;13];[34;14;24;4];[2;12]];;

- : bool = true

# pairwise_disjoint [[5;45;2;35;15];[1];[3;23;13];[34;14;24;4];[2;12]];;

- : bool = false

# pairwise_disjoint [[5;45;25;35;15];[1];[3;23;13];[34;12;24;4];[2;12]];;

- : bool = false

# pairwise_disjoint [[5;45;25;35;15];[14];[3;23;13];[34;14;24;4];[2;12]];;

- : bool = false
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Your task in this problem is to flesh out a definition for the pairwise disjoint function, which can
be found in the file ~/cs251/ps4-individual/disjoint.ml. Your definition should not use any
explict recursion but should instead use the higher-order list functions in the ListUtils module
(which can be found in ~/cs251/utils/ListUtils.ml).

Notes:

• Use #use "load-disjoint.ml" to load all files relevant to the problem. This will load
FunUtils.ml, ListUtils.ml, and some testing code in addition to your definition(s) from
disjoint.ml.

• The file disjoint.ml begins with the declarations:

open FunUtils

open ListUtils

This makes all functions in the FunUtils and ListUtils modules available in funs.ml with-
out the need for explicit qualification. E.g., you can write id rather than FunUtils.id and
map rather than ListUtils.map.

• You may define any auxiliary functions you find helpful, but these should not use explicit
recursion either.

• If you cannot think of any way to solve some part of the problem except by using recursion,
you may use recursion for partial credit.

• Use test_disjoint() to test your pairwise disjoint function on a sample testing suite.
After changing your definition of pairwise disjoint, you should reload all files via

#use "load-disjoint.ml"

before invoking test_disjoint().
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Group Problems

Group Problem 1 [35]: Backus’s Paper
This problem is about John Backus’s 1977 Turing Award Lecture: Can Programming be Lib-

erated from the von Neumann Style? A Functional Style and its Algebra of Programs. You should
begin this problem by reading Sections 1 – 11 and 15–16 of this paper. (Although Sections 12–14
are very interesting, they require more time than I want you to spend on this problem.)
Section 11.2 introduces the details of the FP language. Backus uses many notations that may

be unfamiliar to you. For example,

• p1 → e1; . . . ; pn → en; en+1 is similar to the following Ocaml expression:

if p1 then e1

else . . .
else if pn then pn

else en+1

• 〈e1, . . . , en〉 denotes the sequence of the n values of the expressions e1, . . ., en. φ denotes the
empty sequence. Because FP is dynamically typed, such sequences can represent both tuples
and lists from Ocaml.

• The symbol ⊥ (pronounced “bottom”) denotes the value of an expression that doesn’t termi-
nate (i.e., it loops infinitely) or terminates with an error.

Consult Lyn if you have trouble understanding Backus’s notation.

a. [10] Write a few paragraphs summarizing the “big ideas” in the sections of the paper that
you have been assigned.

b. [5] One of the reasons this paper is well-known is that in it Backus coined the term “von
Neumann bottleneck”. Describe what this is and its relevance to the paper.

c. [5] The FP language Backus introduces in Section 11 does not support abstraction expressions
like Ocaml’s fun and Scheme’s lambda. Why did Backus make this decision in FP?

d. [15] Consider the following FP definition:

Def F ≡ α/+ ◦ αα× ◦ αdistl ◦ distr ◦ [id, id]

What is the value of F 〈2, 3, 5〉? Show the evaluation of this expression in algebra-like steps.

Group Problem 2 [30]: Functional Sets
InOcaml, we can implement abstract data types in terms of familiar structures like lists, arrays,

and trees. But we can also use functions to implement data types. Here we show a compelling
example of using functions to implement sets. Rather than using the SET signature used in Handout
#23 (see Fig. 1)1 we will use the somewhat different PRED_SET signature shown in Fig. 2. Here is
a comparison of PRED_SET with SET:

• PRED_SET has many of the same operations as SET: empty, singleton, member, union,
intersection, difference, and fromList

1The SET signature in Fig. 1 includes two functions, fromSexp and toSexp that were not mentioned in Handout

#23, but are actually part of the set implementation you will use in Group Problem 3.
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• PRED_SET does not support the following operations of SET: isEmpty, size, toList, fromSexp,
toSexp, or toString.

• PRED_SET has two operations that SET does not have: fromPred and toPred. These allow
converting between predicates and sets.

module type SET = sig

type ’a set

val empty : ’a set (* the empty set *)

val singleton : ’a -> ’a set (* a set with one element *)

val insert : ’a -> ’a set -> ’a set (* insert elt into given set *)

val delete : ’a -> ’a set -> ’a set (* delete elt from given set *)

val isEmpty: ’a set -> bool (* is the given set empty? *)

val size : ’a set -> int (* number of distinct elements in given set *)

val member : ’a -> ’a set -> bool (* is elt a member of given set? *)

val union: ’a set -> ’a set -> ’a set (* union of two sets *)

val intersection: ’a set -> ’a set -> ’a set (* interscetion of two sets *)

val difference: ’a set -> ’a set -> ’a set (* difference of two sets *)

val fromList : ’a list -> ’a set (* create a set from a list *)

val toList : ’a set -> ’a list (* list all set elts, sorted low to high *)

val fromSexp : (Sexp.sexp -> ’a)

-> Sexp.sexp -> ’a set (* translates s-expression rep. into set *)

val toSexp : (’a -> Sexp.sexp)

-> ’a set -> Sexp.sexp (* translates set into s-expression rep. *)

val toString : (’a -> string)

-> ’a set -> string (* string representation of the set *)

end

Figure 1: The SET signature.

module type PRED_SET = sig

type ’a set

val empty: ’a set

val singleton: ’a -> ’a set

val member: ’a -> ’a set -> bool

val union: ’a set -> ’a set -> ’a set

val intersection: ’a set -> ’a set -> ’a set

val difference:’a set -> ’a set -> ’a set

val fromList: ’a list -> ’a set

val fromPred: (’a -> bool) -> ’a set

val toPred: ’a set -> (’a -> bool)

end

Figure 2: A signature for a version of sets based upon predicates.
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The fromPred and toPred operations are based on the observation that a membership predicate
describes exactly which elements are in the set and which are not. Consider the following example:

# let s = fromPred (fun x -> (x = 2) || (x = 3) || (x = 5));;

val s : int PredSet.set = <abstr>

# member 3 s;;

- : bool = true

# member 5 s;;

- : bool = true

# member 4 s;;

- : bool = false

# member 100 s;;

- : bool = false

The set s consists of exactly those elements satisfying the predicate passed to fromPred – in this
case, the integers 2, 3, and 5.
Defining sets in terms of predicates has many benefits. Most important, it is easy to specify sets

that have infinite numbers of elements! For example, the set of all even integers can be expressed
as:

fromPred (fun x -> (x mod 2) = 0)

This predicate is true of even integers, but is false for all other integers. The set of all values of
a given type is expressed as fromPred (fun x -> true). Many large finite sets are also easy to
specify. For example, the set of all integers between 251 and 6821 (inclusive) can be expressed as:

fromPred (fun x -> (x >= 251) && (x <= 6821))

a. [20]: PredSet

The most obvious way to implement the PRED_SET signature is in a module PredSet that defines
the set type as a predicate:

type ’a set = ’a -> bool

Based on this representation, flesh out all the function definitions in the the PredSet module in
the file ~/cs251/ps4-group/PredSet.ml. Each of your definitions should be a one-liner. For
example, the definition of member is

let member x s = s x

In the predicate representation, you can always write a set as

fun y -> expression determining if y is in the set

For example, you can write the union definition as

let union s1 s2 = fun y -> expression determining if y is in the union of s1 and s2

Most other function definitions in PredSet can be expressed in a similar way. In fromList (which
can also be written in this style), you may use operations from the List or ListUtils modules.

Use #use "PredSet.ml" to load your module and open PredSet to make names in the module
accessible without qualification. Convince yourself that your implementation is correct by making
some simple sets and testing various set operations on them. Your hardcopy submission for this
problem should include a transcript of your test cases.

b. [10]: Other Set Functions

In this part, you are asked to consider whether it is possible to implement the SET and PRED_SET
signatures if we extend them with additional functionality. Explain all your answers.
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1. Can we add to the PRED_SET signature the following function?

val toList: ’a set -> ’a list

Returns a list of all the elements in set.

2. Can we add to the SET signature the following function?

val fromPred: (’a -> bool) -> ’a set

Returns a set of all elements satsifying the given predicate.

3. Can we add the following function to the SET signature? To the PRED_SET signature?

val isEmpty: ’a set -> bool

Returns true if the set is empty, and false otherwise.

4. Can we add the following function to the SET signature? To the PRED_SET signature?

val complement: ’a set -> ’a set

Returns the complement of the given set – i.e., all the value of type ’a that are not in
the given set.

5. Can we add the following function to the SET signature? To the PRED_SET signature?

val isSubset: ’a set -> ’a set -> bool

Returns true if all of the elements of the first set parameter are are also elements of
the second set parameter, and false otherwise.

Group Problem 3 [35]: OperationTreeSet

Background

In this problem, you will flesh out an implementation of the SET signature in Fig. 1. This is
the same as the SET signature presented in Handout #23 except that it includes a toSexp that
translates a set into an s-expression representation and a fromSexp function that translates an s-
expression representation into a set. Different set implementations may have different s-expression
representations. However, it should be the case that for all sets s, fromSexp (toSexp s) yields a
set with exactly the same elements as s.
Before beginning this problem, you should study the sorted set implementation of sets and the

BST implementation of sets:

• The sorted set implementation of sets is described in Section 4.2 of the Modules handout
(#23). The code for this implementation is in ~/cs251/sets/SortedListSet.ml. You can
test it via the following Ocaml commands:

#cd "/students/username/cs251/sets";;

#use "load-sorted-list-set.ml";;

testZZZ();;

where ZZZ is one of Tiny, Small, Medium, or Large. Each testZZZ function performs tests
on word files of different sizes: the tiny file has 16 words, the small file has 476 words, the
medium file has 5525 words, and the large file has 45425 words. (Because this is an inefficient
representation, testLarge() takes a very long time to execute.)

• The BST implementation of sets is described in Section 2.3 of the Sum of Products handout
(#25). The code for this implementation is in ~/cs251/sets/BSTSet.ml. You can test it via
the following Ocaml commands:

#cd "/students/username/cs251/sets";;

#use "load-bst-set.ml";;

testZZZ();;
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where ZZZ is one of Tiny, Small, Medium, or Large.

Important: It turns out that some of the above testing functions (in particular, testLarge())
require more stack space than is provided by Ocaml by default. In order to declare that Ocaml

should have more stack space, you need to perform the following steps exactly once (and everything
should be set after that):

1. Add the following line to the end of your ~/.bashrc file:

export OCAMLRUNPARAM=’l=10M’

Note that the character ’l’ is a lowercase ’L’ and not the digit ’1’. This tells Ocaml to
allocate 10 megawords of stack space (40 times greater than the default 250 kilowords).

2. After modifying your ~/.bashrc file, log out of Linux and then log back in. You should now
be all set.

Operation Tree Representation of Sets

A very different way of representing a set as a tree is to remember the structure of the set
operations empty, insert, delete, union, intersection, and difference used to create the set.
For example, consider the set t created as follows:

let t = (delete 4 (difference (union (union (insert 1 empty)

(insert 4 empty))

(union (insert 7 empty)

(insert 4 empty)))

(intersection (insert 1 empty)

(union (insert 1 empty)

(insert 6 empty)))))

Abstractly, t is the singleton set {7}. But one concrete representation of t is the following operation
tree:

Delete

4 Difference

Union

Union

Insert

1 Empty

Insert

4 Empty

Union

Insert

7 Empty

Insert

4 Empty

Intersection

Insert

1 Empty

Union

Insert

1 Empty

Insert

6 Empty

One advantage of using such operation trees to represent sets is that the empty, insert, delete,
union, difference, and intersection operations are extremely cheap – they just create a new tree
node with the operands as subtrees, and thus take constant time and space! But other operations,
such as member and toList, can be more expensive than in other implementations.

Your Task

In this problem, you are asked to flesh out the missing operations in the skeleton of the
OperationTreeSetmodule (Fig. 3) in the file ~/cs251/ps4-group/OperationTreeSet.ml. In this
module, the set datatype is create by constructors Empty, Insert, Delete, Union, Intersection,
and Difference. The empty, singleton, insert, delete, union, intersection, difference,
and toString operations are trival and have already been implemented. You are responsible for
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module OperationTreeSet : SET = struct

module LSU = ListSetUtils

type ’a set =

Empty

| Insert of ’a * ’a set

| Delete of ’a * ’a set

| Union of ’a set * ’a set

| Intersection of ’a set * ’a set

| Difference of ’a set * ’a set

let empty = Empty

let insert x s = Insert(x,s)

let singleton x = Insert(x, Empty)

let delete x s = Delete(x, s)

let union s1 s2 = Union(s1,s2)

let intersection s1 s2 = Intersection(s1,s2)

let difference s1 s2 = Difference(s1,s2)

let rec toList s = (* Replace this stub. You may use operations in ListSetUtils,

using the abbreviation LSU defined above. *)

match s with

Empty -> []

| Insert(y,s’) -> []

| Delete(y,s’) -> []

| Union(s1,s2) -> []

| Intersection(s1,s2) -> []

| Difference(s1,s2) -> []

let rec fromList xs = Empty (* Replace this stub. You should define this in terms of

a "balanced" tree of Union, Insert, and Empty nodes *)

let rec member x s = (* Replace this stub. Do *not* use toList in this definition! *)

match s with

Empty -> true

| Insert(y,s’) -> true

| Delete(y,s’) -> true

| Union(s1,s2) -> true

| Intersection(s1,s2) -> true

| Difference(s1,s2) -> true

let size s = 17 (* Replace this stub. You *may* use toList in this definition. *)

let isEmpty s = false (* Replace this stub. You *may* use toList in this definition. *)

let rec toSexp eltToSexp s = (* Replace this stub. This function returns an

s-expression that shows the structure of the tree.

See the PS4 Problem 3 description for examples *)

match s with

Empty -> Sexp.Seq []

| Insert(y,s’) -> Sexp.Seq []

| Delete(y,s’) -> Sexp.Seq []

| Union(s1,s2) -> Sexp.Seq []

| Difference(s1,s2) -> Sexp.Seq []

| Intersection(s1,s2) -> Sexp.Seq []

let rec fromSexp eltFromSexp sexp = Empty (* Replace this stub *)

let rec toString eltToString s = StringUtils.listToString eltToString (toList s)

end

Figure 3: Skeleton of the OperationTreeSet module.
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fleshing out the definitions of the isEmpty, size, member, toList, fromList, toSexp, and fromSexp
operations.

Notes:

• You can test your implementation via the following Ocaml commands:

#cd "/students/username/cs251/ps4-group";;

#use "load-optree-set.ml";;

testZZZ();;

where ZZZ is one of Tiny, Small, Medium, or Large. Before trying testLarge(), you should
embiggen ;-) the default Ocaml stack size by following the instructions at the beginning of
this problem.

When a function fails a test, the nature of the problem may not always be apparent from the
displayed feedback. Please study the testing code in ~/cs251/sets/SetTest.ml or consult
Lyn if you have trouble understanding the output of the tester.

• The testing code for all functions assumes that fromList works correctly, and the testing
code for most functions (all except for member, and toString) assumes that toList works
correctly. So you must implement fromList for any of the tests to work, and must implement
toList for most of the tests to work.

• Your toList function should be defined by case analysis on the structure of the operation tree,
as suggested by the skeleton for toList in Fig. 3. When fleshing out the toList definition,
you will find it helpful to use functions in the ListSetUtils module. (These are also used in
Handout #23 to implement SortedListSet.) The declaration

module LSU = ListSetUtils

in OperationTreeSet allows you to use the short prefix LSU rather than the long prefix
ListSetUtils to access these functions.

• In fromList, for lists with ≥ 2 elements, you should first split the list into two (nearly)
equal-length sublists and union the results of turning the sublists into sets. This yields a
height-balanced operation tree.

• Your implementation of member should not use the toList function. Instead, it should be
defined by case analysis on the structure of the operation tree, as suggested by the skeleton
for member in Fig. 3.

• Your implementation of size and isEmptymay use the toList function. Indeed, it is difficult
to implement these functions by a direct case analysis on the operation tree. Why?

• Before implementing toSexp and fromSexp, you should study the toSexp and fromSexp

functions in the sorted list and BST implementations of sets.

• In toSexp, you should represent each non-empty node in the operation tree as an s-expression
list whose first element is a lowercase symbol naming the operator and the rest of whose
elements are the operands. An empty node should be represented as the symbol empty For
example, the printed representation of the s-expression shown at the beginning of this problem
is:

(delete 4 (difference (union (union (insert 1 empty)

(insert 4 empty))

(union (insert 7 empty)

(insert 4 empty)))

(intersection (insert 1 empty)

(union (insert 1 empty)

(insert 6 empty)))))
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Note that this printed representation is a legalOcaml expression that, when evaluated, would
re-create the tree!

• In fromSexp, you can used nested patterns to succinctly describe how to convert s-expressions
of the form described above into a constructor tree for the set datatype. If an inappropriate
s-expression is encountered, fromSexp should raise an exception using the following code:

raise (Failure ("OperationTreeSet.fromExp -- can’t handle sexp:\n"

^ (Sexp.sexpToString sexp)))

• The testing code tests toSexp and fromSexp together, so your implementation will not pass
the test cases until both are working correctly.
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Individual Problem Header Page

Please make this the first page of your hardcopy submission of individual problems.

CS251 Problem Set 4 Individual Problems
Due 6pm Friday, March 2

Name:

Date & Time Submitted:

By signing below, I attest that I have followed the policy for individual prob-

lems set forth in the Course Information handout. In particular, I have not
consulted with any person except Lyn about these problems and I have not
consulted any materials from previous semesters of CS251.

Signature:

In the Time column, please estimate the time you spent on the parts of this problem set. Please

try to be as accurate as possible; this information will help me design future problem sets. I will fill

out the Score column when grading you problem set.

Part Time Score

General Reading

Problem 1 [20]

Total
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Group Problem Header Page

Please make this the first page of your hardcopy submission for group problems.

CS251 Problem Set 4 Group Problems
Due 6pm Friday, March 2

Names of Team Members:

Date & Time Submitted:

Collaborators (anyone you or your team collaborated with):

By signing below, I/we attest that I/we have followed the collaboration policy
as specified in the Course Information handout.
Signature(s):

In the Time column, please estimate the time you or your team spent on the parts of this problem

set. Team members should be working closely together, so it will be assumed that the time reported

is the time for each team member. Please try to be as accurate as possible; this information will

help me design future problem sets. I will fill out the Score column when grading you problem set.

Part Time Score

General Reading

Problem 1 [35]

Problem 2 [30]

Problem 3 [35]

Total
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