
CS251 Programming Languages Handout # ??
Prof. Lyn Turbak ??, 2008
Wellesley College

Problem Set 5
Due: ??

Overview:
The individual problem on this assignment tests your understanding of first-class functions,

higher-order list operations, and modules. The group problems on this assignment will give you
practice with writing an interpreter and understanding the tree-based nature of programs and the
scope of names in a program.

Reading:

• Handout #22: John Backus’s Turing Award Lecture (Section 11)

• Handout #27: Intex: An Introduction to Program Manipulation

• Handout #30: Bindex: An Introduction to Naming

Individual Problem Submission:
Each student should turn in a hardcopy submission packet for the individual problem by slipping

it under Lyn’s office door by ??. The packet should include:

1. an individual problem header sheet;

2. your final version of ListMatrix.ml from Problem 1a;

3. a transcript showing the result of running testListMatrix();

4. your final version of FunMatrix.ml from Problem 1b;

5. a transcript showing the result of running testFunMatrix();

Each student should also submit a softcopy (consisting of your final ps5-individual directory) to
the drop directory ~cs251/drop/ps5/username.

Working Together:
If you want to work with a partner on this assignment, try to find a different partner than

you worked with on a previous assignment. If this is not possible, you may choose a partner from
before. But try not to choose the same partner you chose last week!

Group Problem Submission:
Each team should turn in a single hardcopy submission packet for all problems by slipping it

under Lyn’s office door by ??. The packet should include:

1. a team header sheet indicating the time that you (and your partner, if you are working with
one) spent on the parts of the assignment.

2. your pencil-and-paper solution to Group Problem 1.

3. your final version of MiniFPInterp.ml from Group Problem 2a;

4. your final version of MiniFP.ml from Group Problem 2b;

5. a transcript of running test cases from Group Problem 2b;

Each team should also submit a single softcopy (consisting of your final ps5-new-group directory)
to the drop directory ~cs251/drop/ps5/username, where username is the username of one of the
team members (indicate which drop folder you used on your hardcopy header sheet).
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Individual Problem [40]: Enter the Matrix!

Matrix Definitions

A matrix is a two dimensional array of elements. A matrix M with r rows and c columns is
called an r × c matrix and is often depicted as follows:

M(1,1) M(1,2) · · · M(1,c)

M(2,1) M(2,2) · · · M(2,c)
...

...
. . .

...
M(r,1) M(r,2) · · · M(r,c)

The notation M(i,j) denotes the element in row i and column j of the matrix. Row and column
indices start at 1. We will assume throughout this problem that matrices are never
empty; i.e., they always have at least one row and one column.
Here is an example of a 3× 4 matrix A with integer elements:

61 64 69 76
71 74 79 86
81 84 89 96

In this example, A(2,3) is 79 and A(3,2) is 84. If M is an r × c matrix and i is outside the range
[1 . . . r] or j is outside the range [1 . . . c], then the notation M(i,j) is undefined.
The transpose of an r × c matrix M is a c × r matrix M ′ such that M ′

(i,j) = M(j,i). For
example, the transpose of A is the following 4× 3 matrix:

61 71 81
64 74 84
69 79 89
76 86 96

Ocaml MATRIX Signature

Fig. 1 presents anOcaml signature MATRIX for an immutable matrix abstract data type (ADT).
The contract for the functions in the MATRIX signature is presented in Fig. 2. Examples illustrating
the behavior of the matrix functions are shown in Fig. 3.

module type MATRIX = sig

type ’a matrix

val make : int -> int -> (int -> int -> ’a) -> ’a matrix

val dimensions : ’a matrix -> (int * int)

val get : int -> int -> ’a matrix -> ’a option

val put : int -> int -> ’a -> ’a matrix -> ’a matrix

val transpose : ’a matrix -> ’a matrix

val toLists : ’a matrix -> ’a list list

val map : (’a -> ’b) -> ’a matrix -> ’b matrix

end

Figure 1: The MATRIX signature.
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val make: int -> int -> (int -> int -> ’a) -> ’a matrix
Given positive integers r and c and a binary function f , make r c f returns an r× c matrix
m such that m(i,j) is the result of the function call f i j. If r or c is ≤ 0, the meaning of
this function is undefined.

val dimensions: ’a matrix -> (int * int)
dimensions m returns a pair (rows, cols), where rows is the number of rows in m and
cols is the number of cols in m.

val get: int -> int -> ’a matrix -> ’a option

If m is an r × c matrix, 1 ≤ i ≤ r, and 1 ≤ j ≤ c then get i j m returns Some v, where v
is the value m(i,j) Otherwise, get i j m returns None.

val put: int -> int -> ’a -> ’a matrix -> ’a matrix

If m is an r× c matrix, 1 ≤ i ≤ r, and 1 ≤ j ≤ c , then put i j v m returns a new matrix
m′ such that m′

(i,j) = v and m′

(i′,j′) = m(i′,j′) if i
′ 6= i or j′ 6= j; the original matrix m is

unchanged. Otherwise, put i j v m returns m unchanged.

val transpose: ’a matrix -> ’a matrix

Given an r × c matrix m, transpose m returns a new c× r matrix m′ such that m′

(i,j) =
m(j,i); the original matrix m is unchanged.

val toLists: ’a matrix -> ’a list list
Given an r × c matrix m, toLists m returns a length-r list of length-c lists. The kth
element of the returned list is a list of the elements in columns 1 through c of row k of m.

val map: (’a -> ’b) -> ’a matrix -> ’b matrix

Given a function f and a r× c matrix m, map f m returns a new r× c matrix m′ such that
m′

(i,j) = f(m(i,j)); the original matrix m is unchanged.

Figure 2: The contract for the seven Ocaml matrix-manipulation functions.

Matrix Implementations

In this problem, your task is to implement the MATRIX signature using two very different concrete
representations for matrices.

a. [20]: Matrices as Lists

A straightforward way to implement an r × c matrix is as a list of r elements, the ith of which
is a list of the c elements in the ith row of the matrix. In this case, the type ’a matrix is
implemented as ’a list list. For instance, in this representation, the example matrix A above
would be represented as:

[[61; 64; 69; 76];

[71; 74; 79; 86];

[81; 84; 89; 96]]

In this part you are to implement the seven functions in the MATRIX signature using the lists-of-
lists representation of matrices. But there’s a catch: You are not allowed to use recursion
in any of your definitions. Instead, you should define all functions using the higher order list
operations in the ListUtils module.

To do this part, go to ~/cs251/ps5-individual/ListMatrix.ml and flesh out the seven function
definitions in the ListMatrix module in this file. You should load this module in Ocaml via

#use "load-list-matrix.ml";;

and can test it by evaluating
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# let m1 = make 3 4 (fun i j -> 10*(i+5) + j*j);;

val m1 : int M.matrix = <abstr>

# dimensions m1;;

- : int * int = (3, 4)

# toLists m1;;

- : int list list = [[61; 64; 69; 76]; [71; 74; 79; 86]; [81; 84; 89; 96]]

# ListUtils.map (fun i -> (ListUtils.map (fun j -> get i j m1)

(ListUtils.range 0 5)))

(ListUtils.range 0 4);;

- : int option list list =

[[None; None; None; None; None; None];

[None; Some 61; Some 64; Some 69; Some 76; None];

[None; Some 71; Some 74; Some 79; Some 86; None];

[None; Some 81; Some 84; Some 89; Some 96; None];

[None; None; None; None; None; None]]

# let m2 = transpose m1;;

val m2 : int M.matrix = <abstr>

# dimensions m2;;

- : int * int = (4, 3)

# toLists m2;;

- : int list list = [[61; 71; 81]; [64; 74; 84]; [69; 79; 89]; [76; 86; 96]]

# let m3 = map char_of_int m1;;

val m3 : char M.matrix = <abstr>

# dimensions m3;;

- : int * int = (3, 4)

# toLists m3;;

- : char list list =

[[’=’; ’@’; ’E’; ’L’]; [’G’; ’J’; ’O’; ’V’]; [’Q’; ’T’; ’Y’; ’‘’]]

# let m4 = put 1 3 13 (put 3 1 31 m1);;

val m4 : int M.matrix = <abstr>

# dimensions m4;;

- : int * int = (3, 4)

# toLists m4;;

- : int list list = [[61; 64; 13; 76]; [71; 74; 79; 86]; [31; 84; 89; 96]]

# let m5 = put (-2) (-3) (-23) (put 0 0 0 (put 1 5 15 (put 5 1 51 m1)));;

val m5 : int M.matrix = <abstr>

# dimensions m5;;

- : int * int = (3, 4)

# toLists m5;;

- : int list list = [[61; 64; 69; 76]; [71; 74; 79; 86]; [81; 84; 89; 96]]

Figure 3: Examples illustrating the behavior of the matrix functions for a module M implementing
the MATRIX signature.

testListMatrix();;

Feel free to define any helper functions you find useful. However, you may not use recursion in
your helper functions. You may assume that every matrix has at least one row and one column.

b. [20]: Matrices as Functions

An alternative representation of a ’a matrix is as a function with type int -> int -> ’a option

that takes two arguments, the coordinates i and j, and returns an option (Some or None) of the
element at these coordinates.

In this part you are to implement the seven matrix functions using this functional representation
of matrices. As in the list representation, you are not allowed to use recursion in any of

4



your definitions. Additionally, you are not allowed to use any list operations in this
part except in the implementation of toLists.

To do this part, go to ~/cs251/ps5-individual/FunMatrix.ml and flesh out the seven function
definitions in the FunMatrix module in this file. You should load this module in Ocaml as
follows:

#use "load-fun-matrix.ml";;

and can test it by evaluating

testFunMatrix();;Notes:

• Feel free to define any helper functions you find useful.

• You may assume that every matrix has at least one row and one column.

• Think carefully about where the bounds checking of matrix indices should occur.

• Try to make your solutions as simple and as efficient as you can. Even if your solution
“works”, in terms of returning the correct results, some points may be deducted for unnec-
essarily complex and inefficient code. A solution is considered to be inefficient if it has an
asymptotic runnning time that is larger than necessary – e.g., it has a Θ(n2) running time
when a Θ(n) running time can be easily achieved. For example, in the functional repre-
sentation of matrices, many operations can be implemented using make in conjunction with
get, but these implementations are not very efficient.

• A challenging aspect of this problem is determining the number of rows and columns in a
matrix represented by a function. Hint: Use the fact that the get function returns None for
out-of-bounds indices.
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Group Problems

Note: you can do the two group problems in any order. Since Problem 1 requires knowledge

of Bindex and Problem 2 does not, you may want to delay starting Problem 1 and instead start

working on Problem 2 until Bindex is covered in lecture.

Group Problem 1 [20]: Abstract Syntax Trees

Background

This problem involves reasoning about abstract syntax trees (ASTs) in the Bindex language de-
scribed in Handout #30. Fig. 4 shows the AST for the following Bindex averaging program:

(bindex (a b)

(bind c (+ a b)

(/ c 2)))
Suppose we annotate each node of the abstract syntax tree with a triple (fv, env, val) of the

following pieces of information:

1. fv : the set of free variables of the program or expression rooted at the node.

2. env : The environment in which the node would be evaluated if the program were run on the
actual parameters a = 3 and b = 8. (Write environments as sets of bindings of the form
key 7→value.)

3. val: The value that would result from evaluating the node in the environment env.

Fig. 5 shows the AST for the averaging program annotated with this information. The name e0

abbreviates the environment {a 7→ 3,b 7→ 8} and e1 abbreviates the environment {a 7→ 3,b 7→
8, c 7→ 11}.

Your Task

In this problem, your task is to draw a similar annotated AST for the following Bindex program:

(bindex (a b c)

(* (bind d (* a c)

(bind e (- d b)

(/ (* b d) (+ e a))))

(bind e (bind b (* 8 a)

(- b c))

(+ e b))))

You should annotate each node of the abstract syntax tree with the same three pieces of information
used in the average example above. In this case, assume that the program is run on the actual
parameters a = 2, b = 3, and c = 5.

Note: for this problem, you will need to use a large sheet of paper and/or to write very small. It
is strongly recommended that you write the solution using pencil (not pen, so you can erase) and
paper. Don’t waste your time attempting to format it on a computer with a drawing program.
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Pgm[a;b] formals

Bind

body

c name

Binapp

defn

Add
binop

Var

rand1

a

name

Var

rand2

b

name

Binapp

body

Div
binop

Var

rand1

c

name

Lit

rand2

2

name

Figure 4: An AST for the avg program.

Pgm ({}, e0, 5)[a;b] formals

Bind ({a,b}, e0, 5)

body

c name

Binapp ({a,b}, e0, 11)

defn

Add
binop

Var ({a}, e0, 3)

rand1

a

name

Var ({b}, e0, 8)

rand2

b

name

Binapp ({c}, e1, 5)

body

Div
binop

Var ({c}, e1, 11)

rand1

c

name

Lit ({}, e1, 2)

rand2

2

name

Figure 5: avg program AST annotated with free variable, environment, and value information.
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Group Problem 2 [80]: A MiniFP Interpreter
In Section 11 of his Turing Award lecture paper, Backus describes an applicative lanuage named

FP, which you studied for PS4. In this problem, you will implement an interpreter for MiniFP,
a subset of FP that implements many of of FP’s features. The fact that functional forms in FP

(and MiniFP) have implicit parameters (rather than parameters with explicitly names) simplifies
the structure of the interpreter. In particular, the environment structures used to handle naming
in Bindex are not necessary in MiniFP.

MiniFP Objects

The objects manipulated by MiniFP programs are specified by the the obj data type in Fig. 6.
MiniFP objects are either (1) integers (introduced by the Int constructor) or (2) sequences of
objects (introduced by the Seq constructor).1

type obj =

Int of int (* integer objects *)

| Seq of obj list (* sequence of objects *)

Figure 6: Ocaml data type for MiniFP objects.

The following table shows how some objects in FP notation can be expressed as instances of
the obj datatype.

FP Notation Ocaml obj Notation

17 Int 17

〈8,−3, 6〉 Seq[Int 8; Int (-3); Int 6]

〈17, 〈8,−3, 6〉〉 Seq[Int 17; Seq[Int 8; Int (-3); Int 6]]

〈〈8,−3, 6〉, 〈5, 1, 7〉〉 Seq[Seq[Int 8; Int (-3); Int 6];Seq[Int 5; Int 1; Int 7]]

Here are some definitions of MiniFP objects in the file MiniFP.ml that we will use in later
examples:

let vector1 = Seq[Int 2; Int 3; Int 5]

let vector2 = Seq[Int 10; Int 20; Int 30]

let vectors = Seq[vector1; vector2] (* A pair of vectors or a 2x3 matrix *)

let matrix = Seq[Seq[Int 1; Int 4]; Seq[Int 8; Int 6]; Seq[Int 7; Int 9]] (* A 3x2 matrix *)

let matrices1 = Seq[vectors; matrix] (* A pair of a 2x3 matrix and a 3x2 matrix *)

let matrices2 = Seq[matrix; vectors] (* A pair of a 3x2 matrix and a 2x3 matrix *)

MiniFP Functional Forms

MiniFP programs are functional forms, which include primitive functions like id, +, and
distr as well as combining forms like composition (◦), mapping (α), and reduction (/). Fig. 7
presents the Ocaml data type funForm specifying MiniFP functional forms, and Fig. 8 shows the
correspondence between FP notation for functional forms and Ocaml data type notation.

1Although the Int and Seq constructors have the same names as constructors in the Sexp module, the MiniFP

constructors are different. They are defined in the MiniFP module in the file MiniFP.ml in the ps5-new-group

directory. Explicit qualification can be used to disambiguate the constructors from these modules — e.g., Sexp.Int

vs. MiniFP.Int.
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type funForm =

Id (* identity *)

| Add (* addition *)

| Sub (* subtraction *)

| Mul (* multiplication *)

| Div (* division *)

| Distl (* ditribute from left *)

| Distr (* ditribute from right *)

| Trans (* transpose *)

| Sel of int (* selection *)

| Const of obj (* constant function *)

| Map of funForm (* alpha = map *)

| Reduce of funForm (* / = reduce *)

| BinaryToUnary of funForm * obj (* bu *)

| Compose of funForm * funForm (* o = composition *)

| FunSeq of funForm list (* [...] = function sequence *)

Figure 7: Ocaml data type for MiniFP functional forms.

FP Notation Ocaml funForm Notation
id Id

+ Add

− Sub

× Mul

÷ Div

distl Distl

distr Distr

trans Trans

i Sel i
x Const x
αf Map f
/f Reduce f

bu f x BinaryToUnary(f,x)
f1 ◦ f2 Compose(f1, f2)

[f1, . . . , fn] FunSeq[f1; . . .; fn]

Figure 8: Correspondence between FP notation andOcaml notation forMiniFP functional forms.
i denotes an integer, x denotes an object, and f denotes a functional form.

For example, consider the innner product and matrix multiplication examples from Sections
11.3.2 and 11.3.3 (p. 622) of Backus’s paper:

IP ≡ (/+) ◦ (α×) ◦ trans
MM ≡ (ααIP) ◦ (αdistl) ◦ distr ◦ [1, trans ◦ 2]

These can be expressed in Ocaml via the following definitions (from MiniFP.ml):

let ip = Compose(Reduce Add, Compose(Map Mul, Trans))

let mm = Compose(Map(Map ip),

Compose(Map Distl,

Compose(Distr,

FunSeq[Sel 1; Compose(Trans, Sel 2)])))
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Problems

a. [5]: A MiniFP Program

In Group Problem 1 of PS4, you manipulated the following functional form F :

F ≡ α/+ ◦ αα× ◦ αdistl ◦ distr ◦ [id, id]

In the file MiniFP.ml, express this functional form in Ocaml via a definition of the form

let f = . . .

b. [55]: A MiniFP Interpreter

A MiniFP interpreter specifies the object that results from applying a program (i.e., functional
form) to an object. So a MiniFP interpreter is simply an apply function with the following
signature:

apply: MiniFP.funForm -> MiniFP.obj -> MiniFP.obj

The semantics (meaning) of all MiniFP functional forms is given in Sections 11.2.3 and 11.2.4
of Backus’s paper. The only difference between MiniFP and FP semantics is that in MiniFP,
the Reduce functional form is defined only on nonempty sequences. So applying Reduce Add to
Seq[] is an error inMiniFP but not in FP (where it denotes 0). Fig. 9 shows numerous examples
of the apply function.

In this problem, your goal is to implement a complete MiniFP interpreter by fleshing out the
following skeleton of the apply function in the file MiniFPInterp.ml:

let rec apply funform obj =

match (funform, obj) with

(Add, Seq[Int x; Int y]) -> Int(x+y)

(* flesh out the remaining clauses below *)

| -> raise (EvalError ("Ill-formed application: apply "

^ (funFormToString funform)

^ " "

^ (objToString obj)))

The clause for Add has been written for you. Your task is to flesh out the clauses for all the other
MiniFP functional forms.

Notes:

• As usual, start this problem set by performing a cvs update -d, and perform an update
every time you log in to work on this problem set.

• After launchingOcaml, connect to the ps5-new-group directory via #cd "/students/your-

account-name/cs251/ps5-new-group".

• To load all the appropriate files into Ocaml, execute #use "load-minifp.ml". You will
need to execute this every time you want to test changes to your code. This loads many
files, including numerous utility files, MiniFP.ml, MiniFPInterp.ml, and MiniFPTest.ml.
Carefully look at the output of the #use command each time you invoke it. Even if it finds
and reports an error in MiniFP.ml, say, it will continue to load the other files, and it’s easy
to miss the error, especially if the error message has scrolled off the screen.

• Use apply to test your interpreter on examples similar to those in Fig. 9. For instance:
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# apply Id vector1;;

- : MiniFP.obj = Seq [Int 2; Int 3; Int 5]

# apply (Const (Int 17)) vector1;;

- : MiniFP.obj = Int 17

# apply (Sel 1) vector1;;

- : MiniFP.obj = Int 2

# apply (Sel 2) vector1;;

- : MiniFP.obj = Int 3

# apply (Sel 3) vector1;;

- : MiniFP.obj = Int 5

# apply (Sel 4) vector1;;

Exception: MiniFPInterp.EvalError "Selection index 4 out of bounds [1..3]"

# apply Distl (Seq[Int 7;vector1]);;

- : MiniFP.obj = Seq [Seq [Int 7; Int 2]; Seq [Int 7; Int 3]; Seq [Int 7; Int 5]]

# apply Distr (Seq[vector1;Int 7]);;

- : MiniFP.obj = Seq [Seq [Int 2; Int 7]; Seq [Int 3; Int 7]; Seq [Int 5; Int 7]]

# apply (Map (Const (Int 17))) vector1;;

- : MiniFP.obj = Seq [Int 17; Int 17; Int 17]

# apply (Map (BinaryToUnary (Mul, Int 2))) vector1;;

- : MiniFP.obj = Seq [Int 4; Int 6; Int 10]

# apply (Reduce Add) vector1;;

- : MiniFP.obj = Int 10

# apply (Reduce Mul) vector1;;

- : MiniFP.obj = Int 30

# apply (Reduce Add) (Seq[]);;

Exception: MiniFPInterp.EvalError "Reduction of empty sequence".

# apply (Compose(Map (BinaryToUnary (Add, Int 1)), Map (BinaryToUnary (Mul, Int 2)))) vector1;;

- : MiniFP.obj = Seq [Int 5; Int 7; Int 11]

# apply (FunSeq[Const (Int 17); Id; Map (BinaryToUnary (Add, Int 1))]) vector1;;

- : MiniFP.obj = Seq [Int 17; Seq [Int 2; Int 3; Int 5]; Seq [Int 3; Int 4; Int 6]]

# apply Trans matrix;;

- : MiniFP.obj = Seq [Seq [Int 1; Int 8; Int 7]; Seq [Int 4; Int 6; Int 9]]

# apply (Compose(Trans,Trans)) matrix;;

- : MiniFP.obj = Seq [Seq [Int 1; Int 4]; Seq [Int 8; Int 6]; Seq [Int 7; Int 9]]

# apply ip vectors;;

- : MiniFP.obj = Int 230

# apply ip matrix;;

Exception: MiniFPInterp.EvalError "Ill-formed application: apply x (1 8 7)".

# apply mm matrices1;;

- : MiniFP.obj = Seq [Seq [Int 61; Int 71]; Seq [Int 380; Int 430]]

# apply mm matrices2;;

- : MiniFP.obj = Seq[Seq [Int 42; Int 83; Int 125];

Seq [Int 76; Int 144; Int 220];

Seq [Int 104; Int 201; Int 305]]

# apply f vector1;;

- : MiniFP.obj = Seq [Int 20; Int 30; Int 50]

Figure 9: MiniFP interpreter examples.
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FP Notation Ocaml obj Notation S-expression Notation
i Int i i

〈x1, . . . , xn〉 Seq[x1; . . .; xn] (x1 . . . xn)

Figure 10: S-expression notation forMiniFP objects, i denotes an integer and x denotes an object.

# apply Add (Seq[Int 2; Int 3]);;

- : MiniFP.obj = Int 5

# apply Mul (Seq[Int 2; Int 3]);;

- : MiniFP.obj = Int 6

Note that if you have not yet implemented a clause for a functional form, testing it via
apply will yield the following error:

Exception: MiniFPInterp.EvalError "Ill-formed application: apply <functional form> <object>".

Here, <functional form> and <object> are placeholders for the particular functional form
and object in the ill-formed application. You will flesh out these placeholders in part c of
this problem.

You needn’t turn in a transcript of your testing examples, because the tests in this part will
be superseded by the more extensive testing of your interpreter in the part c of this problem.

• You should use any standard library functions from the standard modules (e.g., List,
ListUtils, FunUtils) that you find helpful.

• Pattern matching is your friend here. Use it to simplify your definitions.

• In addition to defining apply you may want to define some auxiliary functions.

• To simplify the handling of the Trans form, you have been provided with a transposeSeqs
function that transposes the elements in a list of sequences. For example:

# transposeSeqs [Seq[Int 1;Int 2]; Seq[Int 3;Int 4]; Seq[Int 5;Int 6]];;

- : MiniFP.obj list = [Seq [Int 1; Int 3; Int 5]; Seq [Int 2; Int 4; Int 6]]

• To indicate an evaluation error in your interpreter, raise an EvalError exception as follows:

raise (EvalError string-stating-error-message)

• It’s a good idea to implement, test, and debug a few commands at a time rather than
attempting to handle all the commands at once.

c. [20]: An S-Expression Syntax for MiniFP

In the final part of this problem, your task is to implement an s-expression syntax for MiniFP

objects and functional forms. The s-expression notation for objects is shown in Fig. 10 and the
s-expression notation for functional forms is shown in Fig. 11.

For example, our matrices1 example, which in FP would be written

〈〈〈2, 3, 5〉, 〈10, 20, 30〉〉, 〈〈1, 4〉, 〈8, 6〉, 〈7, 9〉〉〉

is written in MiniFP using the following s-expression:

(((2 3 5) (10 20 30)) ((1 4) (8 6) (7 9)))

And the functional forms

IP ≡ (/+) ◦ (α×) ◦ trans
MM ≡ (ααIP) ◦ (αdistl) ◦ distr ◦ [1, trans ◦ 2]
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FP Notation Ocaml funForm Notation S-expression Notation
id Id id

+ Add +

− Sub -

× Mul x

÷ Div -:

distl Distl distl

distr Distr distr

trans Trans trans

i Sel i i
x Const x ($ x)
αf Map f (a f)
/f Reduce f (/ f)

bu f x BinaryToUnary(f,x) (bu f x)
f1 ◦ f2 Compose(f1, f2) (o f1 f2)

[f1, . . . , fn] FunSeq[f1; . . .; fn] (f1 . . . fn)

Figure 11: S-expression notation for MiniFP functional forms. i denotes an integer, x denotes an
object, and f denotes a functional form.

can be expressed in s-expressions as follows:

IP (o (/ +) (o (a x) trans))

MM (o (a (a (o (/ +) (o (a x) trans)))) (o (a distl) (o distr (1 (o trans 2)))))

Because it is common to create a function by composing a sequence of functions, the MiniFP

s-expression syntax allows a composition to take any number of functional forms. So

(o f1 f2 . . . fn−1 fn)

is an abbreviation for
(o f1 (o f2 . . . (o fn−1 fn) . . .))

For example, here are alternative s-expression notations for IP and MM:

IP (o (/ +) (a x) trans)

MM (o (a (a (o (/ +) (a x) trans))) (a distl) distr (1 (o trans 2)))

Your task in this part is to flesh out the following functions in the file MiniFP.ml to implement
the s-expression syntax described above:

objToSexp : MiniFP.obj -> Sexp.sexp

funFormToSexp : MiniFP.funForm -> Sexp.sexp

sexpToObj : Sexp.sexp -> MiniFP.obj

sexpToFunForm : Sexp.sexp -> MiniFP.funForm

The first two functions unparse objects and functional forms into s-expressions, respectively. The
second two functions parse s-expressions into objects and functional forms, respectively. For
example:

# objToSexp (Seq[Seq[Int 1; Int 2]; Seq[Int 3; Int 4; Int 5]; Int 6]);;

- : Sexp.sexp =

Sexp.Seq

[Sexp.Seq [Sexp.Int 1; Sexp.Int 2];

Sexp.Seq [Sexp.Int 3; Sexp.Int 4; Sexp.Int 5]; Sexp.Int 6]
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# funFormToSexp (Compose(Map(BinaryToUnary(Add,Int 1)), FunSeq[Id; (Const (Int 17))]));;

- : Sexp.sexp =

Sexp.Seq

[Sexp.Sym "o";

Sexp.Seq [Sexp.Sym "a"; Sexp.Seq [Sexp.Sym "bu"; Sexp.Sym "+"; Sexp.Int 1]];

Sexp.Seq [Sexp.Sym "id"; Sexp.Seq [Sexp.Sym "$"; Sexp.Int 17]]]

# sexpToObj (Sexp.Seq [Sexp.Seq [Sexp.Int 1; Sexp.Int 2];

Sexp.Seq [Sexp.Int 3; Sexp.Int 4; Sexp.Int 5]; Sexp.Int 6]);;

- : MiniFP.obj = Seq [Seq [Int 1; Int 2]; Seq [Int 3; Int 4; Int 5]; Int 6]

# sexpToFunForm (Sexp.Seq

[Sexp.Sym "o";

Sexp.Seq [Sexp.Sym "a"; Sexp.Seq [Sexp.Sym "bu"; Sexp.Sym "+"; Sexp.Int 1]];

Sexp.Seq [Sexp.Sym "id"; Sexp.Seq [Sexp.Sym "$"; Sexp.Int 17]]]);;

- : MiniFP.funForm =

Compose (Map (BinaryToUnary (Add, Int 1)), FunSeq [Id; Const (Int 17)])

The file MiniFP.ml also alread contains the following additional function definitions for converting
between strings and data types for MiniFP objects and functional forms:

let objToString obj = Sexp.sexpToString (objToSexp obj)

let funFormToString ff = Sexp.sexpToString (funFormToSexp ff)

let stringToObj s = sexpToObj (Sexp.stringToSexp s)

let stringToFunForm s = sexpToFunForm (Sexp.stringToSexp s)

For example:

# objToString (Seq[Seq[Int 1; Int 2]; Seq[Int 3; Int 4; Int 5]; Int 6]);;

- : string = "((1 2) (3 4 5) 6)"

# funFormToString (Compose(Map(BinaryToUnary(Add,Int 1)), FunSeq[Id; (Const (Int 17))]));;

- : string = "(o (a (bu + 1)) (id ($ 17)))"

# stringToObj "((1 2) (3 4 5) 6)";;

- : MiniFP.obj = Seq [Seq [Int 1; Int 2]; Seq [Int 3; Int 4; Int 5]; Int 6]

# stringToFunForm "(o (a (bu + 1)) (id ($ 17)))";;

- : MiniFP.funForm =

Compose (Map (BinaryToUnary (Add, Int 1)), FunSeq [Id; Const (Int 17)])

# stringToFunForm "(o id distr trans (a (a (bu + 1))))";;

- : MiniFP.funForm =

Compose (Id,

Compose (Distr, Compose (Trans, Map (Map (BinaryToUnary (Add, Int 1))))))

Notes:

• Because the obj data type defines the Int and Seq constructors, you will have to use the
explicitly qualified Sexp.Int and Sexp.Seq constructors for the sexp data type.

• You will need to translate a composition of two or more functions into nested composition
pairs.

• You can test both your s-expression parsing/unparsing and your interpreter by evaluating
the expresion test(). This function, which is defined in the file MiniFPTest.ml, tests the
interpreter on a suite of test cases, each of which is a triple of strings having the form

(function-form-string, object-string, result-string)
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The tester first parses function-form-string and object-string into a function form f
and object x, respectively. It then applies f to x, and converts the resulting object into a
string. If this string matches result-string , the test passes by displaying OK!. Otherwise,
the test fails by displaying ***ERROR*** and showing the difference between the expected
result and the actual result. If the application of f to x raises an exception, the tester
converts the exception message to an error string; this makes it possible for the tester to
verify that the interpreter handles error situations correctly.

• Your implementaiton should be able to pass all the test cases in MiniFPTest.ml. You are
encouraged to add additional test cases.
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Please make this the first page of your hardcopy submission of individual problems.
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