
CS251 Programming Languages Handout # 32
Prof. Lyn Turbak March 27, 2007
Wellesley College Revised March 27, 2007

Problem Set 6
Due: 11:59pm Wednesday, April 4

Revisions:

Mar 27 :

• In the pset submission description, (a) you should also turn in testing transcripts for parts 1c and 1d and (b)
change Simp.ml to BindexPartialEval.ml for Problem 2.

• The notes for Problem 1 neglected to mentioned that you should perform #use "load-simprex.ml" to load
the Simprex implementation.

• The notes for Problem 2 neglected to mentioned that you should use BindexEnvInterp.binApply to apply an
operator to two integers when partially evaluating a binary application.

Overview:
The purpose of this assignment is to give you practice with reasoning about the Bindex and Valex

languages and writing Ocaml programs that manipulate programs in these languages. It contains
only Group Problems; there are no Individual Problems on this assignment.

Reading:

• Handout #30: Bindex: An Introduction to Naming

• Handout #31: Extending Bindex

• Handout #33: Valex: Type Checking and Desugaring

Working Together:
Reminder: if you worked with a partner on a previous problem set and want to work with a
partner on this assignment, you should try to find a different partner. If your schedule makes this
impossible, please consult Lyn.

Group Problem Submission:
Each team should turn in a single hardcopy submission packet for all problems by slipping it under
Lyn’s office door by 11:59pm on the due date. The packet should include:

1. a team header sheet (see the end of this assignment for the header sheet) indicating the time
that you (and your partner, if you are working with one) spent on the parts of the assignment.

2. your pencil-and-paper solutions to Problems 1a and 1b;

3. your final versions of Simprex.ml, SimprexEnvInterp.ml, and SimprexSubstInterp.ml for
Problems 1c and 1d;

4. your testing transcripts for Problems 1c and 1d;

5. your final version of BindexPartialEval.ml for Problem 2;

6. your pencil-and-paper desugaring rule for classify for Problem 4;

7. your final version of Valex.ml for Problems 3 and 4.

Each team should also submit a single softcopy (consisting of your final ps6 directory) to the
drop directory ~cs251/drop/p3/username, where username is the username of one of the team
members (indicate which drop folder you used on your hardcopy header sheet). To do this, execute
the following commands in Linux in the account of the team member being used to store the code.

cd /students/username/cs251

cp -R ps6 ~cs251/drop/ps6/username/

1

Group Problem 1 [45]: Simprex

Rae Q. Cerf of Toy-Languages-º-Us likes the sigma construct from Handout #31, but she
wants something more general. In addition to expressing sums, she would also like to express
numeric functions like factorial and exponentiation that are easily definable via simple recursion.
The functions f that Rae wants to define all have the following form:

f(n) =

{

z, if n ≤ 0
c(n, f(n− 1)), if n > 0

Here, z is an integer that defines the value of f for any non-positive integer value and and c is a
binary combining function that combines n and the value of f(n−1) for any positive n. Expanding
the definition yields:

f(n) = c(n, c(n− 1, c(n− 2, . . . c(2, c(1, z))))).

For example, to define the factorial function, Rae uses

zfact = 1
cfact(n, a) = n× a.

To define the exponentation function bn, Rae uses

zexpt = 1
cexpt(n, a) = b× a.

In this case, cexpt ignores its first argument, but the fact that cexpt is called n times is important.
As another example, Rae defines the sum of the squares of the integers between 1 and n using

zsos = 0
csos(n, a) = n2 + a.

Rae designs an extension to Bindex named Simprex that adds a new simprec construct for
expressing her simple recursions:1

(simprec Ezero (Inum Ians Ecombine) Earg)

Evaluates Earg to the integer value narg and Ezero to the integer value nzero. If narg ≤ 0,
returns nzero. Otherwise, returns the value

c(narg, c(narg − 1, c(narg − 2, . . . c(2, c(1, nzero))))).

where c is the binary combining function specified by (Inum Ians Ecombine). This denotes
a two-argument function whose two formal parameters are named Inum and Ians and whose
body is Ecombine . The Inum parameter ranges over the numbers from narg down to 1, while
the Ians parameter ranges over the answers built up by c starting at nzero. The scope of Inum
and Ians includes only Ecombine ; it does not include Ezero or Earg .

Here are some sample Simprex programs:

;; Program that calculuates the factorial of n

(simprex (n) (simprec 1 (x a (* x a)) n))

;; Exponentiation program raising base b to power p

(simprex (b p) (simprec 1 (n ans (* b ans)) p))

;; Program summing the squares of the numbers from 1 to x

(simprex (x) (simprec 0 (y z (+ (* y y) z)) x))

1This is closely related to the notion of primitive recursive functions defined in the theory of computation.

2

After completing her design, Rae is called away to work on another problem. Toy-Languages-
º-Us is impressed with your CS251 background, and has hired you to implement the Simprex

language, starting with a version of the Sigmex implementation. (Sigmex is the name of the
language that results from extending Bindex with the sigma construct from Handout #31.) Your
first week on the job, you are asked to complete the following tasks that Rae has specified in a
memo she has written about finishing her project.

a. [10] Rae’s memo contains the following Simprex test programs. Give the results of running
each of the programs on the argument 3. Show your work so that you may get partial credit if
your answer is incorrect.

i. [1] (simprex (a) (simprec 0 (b c (+ 2 c)) a))

ii. [2] (simprex (x) (simprec 0 (n sum (+ n (* x sum))) 4))

iii. [3] (simprex (y) (simprec 0 (a b (+ b (sigma c 1 a (* a c)))) y))

iv. [4] (simprex (n)

(simprec (simprec (* n (- n 3)) (q r r) (* n n))

(c d (+ d (simprec 0 (x sum (+ sum (- (* 2 x) 1))) c)))

(simprec -5 (a b (+ 1 b)) (* n n))))

b. [10] Rae’s memo also contains the Simprex expression in Fig. 1. You should (1) circle
every free variable reference occurrence and (2) draw a line from every bound variable reference
occurrence to the binding occurence of that reference.

(bind a (simprec a

(a b (+ b (sigma b a b

(* a b))))

b)

(simprec (sigma c a b (+ a (* b c)))

(b c (bind a (* a b)

(* b (+ a c))))

(- a c)))

Figure 1: Simprex expression for part 2b.

3

c. [20] Rae has created a skeleton implementation of Simprex by modifying the files for the Sig-

mex (= Bindex + sigma) implementation to contain stubs for the simprec construct. Her mod-
ified files, which are named Simprex.ml, SimprexEnvInterp.ml, and SimprexSubstInterp.ml,
can be found in your ps6-group directory.

Finish the implementation of the Simprex language by completing the following six tasks, which
Rae has listed in her memo:

i. [2] Extend the definition of sexpToExp in Simprex.ml to correctly parse simprec expres-
sions.

ii. [2] Extend the definition of expToSexp in Simprex.ml to correctly unparse simprec

expressions.

iii. [3] Extend the definition of freeVarsExp in Simprex.ml to correctly determine the free
variables of a simprec expression.

iv. [5] Extend the definition of eval in SimprexEnvInterp.ml to correctly evaluate simprec
expressions using the environment model.

v. [3] Extend the definition of subst in Simprex.ml to correctly perform substitutions into
simprec expressions.

vi. [5] Extend the definition of eval in SimprecSubstInterp.ml to correctly evaluate
simprec expressions using the substitution model.

Notes for part c:

• Before you begin the programming in this problem, you should study Appendix A on
Bindex.

• Perform #use "load-simprex.ml" to load the Simprex implementation.

• In Simprec.ml, the exp type is defined to be:

and exp =

Lit of int (* integer literal with value *)

| Var of var (* variable reference *)

| BinApp of binop * exp * exp (* primitive application with rator, rands *)

| Bind of var * exp * exp (* bind name to value of defn in body *)

| Sigma of var * exp * exp * exp (* name * lo * hi * body *)

| Simprec of exp * var * var * exp * exp

(* zero-exp * num-var * ans-var * comb-exp * arg-exp *)

The s-expression notation (simprec Ezero (Inum Ians Ecombine) Earg) is represented in
Ocaml as

Simprec (<exp for Ezero>,

<string for Inum>,

<string for Ians>,

<exp for Ecombine>,

<exp for Earg>)

For example, the expression (simprec 1 (x a (* x a)) n) is represented in Ocaml as:

Simprec(Lit 1, "x", "a", BinApp(Mul, Var "x", Var "a"), Var "n")

• In subparts (iv) and (vi), full credit will only be given for definitions that do not use explicit
recursion. Instead, use the higher-order list functions in the ListUtils module. Partial
credit will be awarded for correct definitions that use explicit recursion.

• You should test your functions for this part by using the tests similar to the ones illustrated
in Fig. 2. You should include at least the test cases shown in the figure, but should also
develop some test cases of your own. Turn in a transcript of your test cases for this part.

4

Simprex.freeVarsExpString "(simprec a (b c (+ b (* c d))) e)";;

- : Simprex.S.elt list = ["a"; "d"; "e"]

Simprex.substString "(simprec a (b c (+ b (* c (/ a d)))) d)"

"((a (+ b c)) (d (- b c)))";;

(simprec (+ b c) (b.0 c.1 (+ b.0 (* c.1 (/ (+ b c) (- b c))))) (- b c))

- : unit = ()

SimprexEnvInterp.runString "(simprex (x) (simprec 0 (n sum (+ n sum)) x))" [10];;

- : int = 55

SimprexEnvInterp.runFile "fact.spx" [5];;

- : int = 120

SimprexEnvInterp.runFile "expt.spx" [3;4];;

- : int = 81

SimprexEnvInterp.runFile "sos.spx" [4];;

- : int = 30

SimprexEnvInterp.repl();;

simprex> (simprec 0 (n sum (+ n sum)) 5)

15

simprex> (#quit)

done

- : unit = ()

(* SimprexSubstInterp can be tested similarly to SimprexEnvInterp. *)

Figure 2: Sample tests for the Simprex implementation.

d. [5] Rae ends her memo with the observation that sigma is no longer a necessary construct in
Simprex because it can be desugared into the simprec construct. In particular, she notes that
the following sexpToExp clause in Simprex.ml,

| Seq [Sym "sigma"; Sym name; lox; hix; bodyx] ->

Sigma (name, sexpToExp lox, sexpToExp hix, sexpToExp bodyx)

can be replaced by a clause of the following form:

| Seq [Sym "sigma"; Sym name; lox; hix; bodyx] ->

let loVar = StringUtils.fresh "lo"

and hiVar = StringUtils.fresh "hi"

and loDecVar = StringUtils.fresh "lodec"

and ansVar = StringUtils.fresh "ans" in

Bind(loVar, sexpToExp lox,

Bind(hiVar, sexpToExp hix,

Bind(loDecVar, BinApp(Sub, Var loVar, Lit 1),

Simprec(Ezero,

name,

ansVar,

Ecomb,

Earg))))

5

As a puzzle, she has left it for you to figure out what the Ocaml expressions Ezero , Ecomb , and
Earg must be so that the new clause implements the correct behavior for sigma.

Notes for part d:

• Rae’s code is commented out in Simprex.ml. You should begin this part by removing the
comments and instead commenting out the former sigma clause.

• The three Binds are used to avoid evaluating the given expressions lo, hi, and the new
expression BinApp(Sub, Var loVar, Lit 1) more than once.

• The fresh variables loVar, hiVar, lodecVar, and ansVar are used to prevent unwanted
variable capture in the problem.

• The problem is much easier to solve if you assume that the lo expression evaluates to the
integer 1. In this case, lodecVar is bound to the value 0 and can be ignored. Partial credit
will be awarded if you correctly solve the problem making this assumption. Please indicate
(via a comment in your code) that you are making this assumption.

• Solving the general problem (i.e., without the assumption that lo evaluates to 1) is chal-
lenging. Do not invest too much time solving the general problem unless you like challenges.

• You should test your desugaring by executing some sample programs that use the sigma
construct.

Group Problem 2 [25]: Partial Evaluation

Avoiding Magic Constants

It is good programming style to avoid “magic constants” in code by explicitly calculating certain
constants from others. For instance, consider the following two Bindex programs for converting
years to seconds:

; Program 1

(bindex (years)

(* 31536000 years))

; Program 2

(bindex (years)

(bind seconds-per-minute 60

(bind minutes-per-hour 60

(bind hours-per-day 24

(bind days-per-year 365 ; ignore leap years

(bind seconds-per-year (* seconds-per-minute

(* minutes-per-hour

(* hours-per-day

days-per-year)))

(* seconds-per-year years)))))))

The first program uses the magic constant 31536000, which is the number of seconds in a year.2

The second program shows how this constant is calculated from simpler constants. By showing
the process by which seconds-per-year is calculated, the second program is a more robust and
well-documented software artifact. Calculated constants also have the advantage that they are
easier to modify. Although the numbers in the above program aren’t going to change, there are
many so-called “constants” built into a program that change over its lifetime. For instance, the size
of word of computer memory, the price of a first-class stamp, and the rate for a certain tax bracket

2It is worth noting that this number is approximately π × 107. So a century is approximately π × 109 seconds,
which means that π seconds is approximately one nano-century!

6

are all numbers that could be hard-wired into programs but which might need to be updated in
future version of the software.
However, magic constants can have performance advantages. In the above programs, the pro-

gram with the magic constant performs one multiplication, while the other program performs four
multiplications. If performance is critical, the programmer might avoid the clearer style and instead
opt for magic constants.

Partial Evaluation

Is there a way to get the best of both approaches? Yes! We can write our program in the
clearer style, and then automatically transform it to the more efficient style via a process known as
partial evaluation. Partial evaluation transforms an input program into a residual program that
has the same meaning by performing computation steps that would otherwise be performed when
running the program. Any computation steps that can be performed during partial evaluation are
steps that do not need to be performed when the residual program is run later. In most cases, the
residual program has better run-time performance than the original program.
For instance, we can use partial evaluation to systematically derive the first program above

from the second. We begin via a step known as constant propagation, in which we substitute
the four constants at the top of the second program into their references to yield:

(bindex (years)

(bind seconds-per-minute 60

(bind minutes-per-hour 60

(bind hours-per-day 24

(bind days-per-year 365 ; ignore leap years

(bind seconds-per-year (* 60 (* 60 (* 24 365)))

(* seconds-per-year years)))))))

Next, we eliminate the now-unnecessary first four bindings via a step known as dead code re-
moval:

(bindex (years)

(bind seconds-per-year (* 60 (* 60 (* 24 365)))

(* seconds-per-year years)))

We can now perform the three multiplications involving manifest integers in a step known as
constant folding:

(bindex (years)

(bind seconds-per-year 31536000

(* seconds-per-year years)))

Finally, another round of constant propagation and dead code removal yields the first program:

(bindex (years)

(* 31536000 years))

It is not possible to eliminate bindings whose definition ultimately depends on the program
parameters. Nevertheless, it is often possible to partially simplify such definitions. For example,
consider:

(bindex (a)

(bind b (* 3 4)

(bind c (+ a (- 15 b))

(bind d (/ c b)

(* d c))))

The transformation techniques described above can simplify this program to:

7

(bindex (a)

(bind c (+ a 3)

(bind d (/ c 12)

(* d c))))

In this example, (+ a (- 15 b)) cannot be replaced by a number (because the value of a is
unknown), but it can be simplified to the residual expression (+ a 3). Similarly, (/ c b) is
transformed to the residual expression (/ c 12) and (bind b . . .) is transformed to the residual
expression

(bind c (+ a 3)

(bind d (/ c 12)

(* d c)))

Your Task

In this problem, your task is to write a function partialEval that performs partial evaluation
on a Bindex program. Given a Bindex program, partialEval should return another Bindex

program that has the same meaning as the original program, but which also satisfies the following
properties:

1. The program should not contain any bind expressions in which a variable is bound to an
integer literal.

2. The program should not contain any binary applications in which an arithmetic operator
is applied to two integer literals. There are two exceptions to this property: the program
may contain binary applications of the form (/ n 0) or (% n 0), since performing these
applications would cause an error in the partial evaluation process.

It is possible to write separate functions that perform the constant propagation, constant folding,
and dead-code elimination steps, but it is tricky to get them to work together to perform all
simplifications. It turns out that it is much more straightforward to perform all three kinds of
simplification at the same time in a single walk over the expression tree.
By analogy with BindexEnvInterp.run and BindexEnvInterp.eval, partial evaluation can be

peformed by a pair of functions:

val partialEval: Bindex.pgm -> Bindex.pgm

Returns a partially evaluated version of the given Bindex program.

val peval: Bindex.exp -> int Env.env -> Bindex.exp

Given a Bindex expression exp and a partial evaluation environment env, returns
the partially evaluated version of exp. The partial evaluation environment contains
name/value bindings for names whose integer values are known.

Your goal is to implement simplification by fleshing out these two function definitions in the file
BindexPartialEval.ml.
Note that there is a correspondence between run/eval in BindexEnvInterp and partialEval/peval.

peval is effectively a version of eval that evaluates as much of an expression as it can based on the
“partial” environment information it is given. Because bindings for some names may be missing in
the environment, peval cannot always evaluate every expression to the integer it denotes and in
some cases must instead return a residual expression that will determine the value when the pro-
gram is executed. Because of this, peval must always return an expression rather than an integer;
even in the case where it can determine the value of an expression, that value must be expressed
as an integer literal node, not an integer.

Notes

8

• Perform #use "load-peval.ml" to load the partial evaluator.

• Use BindexEnvInterp.binApply to apply an operator to two integers.

• Divisions and remainders whose second operands are zero must be left in the program. Such
programs will encounter divide-by-zero errors when they are later executed. For example,

(bindex (a)

(bind b (* 3 4)

(bind c (/ b (- 12 b))

(* c b))))

should be transformed to:

(bindex (a)

(bind c (/ 12 0)

(* c 12)))

• In some cases it would be possible to perform more aggressive simplification if you took advan-
tage of algebraic properties like the associativity and commutativity of addition and multipli-
cation. To simplify this problem, you should not use any algebraic properties of the arithmetic
operators. For example, you should not transform (+ 1 (+ a 2)) into (+ 3 a), but should
leave it as is. You should not even perform “obvious” simplifications like (+ 0 a) ⇒ a,
(* 1 a) ⇒ a, and (* 0 a) ⇒ 0. Although the first two of these simplification are valid,
the last is unsafe in the sense that it can change the meaning of a program. For instance,
(* 0 (/ a b)) cannot be simplified to 0, because it does not preserve the meaning of the
program in the case where b is 0 (in which case evaluating the expression should give an
error).

• You may assume that the programs given to your simplifier do not contain the sigma or
simprex constructs from Problem 1.

• You can use the testPartialEval function (which takes a string representation of a Bindex

program) to test your partial evaluator. For example:

testPartialEval "(bindex () (+ 1 2))";;

(bindex () 3)

- : unit = ()

testPartialEval "(bindex (a)

(bind b (* 3 4)

(bind c (/ b (- 12 b))

(* c b))))";;

(bindex (a) (bind c (/ 12 0) (* c 12)))

- : unit = ()

testPartialEval "(bindex (a)

(+ (* (+ 1 2) a)

(+ (* 3 4)

(+ (* 0 a)

(+ (* 1 a)

(+ 0 a))))))";;

(bindex (a) (+ (* 3 a) (+ 12 (+ (* 0 a) (+ (* 0 a) (+ 0 a))))))

- : unit = ()

• You can also test your partial evaluator by evaluating test(). This applies your partial eval-
uator to all the test entries in the list testEntries in the file BindexPartialEvalTest.ml.
The entries in this list are by no means exhaustive. You are strongly encouraged to add more
entries to this list.

9

Group Problem 3 [10]: Extending Valex with New Primitive Operators
The Valex language implementation is designed to make it easy to add new primitive operators

to the language. In this problem, you are asked to add the following four primitive operators to
Valex.

(abs n)

Returns the absolute value of the integer n. E.g.

valex> (abs -17)

17

valex> (abs 42)

42

(sqrt n)

If n is a non-negative integer, returns the integer square root n. The integer square root of a
non-negative integer is the largest integer i such that i2 ≤ n. Signals an error if n is negative.
E.g.

valex> (sqrt 25)

5

valex> (sqrt 35)

5

valex> (sqrt 36)

6

(between lo hi)

Assume lo and hi are integers. If lo ≤ hi, returns a list of integers from lo to hi, inclusive.
Otherwise, returns the empty list.

valex> (between 1 20)

(list 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)

valex> (between 3 7)

(list 3 4 5 6 7)

valex> (between 7 3)

#e ; Might be displayed as (list) in some Valex implementations

(reverse xs)

Assume xs is a list. Returns a list whose elements are the elements of xs in reversed order.
E.g.

valex> (reverse (list 1 2 3))

(list 3 2 1)

valex> (reverse (between 3 7))

(list 7 6 5 4 3)

valex> (reverse (list))

#e ; Might be displayed as (list) in some Valex implementations

10

All four primitives above can be added to Valex by adding new Primop entries to the primop
list in ps6-group/Valex.ml. Each primitive can be added with just a line or two of code. Study
the other primitives to see how this is done.

Notes:

• Be careful to change the Valex implementation in the ps6-group directory, not the one in
the valex directory!

• To use any parts of the Valex interpreter, you must first execute the following in Ocaml:

#cd "/students/username/cs251/ps6-group"

#use "load-valex.ml"

• An easy way to test your new primitives is to test them interactively in a read-eval-print loop
launched by invoking ValexEnvInterp.repl(). Alternatively, you can you can extend the
test entries in ValexTestEntries.valexEntries (which is located in the file ValexInterpTest.ml)
to include programs containing the primitives.

Group Problem 4 [20]: Desugaring classify

The classify construct

You are a summer programming intern at Sweetshop Coding, Inc. Your supervisor, Dexter Rose,
has been studying the syntactic sugar for Valex and is very impressed by the cond construct. He
decides that it would be neat to extend Valex with a related classify construct that classifies
an integer relative to a collection of ranges. For instance, using his construct, Dexter can write the
following grade classification program:

(valex (grade)

(classify grade

((90 100) ’A’)

((80 89) ’B’)

((70 79) ’C’)

((60 69) ’D’)

(otherwise’F’)))))

This program takes an integer grade value and returns a character indicating which range the grade
falls in.
In general, the classify construct has the following form:

(classify Edisc

((Elo1
Ehi1) Ebody

1
)

...

((Elon
Ehin) Ebody

n

)

(otherwise Edflt))

The evaluation of classify should proceed as follows. First the discriminant expression Edisc

should be evaluated to the value Vdisc . Then Vdisc should be matched against each of the clauses
((Eloi

Ehii) Ebody i
) from top to bottom until one matches. The value matches a clause if it lies

in the range between Vloi
and Vhii , inclusive, where Vloi

is the value of Eloi
, and Vhi i is the value

of Ehii . When the first matching clause is found, the value of the associated expression Ebody
i
is

returned. If none of the clauses matches Vdisc , the value of the default expression Edflt is returned.
Here are a few more examples of the the classify construct in action:

11

; Program 2

(valex (a b c d)

(classify (* c d)

((a (- (/ (+ a b) 2) 1)) (* a c))

(((+ (/ (+ a b) 2) 1) b) (* b d))

(otherwise (- d c))))

; Program 3

(valex (a)

(classify a

((0 9) a)

(((/ 20 a) 20) (+ a 1))

(otherwise (/ 100 (- a 5)))))

Program 2 emphasizes that any of the subexpressions of classify may be an arbitrary expression
that requires evaluations. In particular, the upper and lower bound expressions need not be integer
literals. For instance, here are some examples of the resulting value returned by Program 2 for
some sample inputs.

a b c d result

10 20 3 4 30

10 20 3 6 120

10 20 3 5 2

Program 3 emphasizes that (1) ranges may overlap (in which case the first matching range is chosen)
and (2) expressions in clauses after the matching one are not evaluated. For instance, here are here
are some examples of the resulting value returned by Program 3 for some sample inputs.

a result

0 0

5 5

10 11

20 21

25 5

30 4

Your Task

Dexter has asked you to implement the classify construct in Valex as syntactic sugar. You
should begin by writing on paper desugaring rules that desugar classify into other Valex con-
structs; turn in these rules with your hardcopy submission. Then you should implement your rule(s)
by extending the desugarRules function in ps6-group/Valex.ml with clauses for classify.

Notes:

• Be careful to change the Valex implementation in the ps6-group directory, not the one in
the valex directory!

• Your desugaring should only evaluate Edisc once; to guarantee this, you will need to name
the value with a “fresh” variable (one that does not appear elsewhere in the program). Use
StringUtils.fresh to create a fresh variable.

• You may want to treat differently the cases where Edisc is an identifier and when it is not an
identifier.

• For testing the desugaring of your classify construct, use one of the following two approaches:

12

1. Invoke the Valex.desugarString function on a string representing the expression you
want to desugar. For example:

Valex.desugarString "(&& (|| a b) (|| c d))"

(if (if a #t b) (if c #t d) #f)

- : unit = ()

Valex.desugarString "(list 1 2 3)";;

(prep 1 (prep 2 (prep 3 #e)))

- : unit = ()

2. Use ValexEnvInterp.repl() to launch a read-eval-print loop and use the #desugar

directive to desugar an expression. For example:

ValexEnvInterp.repl();;

valex> (#desugar (&& (|| a b) (|| c d)))

(if (if a #t b) (if c #t d) #f)

valex> (#desugar (list 1 2 3))

(prep 1 (prep 2 (prep 3 #e)))

• There are several ways to test the evaluation of your desugared classify construct:

1. The test entries in ValexTestEntries.valexEntries (in the file ValexInterpTest.ml)
include a few programs that contain classify. These will be automatically tested when
you invoke testEnvInterp(). Just because your implementation passes the exisiting
test cases does not necessarily mean it is completely correct. You may want to add more
test entries to increase your confidence.

2. you can use ValexEnvInterp.runString to interactively evaluate programs containing
classify.

3. you can interactively evaluate expressions containing classify in a read-eval-print loop
launched via ValexEnvInterp.repl().

The first approach is recommended since you only have to type in each program once rather
than every time you want to test it.

13

Appendix A: Bindex Implementation

Problems 1 and 2 involve the Bindex language (or extensions thereof). Before attempting the
programming parts of these problems, you should study the code for the implementation of the
Bindex language, which can be found in ~/cs251/bindex after you perform cvs update -d.
There are three files to study: Bindex.ml, BindexEnvInterp.ml, and BindexSubstInterp.ml.
To use any of the functions defined within files in the bindex directory, you should first execute

the following directives in Ocaml:

#cd "/students/username/cs251/bindex"

#use "load-bindex.ml"

Having done this, you can now experiment with any functions in the Bindex interpreter. For
example:

open Bindex;;

setToList (freeVarsExp (stringToExp "(bind c (+ a b) (* c d))"));;

- : Bindex.S.elt list = ["a"; "b"; "d"]

subst1 (stringToExp "(+ b c)") "a" (stringToExp "(bind a (+ a a) (* a a))");;

- : Bindex.exp =

Bind ("a.1",

BinApp (Add, BinApp (Add, Var "b", Var "c"), BinApp (Add, Var "b", Var "c")),

BinApp (Mul, Var "a.1", Var "a.1"))

StringUtils.print (expToString (subst1 (stringToExp "(+ b c)") "a"

(stringToExp "(bind a (+ a a) (* a a))")));;

(bind a.2 (+ (+ b c) (+ b c)) (* a.2 a.2))- : unit = ()

BindexEnvInterp.run (Pgm(["a";"b"], BinApp(Add, Var "a", Var "b"))) [3;7];;

- : int = 10

BindexEnvInterp.runString "(bindex (a) (bind b (* a a) (+ a b)))" [5];;

- : int = 30

BindexEnvInterp.runFile "avg.bdx" [3;7];;

(* Assume that the file avg.bdx contains an averaging program *)

- : int = 5

BindexEnvInterp.repl();;

bindex> (+ 1 2)

3

bindex> (bind a (+ 1 2) (+ a (* a a)))

12

bindex> (#args (a 3) (b 4) (c 5))

bindex> (+ a (* b c))

23

bindex> (#quit)

done

14

Group Problem Header Page

Please make this the first page of your hardcopy submission for group problems.

CS251 Problem Set 6 Group Problems
Due 11:59pm Wednesday, April 4

Names of Team Members:

Date & Time Submitted:

Collaborators (anyone you or your team collaborated with):

By signing below, I/we attest that I/we have followed the collaboration policy
as specified in the Course Information handout.
Signature(s):

In the Time column, please estimate the time you or your team spent on the parts of this problem

set. Team members should be working closely together, so it will be assumed that the time reported

is the time for each team member. Please try to be as accurate as possible; this information will

help me design future problem sets. I will fill out the Score column when grading you problem set.

Part Time Score

General Reading

Problem 1 [45]

Problem 2 [25]

Problem 3 [10]

Problem 4 [20]

Total

15

