
CS251 Programming Languages Handout # 38
Prof. Lyn Turbak April 14, 2007
Wellesley College

Problem Set 7
Due: 6pm Friday, April 20

Overview:
The individual problem on this assignment tests your understanding of interpreter extensions

and desugaring. The group problems on this assignment cover static and dynamic scope and
recursive scoping in Hofl, Fofl, and Fobs.

Reading:

• Handout #35: An Introduction to Hofl: A Higher-order Functional Language

• Handout #36: Scoping in Hofl (make sure you have the April 14 revised version of this
handout!)

• Handout #37: Fofl and Fobs: First-Order Functions

Individual Problem Submission:
Each student should turn in a hardcopy submission packet for the individual problem by slipping

it under Lyn’s office door by 6pm Wed. April 20. The packet should include:

1. an individual problem header sheet;

2. your “wiring diagram” from Problem 1a.

3. your pencil-and-paper answers to Problems 1c and 1d.i.

4. your final versions of Loopex.ml, LoopexEnvInterp.ml, and LoopexSubstInterp.ml.

Each student should also submit a softcopy (consisting of your final ps7-individual directory) to
the drop directory by executing:

cd /students/username/cs251

cp -R ps7-individual ~cs251/drop/ps7/username/

Working Together:
If you want to work with a partner on this assignment, you should try to find a different partner

than you worked with on a previous assignment. If this proves difficult, please email Lyn describing
your situation.

Group Problem Submission:
Each team should turn in a single hardcopy submission packet for all problems by slipping it

under Lyn’s office door by 6pm on Fri. Apr. 15. The packet should include:

1. a team header sheet indicating the time that you (and your partner, if you are working with
one) spent on the parts of the assignment.

2. your pencil and paper solutions to Group Problems 1, 2, and 4a.

3. your final version of exp3a.hfl, exp3b.fbs, and pgm3c.ffl from Problem 3.

4. your final version of exp4b.vlx from Problem 4.

Each team should also submit a single softcopy (consisting of your final ps7-group directory) to
the drop directory ~cs251/drop/ps7/username, where username is the username of one of the
team members (indicate which drop folder you used on your hardcopy header sheet). To do this,
execute:

cd /students/username/cs251

cp -R ps7-group ~cs251/drop/ps7/username/

1

Individual Problem [50]: Going Loopy
This is an individual problem. Each student must solve this problem on her own

without consulting any other person (except Lyn).
In this problem you will extend Valex with a looping construct and explore desugarings in-

volving this construct.

The loop construct

Due to your extensive experience withValex in CS251, you have been elected head of theValex

Users Group, a worldwide consortium of Valex programmers. At your most recent consortium
meeting, there was much grumbling from attendees about the lack of expressiveness of Valex.
As one dissatisfied Valex programmer put it, “Sure, simprec helps a little bit. But how can
we be expected to write general programs in this language if it doesn’t even have a real looping
construct?”
You decide it’s high time to pay a visit to Ida Ray-Sun, the CTO of Loopster, a company that

specializes in loop constructs for programming languages. Ida agrees to help develop a looping
construct for Valex if you will help with the implementation.
Ida quickly designs a looping construct forValex and christens the extended language Loopex.

Here is Ida’s looping construct:

(loop ((Isv1
Einit1 Eupdate

1
)

...

(Isvn
Einitn

Eupdate
n

))

Etest

Ebody)

The loop construct describes an iteration over the state variables Isv1
. . . Isvn

, which are assumed
to be pairwise distinct. The iteration consists of a sequence of steps between abstract units of time
starting with 0, where the state of the iteration at time t is characterized by the values of the state
variables at time t. The state variables are initialized at time t = 0 to the corresponding values of
the initializers Einit1 . . . Einitn

. On each step of the iteration, the updaters Eupdate
1

. . . Eupdate
n

are evaluated relative to the state at time t to determine the state at time t + 1. The iteration
continues as long as the test expression Etest gives any non-false value when evaluated relative
to the current state. If Etest yields false for the initial state, the updaters are never evaluated. The
loop construct returns the value of Ebody relative to the first state for which Etest yields false.
The scope of state variables declared in loop includes the updater expressions, the test expres-

sion, and the body expression. The scope does not include the initializer expressions.
For example, the following Loopex program calculates the factorial of n:

(loopex (n)

(loop ((i n (- i 1))

(prod 1 (* i prod)))

(> i 0)

prod))

Below is an iteration table that shows the values of the state variables of the loop iteration at
each point in time when the factorial of 5 is computed. Note that the values in a given row are the
“state” of the iteration at that time.

2

t i prod

0 5 1

1 4 5

2 3 20

3 2 60

4 1 120

5 0 120

As another example, here are an Loopex program that calculates the nth Fibonacci number,
and an iteration table that summarizes the iteration for n = 6.

(loopex (n)

(loop ((i 0 (+ 1 i))

(fib_i 0 fib_i+1)

(fib_i+1 1 (+ fib_i fib_i+1)))

(< i n)

fib_i))

t i fib i fib i+1

0 0 0 1

1 1 1 1

2 2 1 2

3 3 2 3

4 4 3 5

5 5 5 8

6 6 8 13

Note that when evaluating the updater expressions fib_i+1 and (+ fib_i fib_i+1) to determine
the state for time t + 1, both of these expressions are evaluated with respect to the values of the
state variables fib_i and fib_i+1 at time t. Because the updaters are effectively evaluated “in
parallel”, there is no need for “temporary variables” that would often be necessary if such iteration
were expressed via a while or for loop in a language like Java or C.

Your Task

Your task is to solve the following problems related to the loop construct. Parts (a), (c), and
(d.i) are pencil-and-paper problems; parts (b) and (d.ii) require fleshing out parts of the Loopex

interpreter in ~/cs251/ps7-individual. To use any parts of the Loopex interpreter, you must
first evaluate the following in an Ocaml interpreter:

#cd "/students/your-username/ps7-individual"

#use "load-loopex.ml"

Parts (a) – (d.i) are independent and can be done in any order. The code for part (d.ii) can be
written independently of the other parts, but testing it requires the completion of one of parts
(b.iii) or (b.iv).

a. [5]: Variable Scoping

Fig. 1 shows a (contrived) Loopex expression. In this expression, (1) circle every free variable
reference occurrence and (2) draw a line from every bound variable reference occurrence to the
binding occurence of that reference.

b. [20]: Implementing loop in Ocaml

To implement Loopex, Ida begins by making a copy of the Valex interpreter described in
Handout #33. The abstract syntax of Loopex is the same as that as Valex except that the
exp data type has been extended with the following clause to handle the loop construct:

3

(loop ((a a (+ a 1))

(b b (- b a)))

(<= a b)

(loop ((a b (* a 2))

(b 0

(+ b

(loop ((a a (/ a 2))

(b 1 (* b a)))

(= a 0)

b))))

(> a b)

(+ a b)))

Figure 1: Sample Loopex expression for part a.

4

| Loop of var list (* state variable names *)

* exp list (* initializer expressions *)

* exp list (* updater expressions *)

* exp (* test expression *)

* exp (* body expression *)

Note that the state variables, initializers, and updaters are stored in “unzipped form” rather than
being zipped together in some sort of binding structure.

Ida modifies sexpToExp and expToSexp to correctly handle the parsing and unparsing of loop
expressions. However, she asks you to modify the rest of the interpreter to handle the loop

construct.

i [2]: freeVarsExp In Loopex.ml, add a loop clause to the freeVarsExp function that
calculates the free variables of a loop expression. Test freeVarsExp via the testFreeVarsExp
function, which takes a string representation of an expression and returns a list of the free
variables in the expression. E.g.:

testFreeVarsExp "(+ b (* a b))";;

- : Loopex.S.elt list = ["a"; "b"]

ii [4]: subst In Loopex.ml, add a loop clause to the subst function that performs substi-
tutions on a loop expression. You can test subst via the testSubst function, which takes (1)
a string representation of an expression and (2) a string representation of an s-expression list
of name/expression bindings; it prints the result of performing substitution on the expression
using an environment made from the bindings. E.g.:

testSubst "(bind b (/ a b) (+ a b))" "((a (* a b)) (b (- a b)))";;

(bind b.0 (/ (* a b) (- a b)) (+ (* a b) b.0))

- : unit = ()

iii [8]: Environment model eval In LoopexEnvInterp.ml, add a loop clause to the
eval function that correctly specifies the evaluation of the loop construct in the environment
model. You should do this by fleshing out the three Ocaml expressions E1 , E2 , and E3 in
the following skeleton:

| Loop(vars, inits, updates, test, body) ->

eval body (iterate E1 E2 E3)

This skeleton uses the following higher-order iterate function from the ListUtils module
(discussed in Section 4.2 of Handout #20):

let rec iterate next isDone state =

if isDone state then

state

else

iterate next isDone (next state)

Notes:

• Think carefully about types when doing this problem. What type of value should be
returned by the call to iterate in the skeleton? What does this imply about the types
of values returned by E1 , E2 , and E3 ?

• Keep in mind that loop treats any non-false test value as true. So any non-boolean value
is treated like #t in a loop.

• Use the environment operations in ~/cs251/utils/Env.ml to manipulate environments.

• You can test your loop clause for eval by evaluating testEnvInterp(). This runs
the factorial and Fibonacci examples described earlier. You are encouraged to add

5

more test programs containing loop to the list of entries loopexEntries in the file
LoopexInterpTest.ml.

iv [6]: Substitution model eval In LoopexSubstInterp.ml, add a loop clause to the
eval function that correctly specifies the evaluation of the loop construct in the substitution
model. You should do this by fleshing out the three Ocaml expressions E1 , E2 , and E3 in
the following skeleton:

| Loop(vars, inits, updates, test, body) ->

let state = E1 in

match eval (substAll state vars test) with

Bool false -> eval E2

| _ -> eval E3

Notes:

• Think carefully about types when doing this problem. From the way that state is used
in the skeleton, what type must E1 be? Similarly use the contexts of E2 and E3 to
determine what types they must have.

• You can test your loop clause for eval by evaluating testSubstInterp(). This will
test the substitution model eval function on the entries loopexEntries in the file
LoopexInterpTest.ml.

c. [10]: Desugaring least into loop

Ida notes that many iteration constructs can be desugared into an appropriate loop expression.
As an example, she invents a least construct defined by the following desugaring rule:

(least Ivar Epred) ; (loop ((Ivar 0 (+ Ivar 1))) (not Epred) Ivar)

i [2] Based on the above desugaring, give an English description for the meaning of
(least Ivar Epred). Your description should be very concise.

ii [6] What are the values of the following expressions using least? Show your work in
order to receive partial credit.

• (least x (> (* x x) 100))

• (least i (>= (* i (least j (<= (/ 100 (+ j 1))

i)))

80))

Recall that / denotes integer division; it gives the integer quotient of dividing two
numbers. For example (/ 100 50) yields 2 but (/ 100 51) yields 1.

iii [2] Briefly explain the key advantage of implementing least as syntactic sugar rather
than as a kernel Valex construct (like if, bind, or loop).

d. [10]: Desugaring simprec into loop

Inspired by Ida’s least construct, you decide to extend Loopex with the simprec construct from
Problem Set 5. Rather than implementing simprec “from scratch”, as you did in Problem Set 5,
you instead implement it as syntactic sugar by rewriting all simprec expressions into expressions
using loop.

You should do this problem in two parts:

i [6] Write a high-level desugaring rule or rules (like those in Handout #31), that specifies
how to rewrite the expression (simprec Ezero (Inum Ians Ecombine) Earg) into an expres-
sion that uses loop in addition to any other kernel Loopex constructs that you need. The

6

desugared expression should evaluate each of Ezero and Earg exactly once. You will need to
introduce one or more new names as part of your desugaring. You should specify which of
your new names needs to be “fresh” in order to avoid accidental variable capture.

ii [4] Extend the desugarRules function in the file Loopex.ml so that it correctly desugars
simprec into loop by implementing your high-level desugaring rule(s). Use StringUtils.fresh
to introduce fresh variable names. You can test your desugaring by adding examples con-
taining simprec to the list of entries loopexEntries in the file LoopexInterpTest.ml and
executing testEnvInterp() or testSubstInterp().

Group Problems

Group Problem 1 [30]: Static and Dynamic Scope in Hofl

a. [12] Suppose that the program in Figure 2 is run on the input argument list [5]. Draw an
environment diagram that shows all of the environments and closures that are created during the
evaluation of this program in statically scoped Hofl. In order to simplify this diagram:

• you should treat bind as if it were a kernel construct and ignore the fact that it desugars into
an application of an abs. That is, you should treat the evaluation of (bind I Edefn Ebody)

in environment F as the result of evaluating Ebody in the environment frame F
′, where F

′

binds Idefn to Vdefn , Vdefn is the result of evaluating Edefn in F , and F
′ is the parent pointer

of F .

• you should treat fun as if it were a kernel construct and ignore the fact that it desugars into
nested abstractions. In particular, (1) the evaluation of (fun (I1 . . . In) Ebody) should be
a closure consisting of (a) the fun expression and (b) the environment of its creation and (2)
the application of the closure <(fun (I1 . . . In) Ebody), F creation> to argument values V1

. . . Vn should create a new environment frame F whose parent is F creation and which binds
the variables I1 . . . In to the values V1 . . . Vn .

(hofl (a)

(bind linear (fun (a b)

(fun (x)

(+ (* a x) b)))

(bind line1 (linear 1 2)

(bind line2 (linear 3 4)

(bind try (fun (b) (list (line1 b) (line2 (+ b 1)) (line2 (+ b 2))))

(try (+ a a)))))))

Figure 2: A sample Hofl program used to illustrate the difference between static and dynamic
scope.

b. [2] What is the final value of the program from part (a) in statically scoped Hofl? You
should figure out the answer on your own, but may wish to check it using the statically scoped
Hofl interpreter.

c. [10] Draw an environment diagram that shows all of the environments created in dynamically
scoped HOFL when running the program from Figure 2 on the input argument list [5].

d. [2] What is the final value of the program from part (c) in dynamically scoped Hofl?

e. [4] In a programming language with higher-order functions, which supports modularity
better: lexical scope or dynamic scope? Explain your answer.

7

Group Problem 2 [20]: bindrec
Consider the following Hofl expression E:

(bind f (abs x (+ x 1))

(bindrec ((f (abs n

(if (= n 0)

1

(* n (f (- n 1)))))))

(f 3)))

a. [6] Draw an environment diagram showing the environments created when E is evaluated in
statically scoped Hofl, and show the final value of evaluating E.

b. [6] Consider the expression E
′ that is obtained from E by replacing bindrec by bindseq.

Draw an environment diagram showing the environments created when E
′ is evaluated in stati-

cally scoped Hofl, and show the final value of evaluating E
′.

c. [6] Draw an environment diagram showing the environments created when E
′ is evaluated

in dynamically scoped Hofl, and show the final value of evaluating E
′.

d. [2] Does a dynamically scoped language need a recursive binding construct like bindrec in
order to support the creation of local recursive procedures? Briefly explain your answer.

Group Problem 3 [30]: Distinguishing Scopes
In this problem, you will write programs and expressions that distinguish the various scoping

mechanisms of Hofl, Fofl, and Fobs.

a. [6] In the file ~/ps7-group/exp3a.hfl, write a simple Hofl expression E3a that evaluates
to (sym static) in a statically-scoped Hofl interpreter but evaluates to (sym dynamic) in
dynamically-scoped interpreter. The only types of values that E3a should manipulate are symbols
and functions; it should not use integers, booleans, characters, strings, or lists. You can test your
expression in the Ocaml interpreter as follows:

#cd /students/your-username/ps7-group

#use "load-hofl.ml"

#testHoflFile "exp3a.hfl"

The testHoflFile function will evaluate the expression in the given file in both scopes and
display the results. A correct solution should have the following behavior:

testHoflFile "exp3a.hfl";;

Value of expression in static scope: (sym static)

Value of expression in dynamic scope: (sym dynamic)

- : unit = ()

b. [10] In the file ~/ps7-group/exp3b.fbs, write a simple Fobs expression E3b that evaluates
to a list (list Vvarscope Vfunscope), where

• Vvarscope is (sym static) if Fobs uses static variable scoping and (sym dynamic) if Fobs

uses dynamic variable scoping; and

• Vfunscope is (sym static) if Fobs uses static function scoping and (sym dynamic) if Fobs

uses dynamic function scoping.

8

The only types of values that E3b should manipulate are symbols; it should not use integers,
booleans, characters, strings, or lists. You can test your expression in the Ocaml interpreter as
follows:

#cd /students/your-username/ps7-group

#use "load-fobs.ml"

#testFobsFile "exp3b.fbs"

A correct solution should have the following behavior:

testFobsFile "exp3b.fbs";;

Value of expression with static variable scope and static function scope:

(list (sym static) (sym static))

Value of expression with dynamic variable scope and static function scope:

(list (sym dynamic) (sym static))

Value of expression with static variable scope and dynamic function scope:

(list (sym static) (sym dynamic))

Value of expression with dynamic variable scope and dynamic function scope:

(list (sym dynamic) (sym dynamic))

- : unit = ()

If you cannot solve this problem using only symbol variables, you can receive partial credit for
writing an expression that uses other types of values and has four different values for the four
scope combinations.

c. [10] In the file ~/ps7-group/pgm3c.ffl, write a simple Fofl one-parameter program (not
an expression) P3c that has a different behavior under each of the four Fofl scoping mechansims
(static, dynamic, empty, and merged) when run on the argument list [5]. The results can be
distinguished not only by values but by error messages. That is, each of the four evalations should
have a different value or error message than the others.

You can test your program in the Ocaml interpreter as follows:

#cd /students/your-username/ps7-group

#use "load-fofl.ml"

#testFoflFile "pgm3c.ffl"

d. [4] Bud Lojack claims that he can write a Fofl program that, when executed on the correct
number of arguments, does not signal an error but returns three different values under the static,
dynamic, and merged scoping mechanisms. Explain why Bud’s claim is bogus.

Group Problem 4 [20]: Valex expressions in Hofl

Hofl is designed as an extension to Valex— every Valex program is a legal Hofl program
if the valex keyword is changed to hofl.

a. [10] Suppose that E4a is any closed Valex expression. (Recall that an expression is closed if
it has no free variables.) Carefully explain why E4a must have the same value in statically-scoped
Hofl as it does in Valex. Hint: Compare the evaluation rules and desugaring rules for the two
languages. Where do they differ for Valex expressions? In the places where they differ, explain
why they still must have the same value.

b. [10] In the file exp4b.vlx, write a simple closed Valex expression E4b that evaluates to a
different value in dynamically-scoped Hofl than it does in Valex. Explain why the values are
different. You can test your expression using the testHoflFile function from Problem 3a. (By
the result of Problem 4a, the statically-scoped Hofl interpreter will give the same value as the
Valex interpreter.)

9

Individual Problem Header Page

Please make this the first page of your hardcopy submission of individual problems.

CS251 Problem Set 7 Individual Problems
Due 6pm Friday, April 20

Name:

Date & Time Submitted:

By signing below, I attest that I have followed the policy for individual prob-

lems set forth in the Course Information handout. In particular, I have not
consulted with any person except Lyn about these problems and I have not
consulted any materials from previous semesters of CS251.

Signature:

In the Time column, please estimate the time you spent on the parts of this problem set. Please

try to be as accurate as possible; this information will help me design future problem sets. I will fill

out the Score column when grading you problem set.

Part Time Score

General Reading

Problem 1a [10]

Problem 1b [20]

Problem 1c [10]

Problem 1d [10]

Total

10

Group Problem Header Page

Please make this the first page of your hardcopy submission for group problems.

CS251 Problem Set 7 Group Problems
Due 6pm Friday, April 20

Names of Team Members:

Date & Time Submitted:

Collaborators (anyone you or your team collaborated with):

By signing below, I/we attest that I/we have followed the collaboration policy
as specified in the Course Information handout.
Signature(s):

In the Time column, please estimate the time you or your team spent on the parts of this problem

set. Team members should be working closely together, so it will be assumed that the time reported

is the time for each team member. Please try to be as accurate as possible; this information will

help me design future problem sets. I will fill out the Score column when grading you problem set.

Part Time Score

General Reading

Problem 1 [30]

Problem 2 [20]

Problem 3 [30]

Problem 4 [20]

Total

11

