CS251 Programming Languages Handout # 16
Prof. Lyn Turbak February 7, 2007

Wellesley College
The Substitution Model

In CS111 and CS230, we used the JAVA Execution Model to explain the execution of JAvA
programs. In order to understand OCAML features like function values, recursion, pattern-matching,
and let-binding, it is helpful to have a model to explain how OCAML expressions are evaluated.
Here we introduce the OCAML substitution model as a way to understand OCAML evaluation.
We shall see that the OCAML substitution model is much simpler than the JAvVA Execution Model,
in large part because it is similar to performing algebraic simplification of mathematical expressions.

1 Values

The goal of the substitution model is find the value denoted by an expression. Intuitively, a value
is an expression that is so simple that it cannot be simplified any further — it stands for itself.
Here are some examples of OCAML values:

e the unit value: O;

e boolean values: true, false;

e integers: e.g., 17, 0, -23;

e floating point numbers: e.g., 3.14159, 5.0, -1.23;
e characters: e.g., ’a’, ’B’, >3, ’\n’;

e strings: e.g., "Hi!"’ "foo bar baz","";

e functions: e.g., fun x -> x + 1, (+) (Note: The fact that functions are values in OCAML is
an extremely important feature — one we shall explore in more detail soon.)

e tuples of values: e.g., (true, 17), (3.14159, ’a’, ("Hi!", fun x -> x + 1));
e lists of values: e.g., [1, [3;1;2], [[""]; ["a";"b"]; ["aa";"ab";"ba";"bb"]l],
[(’a’, true); (’b’, false)], [fun x -> x + 1; fun y -> y * 2; fun z -> z * z].
2 Simple Operations

OcAML comes equipped with many built-in operations on values that we shall treat as primitive
black-box functions in the substitution model. We use the notation F; = FE, to indicate that
the expression E; can be simplified to E» in the substitution model. For example:

o 1 + 2= 3;
e 1 < 2= true;
e 2.718 +. 3.141 = 5.859

max 2.718 3.141 = 3.141

true && false = false;

e String.get "abc" 1 = ’b’;
e fst (4,’a’) = 4;

e snd (4,’a’) = ’a’;

e List.hd [4;1;2] = 4;

e List.tl [4;1;2] = [1;2]
e List.length [4;1;2] = 3

e [4;1;2] @ [3;5] = [4;1;2;3;5]

An expression with subexpressions can be evaluated in several steps. For example:
(1+4) - (2%¥3) = 5 - (2%3) = 5 - 6 = -1

As in algebraic simplification, the order in which OcAML subexpressions are evaluated does not
matter. So we could evaluate the (2%3) before the (1+4)

(1+4) - (2%3) = (1+4) - 6 = 5 - 6 = -1
or we could evaluate the two subexpressions in parallel:
(1+4) - (2#3) = 5 - 6 = -1

All OcAML expressions evaluate to a value, but some also perform a side effect — that
is, they change the state of the computational world in some way. For example, the expression
print_string "cs251" has the side effect of displaying the characters cs251 on the computer
console. It also evaluates to the unit value, (), which is the only value in the unit type. This
trivial value is typically used for expressions that are evaluated for their side effect, not for their
value. The substitution model can show that print_string "cs251" evaluates to the unit value,
but it does not explain how to keep track of its side effects; that is outside the scope of the
substitution model:

print_string "cs251" = () (* Also displays ‘‘cs251’’ on the console *)

We will only consider the evaluation of well-typed OCAML expressions, so we never have to
worry about evaluating non-sensical expressions like:

e 1 + true
e fst [3;1;2]

e List.hd (1, true)

However, even with well-typed expressions, it is possible to encounter expressions that cannot
be evaluated because they contain an error. In the substitution model, we will say that such
expressions are stuck, and will use the notation £ # to indicate that the expression FE is stuck.
For example:

e 5/0 #
e List.hd [] %
e String.get "abc" 3 #

e 1+ (5/0) #

The last example indicates that an expression containing a stuck subexpression can also be stuck.
Note that a “real” OCAML interpreter will raise an exception in situations like the above.

5/0;;
Exception: Division_by_zero.
List.hd [1;;

Exception: Failure "hd".

String.get "abc" 3;;
Exception: Invalid_argument "String.get".
1+ (5/0);;

Exception: Division_by_zero.

So our substitution model will handle stuck expressions differently than the OCAML interpreter.

3 Conditionals

A conditional expression if FEy.g then FEy., else FE.y. is evaluated by first evaluating E;.s to
a boolean value, and then using this to determine the branch taken by the following rules:

1. if true then FEyp., else F.se = Eipen

2. if false then Fipe, else Eoe = Fose

For example:

if (1<2) && (3>4) then 5+6 else 7*8
= if true && false then 5+6 else 7%8
= if false then 5+6 else 7%8

= T7*8

= 56

Note that the then or else branch of a conditional is not evaluated until the test expression is fully
evaluated. This means that it is possible for the branch not taken to contain a stuck expression
that does not cause the whole conditional to be stuck. For example:

if true then 5+6 else 7/0 = 5+6 = 11

4 Sequential Evaluation

A sequence expression (E; ; FEj) is evaluated by first evaluating F; to a unit value, and then
rewriting the sequence expression using the following rule:

(O 5 E2) = Ey
It is an error if £y does not have the unit type. For example:

1 + (print_string "cs251"; 2%3)

= 1+ ((); 2%3) (* Also displays ‘‘cs251’’ on the console *)
= 1 + (2%3)

= 1+6

=7

5 Pattern Matching

A pattern matching construct match Fg,. with clauses is evaluated by (1) evaluating the dis-
criminant expression Fggs. to a value Vyge; (2) using this value to choose the matching clause
Ppat => Eboqy in clauses; and (3) evaluating Eyp.q, after substituting the values in V. for the
corresponding names in the pattern Pp,;. For example:

e match (1,2) with (a,b) -> a+b
= 1+2
= 3

e match ((1,2),(3,4)) with ((a,b),(c,d)) -> (a+tc,b+d)
= (1+3,2+4)
= (4,6)

e match [] with [1 -> [17] | [x] -> [x*2] | (x::xs) -> (x+1)::xs
= [17]

e match [3] with [] -> [17] | [x] -> [x*2] | (x::xs) —> (x+1)::xs
= [3x2]
= [6]

e match [3;1;2] with [1 -> [17] | [x] -> [x*2] | (x::xs8) -> (x+1)::xs
= (3+1)::[1;2]
= [4;1;2]

If there is no clause that matches V., the match expression is stuck. For example:
match [] with (x:x8) -> x #

A let expression desugars into a match expression:

let (a,b) = (1,2) in atb

= match (1,2) with (a,b) -> a+b
= 1+2

= 3

let (a,b) (1,2)
and (c,d) = (3,4)
in (a+c,b+d)
= match ((1,2),(3,4)) with ((a,b),(c,d)) -> (a+c,b+d)
= (1+3,2+4)
= (4,6)

However, we will often evaluate a let expression “directly” (i.e., without the desugaring step):
let (a,b) = (1,2) in a+b

= 142
= 3

let (a,b) = (1,2)
and (c,d) = (3,4)
in (a+c,b+d)
= (1+3,2+4)

= (4,6)

In cases where the same name appears multiple times, we will often add subscripts to the names
to distinguish them. This models the fact that the same name may refer to different logical variables
in different parts of the expression. For example:

let a = 2+3 in (let a = a*a in 2%a) + a

= let a; = 2+3 in (let as = aj*a; in 2*as) + a;
= let a; = 5 in (let ay = aj*a; in 2*ay) + a;
= (let ag = 5%5 in 2*ajy) + 5

= (let ag = 25 in 2*ay) + 5

= (2%25) + 5

= 50 + 5

= b5b

6 Function Application

As we have seen, a fun expression is just an OCAML notation for a function value. For example,
the fun expression

fun x -> x*x

is pronounced “a function that takes an integer x and muliplies it by itself.” Such an expression
can be used in the operator position of a function call. In the substitution model, an invocation
of a function to an argument value rewrites to a copy of the body of the function in which each
occurrence of the formal parameter has been replaced by the argument value. For example:

(fun x -> x*x) (2+3)

= (fun x -> x*x) b5

= bx*5

= 25

OcAML is a call-by-value language, which means that all function arguments must be fully
evaluated to values before the function is invoked. For example, the following expression is stuck
because the function argument is stuck, even though the function does not “use” the argument:

(fun y -> 3) (5/0) #

Some other languages use alternative evaluation strategies (known as call-by-name and call-by-need)
in which the above function application would evaluate to 3 rather than being stuck. We will study
these other strategies later in this semester.
Functions with patterns in the formal parameter position desugar to bodies involving match:

(fun (a,b) -> (a+b)/2) (3,7)

= (fun p -> match p with (a,b) -> (atb)/2) (3,7)

= match (3,7) with (a,b) -> (a+b)/2

= (3+7)/2

= 10/2

= 5

In practice, we will often do the pattern-matching on formal parameter patterns directly:

(fun (a,b) -> (a+b)/2) (3,7)
= (3+7)/2

= 10/2

=5

Functions that take multiple parameters desugar into nested functions of single parameters:

(fun x y -> (x+y)/(x-y)) 6 4
= (fun x -> (fun y —> (x+y)/(x-y))) 6 4

= (fun y -> (6+y)/(6-y)) 4 (x first substitute 6 for x *)
= (6+4)/(6-4) (* then substitute 4 for y *)
= 10/2

= b5

In practice, we will often substitute all available argument values simultaneously:

(fun x y => (x+y)/(x-y)) 6 4
= (6+4)/(6-4)
= 10/2

= 5

7 Global Names

Global names can be handled in the substitution model by replacing any globally defined name by
its associated value. It may be necessary to rename variables (e.g., by subscripting) to make all
global names distinct. For example:

let a; = 2+3
= let a; =5

let add_a x = x+a;

let as = aj*a;
= let ag = bxb
= let as = 25

let mul_ay =y * ap
let dec a3 = az-1

dec (mul_a (add_a a3))

dec (mul_a (add_a 25))
dec (mul_a ((fun x -> x+a;) 25))
dec (mul_a (25+5))

dec (mul_a 30)

dec (mul_a 30)

dec ((fun y -> y*as) 30)
dec (30%25)

dec 750

(fun a3 -> a3z-1) 750
750-1

749

N O A A

8 Recursion

The meaning of recursion on globally defined functions is explained by the substitution model
without any new rules. For example:

let rec fact n = if n = 0 then 1 else n*(fact(n-1))

fact 5

= if 5 = 0 then 1 else 5*%(fact(5-1))
= if false then 1 else 5%(fact(5-1))
= B*(fact(5-1))

= bx(fact(4))

= b5x(4xfact(3)) (* skip the evaluation of if and decrement *)
= Bx(4*x(3*(fact(2))))

= B5x(4*x (3% (2% (fact(1)))))

= B*(4* (3% (2x (1% (fact(0))))))

= 5x(4x (3% (2% (1%1))))

= 5x (4% (3%(2%1)))

= 5% (4*(3%2))

= 5% (4x6)

= bx*x24

= 120

Note how pending multiplications in the factorial example are represented in the substitution model.
Tail recursion is also explained by the substitution model. For example:

let rec factTail (num,ans) = if num=0 then ans else factTail (num-1,num*ans);;
let factIter n = factTail(n,1);;

factIter 5

factTail(5,1)

if 5=0 then 1 else factTail(5-1,5%1)
if false then 1 else factTail(5-1,5%1)
factTail(5-1,5%1)

factTail(4,5)

factTail(4-1,4%5) (x skip evaluation of if *)
factTail(3,20)

factTail(3-1,3%20)

factTail(2,60)

factTail(2-1,2%*60)

factTail(1,120)

factTail(1-1,1%120)

factTail(0,120)

120

S O O

