
CS251 Programming Languages Handout # 33

Prof. Lyn Turbak March 28, 2005

Wellesley College

Valex: Dynamic Type Checking and Desugaring

Valex is a language that extends Bindex with several new primitive data types and some
constructs that express branching control flow. We study Valex for two reasons:

1. To show how multiple primitive data types are handled by the interpreter. In particular, the
Valex interpreter performs dynamic type checking to guarantee that operators are called
only on the right number and types of operands and that conditionals use only booleans to
direct control flow.

2. To show that a language implementation can be significantly simplified by decomposing it
into three parts:

(a) a small kernel language with only a few kinds of expressions;

(b) synactic sugar for expressing other constructs in terms of kernel expressions;

(c) an easily extensible library of primitives.

1 The Valex Language

Whereas all values in Intex and Bindex are integers, Valex supports several additional types of
values: booleans, strings, characters, symbols, and lists. It also supports branching control flow
constructs controlled by booleans.

1.1 Booleans

Valex includes the two values #t (stands for truth) and #f (stands for falsity). These values are
called booleans in honor of George Boole, the nineteenth century mathematician who invented
boolean algebra.
The two boolean values can be written directly as literals, but can also be returned as the result

of applying relational operators (<=, <, >, >=, = !=) to integers and logical operators (not, and,
or, bool=) to booleans. The = operator tests two integers for equality, while != tests two integers
for inequality. The and operator returns the logical conjunction (“and”) of two boolean operands,
while or returns the logical disjunction (“or”) of two boolean operands. The bool= operator tests
two booleans for equality. For example:

valex> (< 3 4)

#t

valex> (= 3 4)

#f

valex> (!= 3 4)

#t

valex> (not (= 3 4))

#t

valex> (and (< 3 4) (>= 5 5))

#t

1

valex> (and (< 3 4) (> 5 5))

#f

valex> (or (< 3 4) (> 5 5))

#t

valex> (or (> 3 4) (> 5 5))

#f

valex> (bool= #f #f)

#t

valex> (bool= #t #f)

#f

If a Valex operator is supplied with the wrong number or wrong types of operands, a dynamic

type checking error is reported.

valex> (< 5)

EvalError: Expected two arguments but got: (5)

valex> (= 5 6 7)

EvalError: Expected two arguments but got: (5 6 7)

valex> (+ 1 #t)

EvalError: Expected an integer but got: #t

valex> (and #t 3)

EvalError: Expected a boolean but got: 3

valex> (bool= 7 8)

EvalError: Expected a boolean but got: 7

valex> (= #t #f)

EvalError: Expected an integer but got: #t

The final example illustrates the necessity of the bool= operator; The = operator tests only integer
equality in Valex, so each non-integer value type needs its own operator to test equality for that
type.
In contrast, many languages support overloaded operators that may be used on different types

of operands (and whose meaning may depend on the types of those operands). For example:

• Java’s == operator tests equality for any primitive type (e.g., int, boolean, char, etc.) and
every reference type (i.e., object type).

• Ocaml’s relational functions (<, <=, !=, =, >=, >) are defined at every type, as are its min
and max functions.

• Java’s + operator can be used with operands of any numeric type; it’s behavior depends on
the types of the operands. For example, if both operands are integers it performs integer
addtion; if both operands are floating point numbers, it performs floating point addition; and
if one operand is an integer and the other is a float, it converts the integer to a float before
performing floating point addition. Additionally, the + operator denotes string concatenation
when applied to two strings; and when applied to one string, causes the non-string operand
to be converted to a string before concatenation is performed.

1

1The relational operators in Valex are not ¿ overloaded, as they are in other languages, such as Ocaml.

2

1.2 Branching Control Constructs

The purpose of booleans is to direct the flow of control in a program with a branching control struc-
ture. The fundamental control construct inValex is the conditional construct (if Etest Ethen Eelse),
which first evaluates Etest to a value Vtest , and then returns the value of Ethen if Vtest is true and
returns the value of Eelse if Vtest is false.

valex> (if (< 1 2) (+ 3 4) (* 5 6))

7

valex> (if (> 1 2) (+ 3 4) (* 5 6))

30

valex> (if (< 1 2) (+ 3 4) (/ 5 0))

7

valex> (if (> 1 2) (+ 3 4 5) (* 5 6))

7

The last two examples highlight the fact that exactly one of Ethen and Eelse is evaluated. The
expression in the branch not taken is never evaluated, and so the fact that such branches might
contain an error is never detected.
Evaluating only one of the two branches is more than a matter of efficiency. In languages with

recursion, it is essential to the correctness of recursive definitions. For example, consider an Ocaml

definition of factorial:

let fact n =

if n = 0 then

1

else

n * (fact(n-1))

If both branches of the if were evaluated, then an application of fact, such as fact 3, would
never terminate! This is why if must be a “special form” in call-by-value languages and not just
an application of a primitive operator; in applications of primitive operators in a call-by-value
language, all operand expressions must be evaluated.
The Valex if construct has the same syntax as Scheme’s if construct, but its semantics

differs. Unlike Scheme, which treats any non-false value as true Valex requires that the test
expression evaluate to a boolean. A non-boolean test expression is an error in Valex:

valex> (if (- 1 2) (+ 3 4) (* 5 6))

Error! Non-boolean test in an if expression.

scheme> (if (- 1 2) (+ 3 4) (* 5 6))

7

Valex also has a multi-clause conditional construct with the same syntax as Scheme’s cond
construct. For example, the Valex program

(valex (x y)

(cond ((< x y) -1)

((= x y) 0)

(else 1)))

is equivalent to the following program using nested conditionals:

3

(valex (x y)

(if (< x y)

-1

(if (= x y)

0

1)))

The only difference in meaning between the Valex cond and a Schemecond is the same as that
for if: each test expression evaluated in the Valex cond must be a boolean.
Like many languages, Valex provides “short-circuit” logical conjunction and disjunction con-

structs, respectively && (cf. Ocaml/Java/C’s && and Scheme’s and) and || (cf. Ocaml/Java/C’s
|| and Scheme’s or):

(&& Erand1 Erand2)

(|| Erand1 Erand2)

These are similar to Valex’s binary operators and and or, except that Erand2 is never evaluated if
the result is determined by the value of Erand1 . For instance, with &&, Erand1 is first evaluated to
the value Vrand1 . If Vrand1 is #t, then Erand2 is evaluated, and its value is returned as the value of
the && expression. But if Vrand1 is #f, then #f is immediately returned as the value of the && and
Erand2 is never evaluated. Similarly, with ||, if Vrand1 is #t, a value of #t is returned for the ||
expression without Erand2 being evaluated; otherwise the value of Erand2 is returned. In contrast,
both operand expressions of and and or are always evaluated.

valex> (and (= 1 2) (> 3 4 5))

EvalError: Expected two arguments but got: (3 4 5)

valex> (&& (= 1 2) (> 3 4 5))

#f

valex> (or (< 1 2) (+ 3 4))

EvalError: Expected a boolean but got: 7

valex> (|| (< 1 2) (+ 3 4))

#t

valex> (and (< 1 2) (+ 3 4))

EvalError: Expected a boolean but got: 7

valex> (&& (< 1 2) (+ 3 4))

7

valex> (|| (> 2 3) (* 4 5))

20

The final two examples shows that when the first operand does not determine the value of an &&

or || construct, the value of its second operand is returned, regardless of whether or not it is a
boolean.
In many cases, &&/|| behave indistinguishably from the boolean operators and/or, which eval-

uate both of their operands. To see the difference, it is necessary to consider cases where not
evaluating E2 makes a difference. In Valex, such a situation occurs when evaluating E2 would
otherwise give an error. For instance, consider the following Valex program:

(valex (x)

(if (|| (= x 0)

(> (/ 100 x) 7))

(+ x 1)

(* x 2)))

This program returns 1 when applied to 0. But if the || were changed to or, the program would

4

encounter a divide-by-zero error when applied to 0 because the division would be performed even
though (= x 0) is true.
This example is somewhat contrived, but real applications of short-circuit operators abound in

practice. For example, consider the higher-order Ocaml for_all function we studied earlier this
semester:

let rec for_all p xs =

match xs with

[] -> true

| x::xs’ -> (p x) && for_all p xs’

In Ocaml, && is the short-circuit conjunction operator. It is important to use a short-circuit
operator in for_all because it causes the recursion to stop as soon as an element is found for
which the predicate is false. If && were not a short-circuit operator, then for_all of a very long
list would explore the whole list even in the case where the very first element is found to be false.
As another example, consider the following Java insertion_sort method for an array:

public void insertion_sort (int[] a) {
for (int i = 0; i < a.length; i++) {

int x = a[i];

int j = i-1;

// Insertion loop

while ((j >= 0) && (a[j] > x)) { // Critical that && is short-circuit!

a[j+1] = a[j];

j--;

}
a[j+1] = x;

}

}

The use of the short-circuit && operator in the test of the while loop is essential. In the case
where j is -1, the test ((j >= 0) && (a[j] > x)) is false. But if both operands of the && were
evaluated, the evaluation of a[-1] would raise an array out-of-bounds exception.

1.3 Strings

Valex supports string values. As usual, string literals are delimited by double quotes.

1.4 Characters

Valex supports character values. As usual, string literals are delimited by single quotes.

1.5 Symbols

Valex supports a Scheme-like symbol data type. A symbolic literal, written (sym symbolname),
denotes the name symbolname. So sym is a kind of “quotation mark”, similar to quote in Scheme,
that distinguishes symbols (such as (sym x)) from variable references (such as x).
The only operation on symbols is the test for equality via the sym= operator. For example:

valex> (sym= (sym foo) (sym foo))

#t

valex> (sym= (sym foo) (sym bar))

#f

5

1.6 Lists

Valex supports list values. The empty list is written #e. The prepending function prep adds an
element to the front of a list. The head function returns the head of a list while tail returns the
tail. A list is tested for emptiness via empty?. The notation:

(list E1 . . . En)

is a shorthand for creating a list of n elements.

2 The Valex Kernel

The Valex kernel language has only five kinds of expressions:

1. literals (which include boolean and symbolic literals as well as integers),

2. variable references,

3. single-variable local variable declarations (i.e., bind),

4. primitive applications (can have any number of operands of any type), and

5. conditional expressions (i.e., if).

In Sec. 4, we shall see that these five expression types are sufficient for representing all Valex

expressions.
The abstract syntax for the Valex kernel is presented in Fig. 1. The exp type expresses the five

different kinds of Valex expressions. The valu2 type expresses the six different types of Valex

values.
Primitive operators are represented via the primop type, whose single constructor Primop com-

bines the name of the operator with an Ocaml function of type valu list -> valu that specifies
the behavior of the operator. The two components of a primop can be extracted via the functions
primopName and primopFunction. We will study the specification of primitives in Sec. 3. We will
see that the key benefit of the Valex approach to specifying primitives is that the Valex abstract
syntax need not be extended every time a new primitive operator is added to the language. In
contrast, Intex and Bindex were implemented with a binop type that did need to be extended:

and binop = | Add | Sub | Mul | Div | Rem

Unparsing in Valex is straightforward (Fig. 2). The only feature worth noting is that there
is a valuToSexp function that handles the unparsing of the boolean true value to #t, the boolean
false value to #f, the empty list #e, and non-empty lists to the form (list V1 . . . Vn).

Valex parsing is more complicated. We delay presenting this until we discuss desugaring in
Sec. 4.
In Valex, the free variables are calculated as in Bindex, except there are two new clauses: one

for general primitive applications and one for conditionals:

and freeVarsExp e =

match e with
...

| PrimApp(_,rands) -> freeVarsExps rands

| If(tst,thn,els) -> freeVarsExps [tst;thn;els]

Similarly, the Valex subst function has two new clauses:

2The name valu was chosen because the names val and value are already reserved keywords in Ocaml that

cannot be used as type names.

6

type var = string

type pgm = Pgm of var list * exp (* param names, body *)

and exp =

Lit of valu (* integer, boolean, character, string, and symbol literals *)

| Var of var (* variable reference *)

| PrimApp of primop * exp list (* primitive application with rator, rands *)

| Bind of var * exp * exp (* bind name to value of defn in body *)

| If of exp * exp * exp (* conditional with test, then, else *)

and valu =

Int of int

| Bool of bool

| Char of char

| String of string

| Symbol of string

| List of valu list

and primop = Primop of var * (valu list -> valu) (* primop name, function *)

let primopName (Primop(name,_)) = name

let primopFunction (Primop(_,fcn)) = fcn

Figure 1: Data types for Valex abstract syntax.

let rec subst exp env =

match exp with
...

| PrimApp(op,rands) -> PrimApp(op, map (flip subst env) rands)

| If(tst,thn,els) -> If(subst tst env, subst thn env, subst els env)

The complete environment model evaluator for Valex is shown in Fig. 3. It is very similar to
the Bindex environment model evaluator except:

• In the top-level call to eval from run, it is necessary to inject each integer argument into
the valu type using the Int constructor. (For simplicity, we still assume that all program
arguments are integers even though our language supports a richer collection of values.)

• Valex environments hold arbitrary values rather than just integers, so the type of eval is:

val eval : Valex.exp -> valu Env.env -> valu

• Since each primop holds the Ocaml function specifying its behavior, all the primitive appli-
cation clause has to do is apply this function to the evaluated operands. There is no need for
the analog of the auxiliary binApply function used in the Intex and Bindex interpreters.

• It has a clause for evaluating conditionals. Note that:

– Ocaml’s if is used to implement Valex’s if;

– at most one of the two conditional branches (thn, els) is evaluated;

– because Valex has many different kinds of values, dynamic type checking must be
performed on the test expression tst to ensure that it is a boolean. If not, a dynamic
type error is reported.

7

(* val pgmToSexp : pgm -> Sexp.sexp *)

let rec pgmToSexp p =

match p with

Pgm (fmls, e) ->

Seq [Sym "valex"; Seq(map (fun s -> Sym s) fmls); expToSexp e]

(* val expToSexp : exp -> Sexp.sexp *)

and expToSexp e =

match e with

Lit v -> valuToSexp v

| Var s -> Sym s

| PrimApp (rator, rands) ->

Seq (Sym (primopName rator) :: map expToSexp rands)

| Bind(n,d,b) -> Seq [Sym "bind"; Sym n; expToSexp d; expToSexp b]

| If(tst,thn,els) -> Seq [Sym "if"; expToSexp tst; expToSexp thn; expToSexp els]

(* val valuToSexp : valu -> sexp *)

let rec valuToSexp valu =

match valu with

Int i -> Sexp.Int i

| Bool b -> Sym (if b then "#t" else "#f")

| Char c -> Sexp.Chr c

| String s -> Sexp.Str s

| Symbol s -> Seq [Sym "sym"; Sym s]

| List [] -> Sym "#e" (* special case *)

| List xs -> Seq (Sym "list" :: (map valuToSexp xs))

(* val valuToString : valu -> string *)

let valuToString valu = sexpToString (valuToSexp valu)

(* val valusToString : valu list -> string *)

and valusToString valus = sexpToString (Seq (map valuToSexp valus))

(* val expToString : exp -> string *)

and expToString s = sexpToString (expToSexp s)

(* val pgmToString : pgm -> string *)

and pgmToString s = sexpToString (pgmToSexp s)

Figure 2: Unparsing functions for the Valex abstract syntax.

The complete substitution model evaluator for Valex is shown in Fig. 4. It is similar to the
Bindex substitution model evaluator except for differences analagous to the ones discussed for the
environment model evaluator.
This completes the presentation of the implementation of the Valex kernel. Even though

Valex has many more features than Bindex, its kernel differs from the Bindex kernel in only
relatively minor ways. And in some ways, such as the evaluation of primitive applications, it is
even simpler.
We will now discuss in more detail the specification of primitive operators and syntactic sugar,

features that are key in simplifying the Valex implementation.

8

(* val run : Valex.pgm -> int list -> valu *)

let rec run (Pgm(fmls,body)) ints =

let flen = length fmls

and ilen = length ints

in

if flen = ilen then

eval body (Env.make fmls (map (fun i -> Int i) ints))

else

raise (EvalError ("Program expected " ^ (string_of_int flen)

^ " arguments but got " ^ (string_of_int ilen)))

(* val eval : Valex.exp -> valu Env.env -> valu *)

and eval exp env =

match exp with

Lit v -> v

| Var name ->

(match Env.lookup name env with

Some(v) -> v

| None -> raise (EvalError("Unbound variable: " ^ name)))

| PrimApp(op, rands) -> (primopFunction op) (map (flip eval env) rands)

| Bind(name,defn,body) -> eval body (Env.bind name (eval defn env) env)

| If(tst,thn,els) ->

(match eval tst env with

Bool b -> if b eval thn env else eval els env

| v -> raise (EvalError ("Non-boolean test value "

^ (valuToString v)

^ " in if expression"))

)

Figure 3: The environment model evaluator for the Valex kernel.

3 Primitive Operators and Dynamic Type Checking

In the implementation architecture exemplified by Bindex, adding a new primitive is more tedious
than it should be. To show this, we will consider the four steps required to add an exponentiation
operator ^ to Bindex:

1. Extend the binop type with a nullary Expt constructor:

and binop = . . . | Expt

2. Extend the stringToBinop function with a clause for Expt:

and stringToBinop s =

match s with
...

| "^" -> Expt

| _ -> raise (SyntaxError ("invalid Bindex primop: " ^ s))

3. Extend the binopToString function with a clause for Expt:

and binopToString p =

match p with
...

| Expt -> "^"

4. Extend the binApply function with a clause for Expt:

9

(* val run : Valex.pgm -> int list -> int *)

let rec run (Pgm(fmls,body)) ints =

let flen = length fmls

and ilen = length ints

in

if flen = ilen then

eval (subst body (Env.make fmls (map (fun i -> Lit (Int i)) ints)))

else

raise (EvalError ("Program expected " ^ (string_of_int flen)

^ " arguments but got " ^ (string_of_int ilen)))

(* val eval : Valex.exp -> valu *)

and eval exp =

match exp with

Lit v -> v

| Var name -> raise (EvalError("Unbound variable: " ^ name))

| PrimApp(op, rands) -> (primopFunction op) (map eval rands)

| Bind(name,defn,body) -> eval (subst1 (Lit (eval defn)) name body)

| If(tst,thn,els) ->

(match eval tst with

Bool true -> eval thn

| Bool false -> eval els

| v -> raise (EvalError ("Non-boolean test value "

^ (valuToString v)

^ " in if expression"))

)

Figure 4: The substitution model evaluator for the Valex kernel.

(* val binApply : Bindex.binop -> int -> int -> int *)

and binApply op x y =

match op with
...

| Expt -> if y < 0 then

raise (EvalError ("Exponentiation by negative base: "

^ (string_of_int y)))

else

let rec loop n ans = if n = 0 then ans else loop (n-1) (y*ans)

in loop x ans

These four extensions are spread across two modules in two files of the Bindex implementation. So
adding a primitive requires touching many parts of the code and ensuring that they are consistent.
It would be preferable to have a means of specifying primitives that only requires changing

one part of the code instead of four. The Valex implementation has this feature. The collection
of primitives handled by the language are specified in a single list primops of type primop list.
Recall that primop is defined as:

and primop = Primop of var * (valu list -> valu) (* primop name, function *),

so each primitive is specified by providing its name and behavior. To facilitate the manipulation
of primitive operators by their names, names are associated with the primitive operators in the
environment primopEnv:

10

let primopEnv = Env.make (map (fun (Primop(name,_)) -> name) primops) primops

let isPrimop s = match Env.lookup s primopEnv with Some _ -> true | None -> false

let findPrimop s = Env.lookup s primopEnv

We now consider the specification of individual primitives. Here is one way we could specify
the addition, less-than, and boolean negation primitives:

(* Addition primitive *)

Primop("+", fun vs -> match vs with

[Int i1, Int i2] -> Int (i1+i2)

| _ -> raise (EvalError "invalid args to +"))

(* Relational primitive *)

Primop("<", fun vs -> match vs with

[Int i1, Int i2] -> Bool (i1<i2)

| _ -> raise (EvalError "invalid args to <"))

(* Logical primitive *)

Primop("not", fun vs -> match vs with

[Bool b] -> Bool (not b)

| _ -> raise (EvalError "invalid args to not"))

Note that each Ocaml function must test the number of argument values and the types of these
values to check that they are correct (or raise an exception if they aren’t). This dynamic type

checking process is required whenever a language has multiple value types and the types are not
checked statically (i.e., before the program is run). We will study how to perform static type
checking later in the semester.
To simplify checking the number of arguments and their types, we employ the auxiliary functions

in Fig. 5. The checker functions checkInt, checkBool, and friends abstract over checking the
type of an individual argument. The checkZeroArgs, checkOneArgs, and checkTwoArgs functions
abstract over the checking for 0, 1, and 2 arguments, respectively. Each of these takes a number of
checkers equal to the number of arguments for checking the individual arguments.
Abstracting over the dynamic type checking, particularly the details of generating helpful error

messages, considerably simplifies the specification of our three sample primitives:

Primop("+", checkTwoArgs (checkInt, checkInt) (fun i1 i2 -> Int(i1+i2)))

Primop("<", checkTwoArgs (checkInt, checkInt) (fun i1 i2 -> Bool(i1<i2)))

Primop("not", checkOneArg checkBool (fun b -> Bool(not b)))

We can abstract even more over common patterns like arithmetic an relational operators:

let arithop f = checkTwoArgs (checkInt,checkInt) (fun i1 i2 -> Int(f i1 i2))

let relop f = checkTwoArgs (checkInt,checkInt) (fun i1 i2 -> Bool(f i1 i2))

let logop f = checkTwoArgs (checkBool,checkBool) (fun b1 b2 -> Bool(f b1 b2))

let pred f = checkOneArg checkAny (fun v -> Bool(f v))

With these further abstractions, our first two become:

Primop("+", arithop (+))

Primop("<", relop (<))

Figs. 6 and 7 present the complete specification of all Valex primitives.

11

let checkInt v f =

match v with

Int i -> f i

| _ -> raise (EvalError ("Expected an integer but got: " ^ (valuToString v)))

let checkBool v f =

match v with

Bool b -> f b

| _ -> raise (EvalError ("Expected a boolean but got: " ^ (valuToString v)))

let checkChar v f =

match v with

Char c -> f c

| _ -> raise (EvalError ("Expected a char but got: " ^ (valuToString v)))

let checkString v f =

match v with

String s -> f s

| _ -> raise (EvalError ("Expected a string but got: " ^ (valuToString v)))

let checkSymbol v f =

match v with

Symbol s -> f s

| _ -> raise (EvalError ("Expected a symbol but got: " ^ (valuToString v)))

let checkList v f =

match v with

List vs -> f vs

| _ -> raise (EvalError ("Expected a list but got: " ^ (valuToString v)))

let checkAny v f = f v (* always succeeds *)

let checkZeroArgs f =

fun vs ->

match vs with

[] -> f ()

| _ -> raise (EvalError ("Expected zero arguments but got: " ^ (valusToString vs)))

let checkOneArg check f =

fun vs ->

match vs with

[v] -> check v f

| _ -> raise (EvalError ("Expected one argument but got: " ^ (valusToString vs)))

let checkTwoArgs (check1,check2) f =

fun vs ->

match vs with

[v1;v2] -> check1 v1 (fun x1 -> check2 v2 (fun x2 -> f x1 x2))

| _ -> raise (EvalError ("Expected two arguments but got: " ^ (valusToString vs)))

Figure 5: Auxiliary functions for dynamic type checking of primitive operators.

12

let primops = [

(* Arithmetic ops *)

Primop("+", arithop (+));

Primop("-", arithop (-));

Primop("*", arithop (*));

Primop("/", arithop (fun x y ->

if (y = 0) then

raise (EvalError ("Division by 0: "

^ (string_of_int x)))

else x/y));

Primop("%", arithop (fun x y ->

if (y = 0) then

raise (EvalError ("Remainder by 0: "

^ (string_of_int x)))

else x mod y));

(* Relational ops *)

Primop("<", relop (<));

Primop("<=", relop (<=));

Primop("=", relop (=));

Primop("!=", relop (<>));

Primop(">=", relop (>=));

Primop(">", relop (>));

(* Logical ops *)

Primop("not", checkOneArg checkBool (fun b -> Bool(not b)));

Primop("and", logop (&&)); (* *not* short-circuit! *)

Primop("or", logop (||)); (* *not* short-circuit! *)

Primop("bool=", logop (=));

(* Char ops *)

Primop("char=", checkTwoArgs (checkChar, checkChar) (fun c1 c2 -> Bool(c1=c2)));

Primop("char<", checkTwoArgs (checkChar, checkChar) (fun c1 c2 -> Bool(c1<c2)));

Primop("int->char", checkOneArg checkInt (fun i -> Char(char_of_int i)));

Primop("char->int", checkOneArg checkChar (fun c -> Int(int_of_char c)));

Primop("explode", checkOneArg checkString

(fun s -> List (let rec loop i chars =

if i < 0 then chars

else loop (i-1) ((Char (String.get s i)) :: chars)

in loop ((String.length s)-1) [])));

Primop("implode", checkOneArg checkList

(fun chars -> String (let rec recur cs =

match cs with

[] -> ""

| ((Char c)::cs’) -> (String.make 1 c) ^ (recur cs’)

| _ -> raise (EvalError "Non-char in implode")

in recur chars)));

Figure 6: Valex primitive operators, Part 1.

13

(* String ops *)

Primop("str=", checkTwoArgs (checkString,checkString) (fun s1 s2 -> Bool(s1=s2)));

Primop("str<", checkTwoArgs (checkString,checkString) (fun s1 s2 -> Bool(s1<s2)));

Primop("strlen", checkOneArg checkString (fun s -> Int(String.length s)));

Primop("str+", checkTwoArgs (checkString,checkString) (fun s1 s2 -> String(s1^s2)));

Primop("toString", checkOneArg checkAny (fun v -> String(valuToString v)));

(* Symbol op *)

Primop("sym=", checkTwoArgs (checkSymbol,checkSymbol) (fun s1 s2 -> Bool(s1=s2)));

(* List ops *)

Primop("prep", checkTwoArgs (checkAny,checkList) (fun v vs -> List (v::vs)));

Primop("head", checkOneArg checkList

(fun vs ->

match vs with

[] -> raise (EvalError "Head of an empty list")

| (v::_) -> v));

Primop("tail", checkOneArg checkList

(fun vs ->

match vs with

[] -> raise (EvalError "Tail of an empty list")

| (_::vs’) -> List vs’));

Primop("empty?", checkOneArg checkList (fun vs -> Bool(vs = [])));

Primop("empty", checkZeroArgs (fun () -> List []));

(* Predicates *)

Primop("int?", pred (fun v -> match v with Int _ -> true | _ -> false));

Primop("bool?", pred (fun v -> match v with Bool _ -> true | _ -> false));

Primop("char?", pred (fun v -> match v with Char _ -> true | _ -> false));

Primop("sym?", pred (fun v -> match v with Symbol _ -> true | _ -> false));

Primop("string?", pred (fun v -> match v with String _ -> true | _ -> false));

Primop("list?", pred (fun v -> match v with List _ -> true | _ -> false));

]

Figure 7: Valex primitive operators, Part 2.

4 Desugaring

Syntactic sugar causes cancer of the semicolon.

— Alan Perlis

4.1 Motivation

It is hard work to add a new construct to a language like Bindex or Valex by extending the
abstract syntax. For each construct, we have to perform the following steps:

1. Extend the exp data type with a constructor for the new construct.

2. Extend the sexpToExp function to parse the new construct.

3. Extend the expToSexp function to unparse the new construct.

4. Extend the freeVarsExp function to determine the free variables of the new construct.

14

5. Extend the subst function to perform substitution on the new construct.

6. Extend the environment model eval function handle the new construct.

7. Extend the substitution model eval function handle the new construct.

In sum, at least seven steps must be taken whenever we add a new construct. And this does not
include other functions, like uniquify (for uniquely renaming expressions) that we might want.
Nor does it consider other variants with which we might want to experiment, such as call-by-name
evaluation. So even more functions might need to be updated in practice.
In some cases the functions are straightforward but tedious to extend. In other cases (especially

constructs involving variable declarations), the clauses for the new construct can be rather tricky.
In any of these cases, the work involved is an impediment to experimenting with new language
constructs. This is sad, because ideally interpreters should encourage designing and tinkering with
programming language constructs.
Fortunately, for many language constructs there is a way to have our cake and eat it too! Rather

than extending lots of functions with a new clause for the construct, we can instead write a single
clause that transforms the new construct into a pattern of existing constructs that has the same
meaning. When this is possible, we say that the new construct is syntactic sugar for the existing
constructs, suggesting that it makes the language more palatable without changing its fundamental
structure. The process of remove syntactic sugar by rewriting a construct into other constructs of
the language is known is desugaring. After a construct has been desugared, it will not appear in
any expressions, and thus must not be explicitly handled by functions like freeVarsExp, subst,
etc.

4.2 Simple Examples

Many constructs can be understood by translating them into other constructs of a language. For
instance, the short-circuit conjunction construct

(&& E1 E2)

is equivalent to

(if E1 E2 #f)

and the short-circuit disjunction construct

(|| E1 E2)

is equivalent to

(if E1 #t E2)

As a more complex example, consider the bindseq expression:

(bindseq ((I1 E1)

(I2 E2)
...

(In En))

Ebody)

This can be desugared into a nested sequence of bind expressions:

(bind I1 E1

(bind I2 E2

...

(bind In En

Ebody) . . .))

15

Even bindpar can be desugared in a similar fashion as long as we rename all the bound variables.
That is,

(bindpar ((I1 E1)

(I2 E2)
...

(In En))

Ebody)

can be desugared to

(bind I1
′

E1

(bind I2
′

E2

...

(bind In
′

En

Ebody
′) . . .))

where I1
′
. . .In

′ are fresh variables and Ebody
′ is the result of renaming I1 . . . In to I1

′
. . . In

′ in
Ebody .
As a final Valex example, consider the cond construct:

(cond (Etest1 Eresult1)
...

(Etestn
Eresultn

)

(else Edefault))

This desugars to:

(if Etest1

Eresult1

...

(if Etestn

Eresultn

Edefault) . . .)

It turns out that many programming language constructs can be expressed as synactic sugar
for other other constructs. For instance, C and Java’s for loop

for (init; test; update) {
body

}

can be understood as just syntactic sugar for the while loop

{
init;

while (test) do {
body;

update;

}

}

Other looping constructs, like C/Java’s do/while and Pascal’s repeat/until can likewise be viewed
as desugarings. As another example, the C array subscripting expression a[i] is actually just
syntactic sugar for *(a + i), an expression that dereferences the memory cell at offset i from the

16

base of the array pointer a.3

4.3 A First Cut at Desugaring: The All-at-once Approach

We can implement the kinds of desugaring examples given above by including a clause for each
one in the sexpToExp function that parses s-expressions into instances of the Valex exp type. For
example, the clause to handle && would be:

| Seq [Sym "&&"; rand1x; rand2x] ->

If(sexpToExp rand1x, sexpToExp rand2x, Lit (Bool false))

Here’s a clause to handle cond:

| Seq (Sym "cond" :: clausexs) -> desugarCond clausexs

In this case, we need an auxiliary recursive function to transform the clauses into a nested sequence
of if expressions:

and desugarCond clausexs = (* clausesx is a list of sexp clauses *)

match clausexs with

[Seq[Sym "else"; defaultx]] -> sexpToExp defaultx

| (Seq[testx; resultx])::restx ->

If(sexpToExp testx, sexpToExp resultx, desugarCond restx)

| _ -> raise (SyntaxError ("invalid cond clauses: " ^ (sexpToString (Seq clausexs))))

We call this approach to desugaring the all-at-once approach because it performs the complete
desugaring in a single pass over the s-expression. Figs. 9 and 9 present the complete all-at-once
desugarings for Valex.

(* val sexpToExp : Sexp.sexp -> exp *)

and sexpToExp sexp =

match sexp with
...

(* "All-at-once" desugarings *)

| Seq [Sym "&&"; rand1x; rand2x] ->

If(sexpToExp rand1x, sexpToExp rand2x, Lit (Bool false))

| Seq [Sym "||"; rand1x; rand2x] ->

If(sexpToExp rand1x, Lit (Bool true), sexpToExp rand2x)

| Seq (Sym "cond" :: clausexs) -> desugarCond clausexs

| Seq [Sym "bindseq"; Seq bindingxs; bodyx] ->

let (names, defns) = parseBindings bindingxs in

desugarBindseq names defns (sexpToExp bodyx)

| Seq [Sym "bindpar"; Seq bindingxs; bodyx] ->

let (names, defns) = parseBindings bindingxs in

let names’ = map StringUtils.fresh names in

desugarBindseq names’ defns (renameAll names names’ (sexpToExp bodyx))

| Seq (Sym "list" :: eltxs) -> desugarList eltxs

| Seq [Sym "quote"; sexp] -> Lit (desugarQuote sexp)
...

Figure 8: Valex all-at-once desugarings, Part 1.

3An interesting consequence of this desugaring is that the commutativity of addition implies a[i] = *(a + i) =

*(i + a) = i[a]. So in fact you can swap the arrays and subscripts in a C program without changing its meaning!

Isn’t C a fun language?

17

(* parse bindings of the form ((<namex_1> <defnx_1>) ... (<namex_n> <defnx_n>))

into ([name_1;...;name_n], [defn_1; ...; defn_n]) *)

and parseBindings bindingxs =

unzip (map (fun bindingx ->

(match bindingx with

Seq[Sym name; defn] -> (name, sexpToExp defn)

| _ -> raise (SyntaxError ("ill-formed bindpar binding"

^ (sexpToString bindingx)))))

bindingxs)

and desugarCond clausexs = (* clausesx is a list of sexp clauses *)

match clausexs with

[Seq[Sym "else"; defaultx]] -> sexpToExp defaultx

| (Seq[testx; resultx])::restx ->

If(sexpToExp testx, sexpToExp resultx, desugarCond restx)

| _ -> raise (SyntaxError ("invalid cond clauses: "

^ (sexpToString (Seq clausexs))))

(* defns and body have already been parsed *)

and desugarBindseq names defns body =

foldr2 (fun name defn rest -> Bind(name, defn, rest)) body names defns

and desugarList eltxs =

match eltxs with

[] -> Lit(List[])

| eltx::eltxs’ -> PrimApp(valOf(findPrimop "prep"),

[sexpToExp eltx; desugarList eltxs’])

(* turns an sexp directly into a literal value *)

and desugarQuote sexp =

match sexp with

Sexp.Int i -> Int i

| Sexp.Chr s -> Char s

| Sexp.Str s -> String s

| Sexp.Sym "#t" -> Bool true

| Sexp.Sym "#f" -> Bool false

| Sexp.Sym "#e" -> List []

| Sexp.Sym s -> Symbol s

| Seq eltxs -> List (map desugarQuote eltxs)

| _ -> raise (SyntaxError ("invalid quoted expression" ^ (sexpToString sexp)))

Figure 9: Valex all-at-once desugarings, Part 2.

4.4 A Better Approach: Incremental Desugaring Rules

Rather than desugaring constructs like bindseq all at once, we can desugar them incrementally,
one step at a time, by applying rules like the following:

(bindseq () Ebody) ; Ebody

(bindseq ((I E) ...) Ebody) ; (bind I E (bindseq (...) Ebody))

The first rule says that that a bindseq with an empty binding list is equivalent to its body. The
second rule says that a bindseq with n bindings can be rewritten into a bind whose body is a
bindseq with n− 1 bindings. Here the ellipses notation “. . .” should be viewed as a kind of meta-
variable that matches the “rest of the bindings” on the left-hand side of the rule, and means the
same set of bindings on the right-hand side of the rule. Because the rule decreases the number of

18

bindings in the bindseq with each rewriting step, it specifies the well-defined unwinding of a given
bindseq into a finite number of nested bind expressions.
Fig. 10 shows a complete list of incremental desugaring rules for Valex. There are no in-

cremental rules for bindpar because the required renaming is challenging to implemented as a
transformation on s-expressions. (Recall that the rename function works on instances of exp, not
instances of sexp.)
We can implement the desugaring rules by changing the sexpToExp function to perform these

rules. For instance, we can use the following clauses to implement bindseq:

| Seq [Sym "bindseq"; Seq []; bodyx] -> sexpToExp bodyx

| Seq [Sym "bindseq"; Seq ((Seq[Sym name; defnx])::bindingxs); body] ->

sexpToExp (Seq[Sym "bind"; Sym name; defnx;

Seq[Sym "bindseq"; Seq bindingxs; body]])

Note that it is necessary to recursively invoke sexpToSexp on the result of transforming the bindseq
s-expression into a bind expression with a bindseq body.

(&& Erand1 Erand2) ; (if Erand1 Erand2 #f)

(|| Erand1 Erand2) ; (if Erand1 #t Erand2)

(bindseq () Ebody) ; Ebody

(bindseq ((I E) ...) Ebody) ; (bind I E (bindseq (...) Ebody))

(cond (else Edefault)) ; Edefault

(cond (Etest Edefault) . . .) ; (if Etest Edefault (cond . . .))

(list) ; #e

(list Ehd . . .) ; (prep Ehd (list . . .))

(quote int)) ; int

(quote char)) ; char

(quote string)) ; string

(quote #t) ; #t

(quote #f) ; #f

(quote #e) ; #e

(quote sym) ; (sym sym)

(quote (sexp1 . . . sexpn)) ; (list (quote sexp1) . . . (quote sexpn))

Figure 10: Desugaring rules for Valex.

We can implement all the desugaring rules in Fig. 10 in a simlar fashion by directly extending
sexpToExp. However, if we are not careful, it is easy to forget to call sexpToExp recursively on the
results of our desugarings. It would be preferable to have an approach in which we could express
the desugaring rules more directly and they were executed in a separate pass rather than being
interleaved with the “regular” parsing of sexpToExp. Fig. 11 presents such an approach. It shows
how to encode incremental desugaring rules into an Ocaml desugarRules construct. The desugar
function repeatedly applies these rules on an expression and all its subexpressions until no more of
them match.
Fig. 12 shows how to integrate the desugar function with the sexpToExp function. We re-

name the existing sexpToExp to sexpToExp’. Then sexpToSexp is simply the result of invoking
sexpToExp’ on the result of desugaring a given s-expression. So parsing now occurs in two distinct
phases: the desugaring phase (implemented by desugar) and the parsing phase (implemented by
sexpToExp’).

19

let rec desugar sexp =

let sexp’ = desugarRules sexp in

if sexp’ = sexp then (* efficient in OCAML if they’re pointer equivalent *)

match sexp with

Seq sexps -> Seq (map desugar sexps)

| _ -> sexp

else desugar sexp’

and desugarRules sexp =

match sexp with

(* Handle Intex arg refs as var refs *)

Seq [Sym "$"; Sexp.Int i] -> Sym ("$" ^ (string_of_int i))

(* Note: the following desugarings for && and || allow

non-boolean expressions for second argument! *)

| Seq [Sym "&&"; x; y] -> Seq [Sym "if"; x; y; Sym "#f"]

| Seq [Sym "||"; x; y] -> Seq [Sym "if"; x; Sym "#t"; y]

(* Scheme-style cond *)

| Seq [Sym "cond"; Seq [Sym "else"; default]] -> default

| Seq (Sym "cond" :: Seq [test; body] :: clauses) ->

Seq [Sym "if"; test; body; Seq(Sym "cond" :: clauses)]

| Seq [Sym "bindseq"; Seq[]; body] -> body

| Seq [Sym "bindseq"; Seq ((Seq[Sym name;defn])::bindings); body]

-> Seq[Sym "bind"; Sym name; defn; Seq[Sym "bindseq"; Seq bindings; body]]

(* Note: can’t handle bindpar here, because it requires renaming *)

(* See sexpToExp’ below for handling bindpar *)

(* list desugarings *)

| Seq [Sym "list"] -> Sym "#e"

| Seq (Sym "list" :: headx :: tailsx) ->

Seq [Sym "prep"; headx; Seq (Sym "list" :: tailsx)]

(* Scheme-like quotation *)

| Seq [Sym "quote"; Sexp.Int i] -> Sexp.Int i (* These are sexps, not Valex valus! *)

| Seq [Sym "quote"; Chr i] -> Chr i

| Seq [Sym "quote"; Str i] -> Str i

(* Quoted special symbols denote themselves *)

| Seq [Sym "quote"; Sym "#t"] -> Sym "#t"

| Seq [Sym "quote"; Sym "#f"] -> Sym "#f"

| Seq [Sym "quote"; Sym "#e"] -> Sym "#e"

(* Other quoted symbols s denote (sym s) *)

| Seq [Sym "quote"; Sym s] -> Seq [Sym "sym"; Sym s]

(* (quote (x1 ... xn)) -> (list (quote x1) ... (quote xn)) *)

| Seq [Sym "quote"; Seq xs] ->

Seq (Sym "list" :: (map (fun x -> Seq[Sym "quote"; x]) xs))

| _ -> sexp

(* For testing *)

let desugarString str =

StringUtils.println (sexpToString (desugar (stringToSexp str)))

Figure 11: Valex desugaring expressed via incremental desugaring rules.

20

and sexpToExp sexp = sexpToExp’ (desugar sexp)

(* val sexpToExp’ : Sexp.sexp -> exp *)

and sexpToExp’ sexp =

match sexp with

Sexp.Int i -> Lit (Int i)

| Sexp.Chr c -> Lit (Char c)

| Sexp.Str s -> Lit (String s)

(* Symbols beginning with # denote special values (not variables!) *)

| Sym s when String.get s 0 = ’#’ -> Lit (stringToSpecialValue s)

| Sym s -> Var s

| Seq [Sym "sym"; Sym s] -> Lit (Symbol s)

| Seq [Sym "bind"; Sym name; defnx; bodyx] ->

Bind (name, sexpToExp’ defnx, sexpToExp’ bodyx)

| Seq [Sym "if"; testx; thenx; elsex] ->

If(sexpToExp’ testx, sexpToExp’ thenx, sexpToExp’ elsex)

(* Implement BINDPAR desugaring directly here.

Can’t handle desugarings with renamings in desugar function *)

| Seq [Sym "bindpar"; Seq bindingxs; bodyx] ->

let (names, defnxs) = parseBindings bindingxs

in desugarBindpar names (map sexpToExp’ defnxs) (sexpToExp’ bodyx)

(* This clause must be last! *)

| Seq (Sym p :: randsx) when isPrimop p ->

PrimApp(valOf (findPrimop p), map sexpToExp’ randsx)

| _ -> raise (SyntaxError ("invalid Valex expression: " ^ (sexpToString sexp)))

(* Strings beginning with # denote special values *)

and stringToSpecialValue s =

match s with

| "#t" -> Bool true (* true and false are keywords *)

| "#f" -> Bool false (* for literals, not variables *)

| "#e" -> List [] (* empty list literal *)

| _ -> raise (SyntaxError ("Unrecognized special value: " ^ s))

(* parse bindings of the form ((<name_1> <defnx_1>) ... (<name_n> <defnx_n>))

into ([name_1;...;name_n], [defnx_1; ...; defnx_n]) *)

and parseBindings bindingxs =

unzip (map (fun bindingx ->

(match bindingx with

Seq[Sym name; defnx] -> (name, defnx)

| _ -> raise (SyntaxError ("ill-formed bindpar binding"

^ (sexpToString bindingx)))))

bindingxs)

(* desugars BINDPAR by renaming all BINDPAR-bound variables and

then effectively treating as a BINDSEQ *)

and desugarBindpar names defns body =

let freshNames = map StringUtils.fresh names in

foldr2 (fun n d b -> Bind(n,d,b)) (renameAll names freshNames body) freshNames defns

(* val stringToExp : string -> exp *)

and stringToExp s = sexpToExp (stringToSexp s) (* Desugar when possible *)

Figure 12: A version of sexpToExp that incorporates desugaring.

21

(* val sexpToPgm : Sexp.sexp -> pgm *)

let rec sexpToPgm sexp =

match sexp with

Seq [Sym "valex"; Seq formals; bodyx] ->

Pgm(map symToString formals, sexpToExp bodyx)

(* Handle Bindex programs as well *)

| Seq [Sym "bindex"; Seq formals; bodyx] ->

Pgm(map symToString formals, sexpToExp bodyx)

(* Handle Intex programs as well *)

| Seq [Sym "intex"; Sexp.Int n; bodyx] ->

Pgm(map

(fun i -> "$" ^ (string_of_int i))

(ListUtils.range 1 n),

sexpToExp bodyx)

| _ -> raise (SyntaxError ("invalid Valex program: " ^ (sexpToString sexp)))

(* val symToString : Sexp.sexp -> string *)

and symToString sexp =

match sexp with

Sym s -> s

| _ -> raise (SyntaxError ("symToString: not a string -- " ^ (sexpToString sexp)))

(* val stringToPgm : string -> pgm *)

and stringToPgm s = sexpToPgm (stringToSexp s)

Figure 13: The Valex sexpToPgm function. Note how it treats Intex and Bindex programs as
Valex programs.

22

