
CS251 Programming Languages Handout # 5

Prof. Lyn Turbak January 29, 2008

Wellesley College

Using Ocaml

ML is a function-oriented programming language developed by Robin Milner and others at
Edinburgh University in the late 1970s. The name ML, which stands for meta-language, was
chosen because the primary initial use of the language was as a meta-language for specifying theorem
provers. In this course, we useML as a meta-language for specifying interpreters and translators.
The salient features of ML include first-class functions, static typing via automatically inferred
types, parametric polymorphism, algebraic (i.e. sum-of-products) data types, pattern matching,
garbage collection, and a powerful module system. As we shall see, all of these features facilitate
writing interpreters and translators. The version of ML used in CS251 is Objective Caml, also
known as Ocaml. This handout describes how to run Ocaml on the Linux workstations here at
Wellesley.

You will use Emacs to create Ocaml program files, and you will load these files into an in-
teractive Ocaml top-level interpreter. Type reconstruction is performed on all Ocaml programs
and you cannot test your programs until they pass the type checker. Understanding error messages
from the type checker and using them to pinpoint type errors in your program are important skills
that you will need to hone.

There are three ways to run Ocaml on the Linux workstations:

1. in a regular shell window;

2. in a shell window in Emacs; and

3. in a special Ocaml buffer within Emacs.

These three approaches are described below in Secs. 1–3. I strongly recommended the last approach
— a special Ocaml buffer within Emacs — since it simplifies many interactions. Nevertheless, you
should still read all sections since many of the notes in the early sections are still relevant for the
later ones.

This handout only scratches the surface of Ocaml. For more detailed documentation, browse
the following web pages:

http://caml.inria.fr/

http://www.ocaml.org/

1 Running Ocaml in a Shell

1.1 Launching the Ocaml interpreter

The simplest way to run Ocaml on the Linux workstations is in a Linux shell window by executing
the command ocaml. This will print a herald on the screen and eventually the ‘#’ prompt of
Ocaml. For example:

[gdome@jaguar gdome] ocaml

Objective Caml version 3.09.3

#

You can now evaluate expressions by typing them in followed by two semi-colons and Enter. The
two semi-colons tell the interpreter that you are done with the expression. This allows you to
have expressions with multiple lines. For example, here is the transcript of a session in which two
single-line expressions and one multiple-line expression are evaluated:

1

1 + 2;;

- : int = 3

let xs = List.map (fun x -> x * 2) [4; 3; 7];;

val xs : int list = [8; 6; 14]

let a = 1 + 2 in

let b = 4 * a in

(a,b);;

- : int * int = (3, 12)

If you forget the semi-colons at the end of an expression, Ocaml will think you are continuing
the expression onto the next line. In this case, you can just type the two semi-colons followed by
Enter to indicate that you are done. For example:

1 + 2

;;

- : int = 3

The Ocaml interpreter expects that the unit of evaluation will be a top-level declaration,
typically one of the form

let name = exp;;

It is common to declare functions using the form

let function-name formal1 . . . formaln = exp;;

This is syntactic sugar for

let function-name = fun formal1 -> . . . fun formaln -> exp;;

For example, the declaration

let avg a b = (a+b)/2;;

is equivalent to

let avg = fun a -> fun b -> (a+b)/2;;

Recursive functions are declared via the form

let rec function-name formal1 . . . formaln = exp;;

For example,

let rec sumBetween m n =

if m > n then

0

else

m + (sumBetween (m+1) n);;

val sumBetween : int -> int -> int = <fun>

sumBetween 1 10;;

- : int = 55

If you just enter an expression E, the Ocaml interpreter treats it as a declaration of the form
let - = E, where - in this context is a special variable that is not actually bound to the result.

1.2 Loading Files

It is tedious to type all declarations directly at the Ocaml interpreter. It is especially frustrating
to type in a long declaration only to notice that you made an error near the beginning and you
have to type it in all over again. In order to reduce your frustration level, it is wise to use a text
editor (e.g., Emacs) to type in all but the simplest Ocaml declarations. This way, it is easy to

2

correct bugs and to save your declarations between different sessions with the Ocaml interpreter.
(Note: the file extension that you should use for Ocaml files is .ml. Using this extension will
enable various Ocaml features in Emacs. See Sec. 4 for details.)

If filename is the name of a file containing Ocaml declarations and expressions, evaluating

#use "filename"

will evaluate all of the expressions in the file, one by one, as if you had typed them in by hand. You
must type the # character. #use is an example of a directive – a function-like entity that can be
invoked in the top-level interpreter but is not an Ocaml function. Ocaml has several directives,
all of which begin with the symbol #. This symbol is different from the # that serves as a prompt!
For example:

#use "ps2.ml";;

val sum_multiples_of_3_or_5 : ’a * ’b -> int = <fun>

val contains_multiple : ’a * ’b -> bool = <fun>

val all_contain_multiple : ’a * ’b -> bool = <fun>

val merge : ’a * ’b -> ’c list = <fun>

val alts : ’a -> ’b list = <fun>

val cartesian_product : ’a * ’b -> ’c list = <fun>

val bits : ’a -> ’b list = <fun>

val inserts : ’a * ’b -> ’c list = <fun>

val permutations : ’a -> ’b list = <fun>

Note how Ocaml gives the type of each declaration in the file.
The #use directive can be used within a file to load other files. For example, here is the contents

of a file load-ps2.ml that loads two other files:

#use "ps2.ml"

#use "ps2-test.ml"

The filename given to #use may be either an absolute pathname (such as the absolute pathname
/students/gdome/cs251/ps2/ps2.ml) or a pathname relative to the current working directory.
By default, the current working directory for the Ocaml interpreter is the current working direc-
tory of the shell from which it was invoked, and by default this is your cs home directory (e.g.
/students/gdome). So rather than evaluating

#use "/students/gdome/cs251/ps2/ps2.ml"

you could instead evaluate

#use "cs251/ps2/ps2.ml"

It is typical to load many files (or the same file many times) from the same directory. Moreover,
files that themselves contain #use (like load-ps1.ml considered above) often have built into them
an assumption that you load them from a particular directory. For these reasons, you need to be
able to change the current working directory within the Ocaml interpreter. To do this, evaluate

#cd dirname

where dirname is the name of the directory you want to be the new current working directory. This
name can either be an absolute pathname, or a pathname relative to the current working directory.
For example,

#cd "/students/gdome/cs251/ps2"

sets the Ocaml directory to /students/gdome/cs251/ps2. If this is followed by

#cd "../ps1"

the Ocaml directory is now to /students/gdome/cs251/ps1.

3

Ocaml does not understand the usual Linux abbreviation of ~ for the user’s home directory
(such as /students/gdome), so you have to type the long form for your home directory.

1.3 Exiting Ocaml

To terminate your session with the Ocaml interpreter, either use the #quit directive, or type C-d

(i.e., control-D)1.

2 Running Ocaml in an Emacs Shell

You could do all of your Ocaml programming in CS251 using just the techniques outlined in
Sec. 1 above. However, you will find yourself constantly swapping attention between the Emacs
editor (where you write your code) and the Linux shell running the Ocaml interpreter (where
you evaluate your code). Moreover, when logged in remotely, you often do not have the luxury of
multiple windows.

You can do all Ocaml editing and execution within a single Emacs window. The most straight-
forward way to do this is to run the Ocaml interpreter in a shell inside of Emacs. You can start a
Linux shell inside Emacs via M-x shell2 this creates a special shell buffer named *shell*. You can
then run Ocaml inside this shell as described above. By using Emacs window-splitting techniques3,
you can see both the Ocaml interpreter and the file you’re editing on a single screen.

Another advantage to running Ocaml under an Emacs shell is that the Emacs commands M-p
and M-n cycle back and forth through the shell input history. So when testing a program in the
Ocaml interpreter, you needn’t retype a test expression typed earlier; instead, type M-p a few
times.

Yet another advantage is that the Emacs shell is a buffer that can easily be saved as a file. So
it is easy to save a transcript of your interactions with Ocaml.

3 Running Ocaml in a Special Emacs Buffer

An even better way to run Ocaml inside of Emacs is to create a special Ocaml evaluation buffer.
This can be done via the Emacs command M-x run-caml.4 After executing this command, you
will be prompted in the Emacs mini-buffer (at the bottom of the screen) for the version of Ocaml

to run. The default is ocaml; just type Enter. This creates an Ocaml interaction buffer whose
name is *inferior-caml*.

There are two main advantages to using *inferior-caml* over the usual Emacs *shell* buffer
for your Ocaml interactions:

1. *inferior-caml* understands Ocaml formatting conventions (e.g. how to indent subexpres-
sions when the Tab key is pressed), and uses different colors to highlight keywords, strings,
comments, etc.

2. When using *inferior-caml* you are not tying up your *shell* buffer, which you might
want for another purpose.

1It is common in Unix systems for C-d to represent the “end of input”.
2Notational convention: M-x, pronounced ”Meta x”, is entered by typing the ”Meta” key and ”x” key at the same

time. On PC keyboards, the key labeled ”Alt” is usually treated as the ”Meta” key. On keyboards without a true

”Meta” key, you can instead press the ESCape key followed by pressing the ”x” key.
3E.g., C-x 2 splits a window in two, and C-x o moves the cursor between windows. See Emacs documentation for

more details.
4This command is available only if you include the expression (load "/usr/network/dot-emacs") in your

~/.emacs file.

4

For these reasons, I recommend that you always use M-x run-caml in Emacs to execute Ocaml

programs.

4 Ocaml Emacs Mode

You can get the same Ocaml formatting conventions used in the *inferior-caml* buffer in any
Emacs editing buffer by putting it in “Caml mode”. To do this manually, go to the buffer in Emacs
and execute the Emacs command M-x caml-mode. If your Ocaml file ends in a .ml extension,
Emacs will automatically put your buffer into Caml mode when it loads the file into the buffer.5

Ocaml mode helps you write Ocaml code because it understands the formatting conventions
for Ocaml code. Like many Emacs modes, it helps you match parentheses by flashing the matching
open parenthesis whenever you type a close parenthesis. Additionally, Ocaml mode helps you put
your code in pretty-printed format. Typing the TAB key will indent the code on that line according
to the Ocaml indentation conventions. You should get into the habit of hitting TAB after every
return so that you start typing the next line at the appropriate indentation level. You can format
an entire expression by typing ESC C-q when the cursor is at the first character of the expression.
Keeping your Ocaml expressions indented properly is important for reading and debugging code.
Indenting the code will often highlight that the structure of the expression has a bug.

Ocaml mode also understands what Ocaml keywords are, and will color keywords, strings,
and comments different from the rest of the text to highlight them.

5The automatic use of Caml mode in buffers editing .ml files is available only if you include the expression (load

"/usr/network/dot-emacs") in your ~/.emacs file.

5

